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Summary
Background Metabolic reprogramming plays a pivotal role in cancer progression, contributing to substantial intra-
tumour heterogeneity and influencing tumour behaviour. However, a systematic characterization of metabolic het-
erogeneity across multiple cancer types at the single-cell level remains limited.

MethodsWe integrated 296 tumour and normal samples spanning six common cancer types to construct a single-cell
compendium of metabolic gene expression profiles and identify cell type-specific metabolic properties and
reprogramming patterns. A computational approach based on non-negative matrix factorization (NMF) was
utilised to identify metabolic meta-programs (MMPs) showing intratumour heterogeneity. In-vitro cell
experiments were conducted to confirm the associations between MMPs and chemotherapy resistance, as well as
the function of key metabolic regulators. Survival analyses were performed to assess clinical relevance of cellular
metabolic properties.

Findings Our analysis revealed shared glycolysis upregulation and divergent regulation of citric acid cycle across
different cell types. In malignant cells, we identified a colorectal cancer-specific MMP associated with resistance to the
cuproptosis inducer elesclomol, validated through in-vitro cell experiments. Furthermore, our findings enabled the
stratification of patients into distinct prognostic subtypes based on metabolic properties of specific cell types, such
as myeloid cells.

Interpretation This study presents a nuanced understanding of multilayered metabolic heterogeneity, offering
valuable insights into potential personalized therapies targeting tumour metabolism.
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Introduction
Cancer cells undergo extensive metabolic remodelling to
fulfil the energy and biosynthetic demands crucial for
rapid proliferation, a well-established hallmark of cancer
known as metabolic reprogramming.1 Key metabolic
traits of cancer cells encompass a predilection for aer-
obic glycolysis, reliance on glutamine, heightened
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macromolecular synthesis and maintenance of redox
homeostasis. The intricacies of these adaptations stem
from a myriad of intrinsic and extrinsic cues,2,3

including genomic alterations, tissue-specific charac-
teristics, elements within the tumour microenviron-
ment (TME), and individual-level metabolic variations.
The resulting metabolic heterogeneity across cancer
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Research in context

Evidence before this study
We searched PubMed with the keywords “single cell”,
(“cancer” or “pan-cancer”), metabolic (“heterogeneity” or
“landscape”) for articles published up to April 23, 2024, with
no language restrictions. We found that previous studies have
primarily focused on specific cell types or cancer types and
have often utilized low-throughput methods, limiting analysis
to a subset of metabolic enzymes. This underscores the
importance of conducting comprehensive investigations into
single-cell metabolic heterogeneity across diverse cancer types
using high-throughput approaches.

Added value of this study
In this study, by compiling both new generated and publicly
available datasets, we constructed a single-cell compendium
of metabolic gene expression profiles from 296 tumour and
normal samples spanning six common cancer types. We
systematically compared metabolic properties and
reprogramming patterns between major cell types in the
tumour microenvironment (TME), revealing commonalities in
elevated glycolysis but significant difference in other
metabolic processes. Through the identification of metabolic
meta-programs (MMPs) characterizing intratumour

heterogeneity, we explored associations with chemotherapy
resistance, metabolic regulation, and functional
differentiation of cells in TME. Our approach enabled the
stratification of patients into distinct prognostic subtypes
based on specific cell types, offering new insights into
precision medicine and personalized treatment strategies.

Implications of all the available evidence
Metabolic adaptations of tumours exhibited complex inter-
and intratumour heterogeneity, posing challenges for
effective cancer treatment. Our findings provide valuable
insights into metabolic heterogeneity, paving the way for
precision medicine approaches tailored to individual patients.
For example, the identification of colorectal cancer cells with
higher MMP7 scores showing resistance to cuproptosis
inducer elesclomol highlights the potential for targeted
therapies. Our new metabolic subtyping strategy offers
insights into innovative treatments. Furthermore, our study
establishes an easily extendable framework for understanding
single cell level metabolic heterogeneity across various cancer
types, with implications for advancing translational research
and clinical practice.
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types and individuals poses challenge for developing
therapies targeting metabolic vulnerabilities.

The tumour functions as a complex ecosystem that
harbours a variety of cell types. The intricate crosstalk
among these cell types profoundly shapes cancer pro-
gression, and their unique metabolic demands are closely
linked to specific functions.4,5 Although studies on meta-
bolic reprogramming have yielded invaluable insights into
cancer biology, the majority were conducted on cultured
cells, model organisms, or bulk tumours. To unravel
intratumour metabolic heterogeneity, a closer examination
of single-cell metabolic configurations within the complex
TME is imperative. However, limitations in single-cell
metabolomics, including the necessity for specialized
mass spectrometry (MS) instrumentation, challenges in
analysing densely cultured cells, and the absence of suit-
able computational methods for downstream analysis,
hinder comprehensive exploration.6 Considerable effort
has been expended to investigate single-cell metabolic
profiles via multiplexed mass cytometry7 and in situ
enzyme histochemistry.8 However, these approaches are
relatively low throughput, typically being limited to several
metabolic enzymes.

A holistic understanding of cellular metabolism ne-
cessitates a meticulous examination of both metabolite
concentrations and their conversion fluxes, which is
difficult to conduct in diverse human tissues. Notwith-
standing, global gene expression levels offer a measur-
able molecular dimension bridging oncogenic drivers to
metabolic phenotypes. Several studies have revealed
widespread transcriptional dysregulations of metabolic
genes and their associations with patient prognosis
through the analysis of large-scale gene expression
data.9–11 With the advent of single-cell RNA sequencing
(scRNA-seq), some pioneering studies have investigated
cellular metabolic heterogeneity in one or two isolated
cancer types.12,13 Computational methods for inferring
metabolic flow from bulk and scRNA-seq data have been
developed, providing valuable insights into the tumour
metabolic microenvironment.14,15 Nonetheless, it is not
clear whether such findings can be extended to other
cancer types. Moreover, metabolic reprogramming of
distinct cell types in TME relative to cells from normal
tissues have not yet been examined. A systematic
investigation of the intratumour metabolic heterogene-
ity of various cell types across a wider array of cancer
types is urgently needed.

In this study, we constructed a metabolic gene
expression atlas using scRNA-seq datasets and investi-
gated multilayered metabolic heterogeneity across cell
types, single cells within specific tumours, as well as
individuals. Our findings provide a vital resource for
comprehending the nuanced metabolic heterogeneity
present in multiple cancer types.
Methods
Data curation
A total of 10 scRNA-seq datasets including 197 tumour
samples and 99 normal samples were curated. Among
www.thelancet.com Vol 109 November, 2024
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these, BRCA_valid2 and LUAD_valid2 datasets include
data generated by our laboratory and collaborators, while
the remaining datasets were sourced from the literature
(Supplementary Table S1). For the BRCA_valid2 dataset,
newly generated data include samples from estrogen
receptor-positive breast cancer (ERBC) and paired normal
tissues. The LUAD_valid2 dataset consist of tumour
samples generated by our lab and analysed in a previous
study, with normal samples collected from literature. Our
data was not deliberately enriched for a particular sex in
none of the studies except for cancer types which are sex
specific (e.g., breast cancer or prostate cancer), and this
data was self-reported by study participants.

scRNA-seq data generation
For data generated by our lab and collaborators, samples
were collected at Peking University People’s Hospital.
This study was approved by the Ethics Committee Board
of Peking University People’s Hospital (2021PHB387-
001), and informed consent was provided by all patients.
Preparation of single-cell suspensions was described
previously.16 Briefly, tissues were transported in ice-cold
H1640 (Gibco, Life Technology) immediately after sur-
gical resection. Then, the tissues were minced into
∼1 mm3 pieces, digested with 0.25% trypsin (Gibco, Life
Technology), and transferred to 10 mL digestion me-
dium containing collagenase IV (100 U/mL, Gibco, Life
Technology) and dispase (0.6 U/mL, Gibco, Life Tech-
nology). The digested tissues were successively filtered
through 70-μm and 40-μm nylon mesh and treated with
ice-cold red blood cell lysis solution (Solarbio). Finally,
the pelleted cells were suspended in 1 mL of Dulbecco’s
phosphate buffered saline (DPBS, Solarbio), and the
concentrations of live cells and clumped cells were
determined using an automated cell counter (Count-
star). The cell suspension was loaded onto the chro-
mium single cell controller approximately 10,000 cells/
chip position using the Single Cell 3’ Library and Gel
Bead Kit V2 (10X Genomics) and Chromium Single Cell
A Chip Kit (10X Genomics) according to the manufac-
turer’s instructions. All the subsequent steps were per-
formed following the standard manufacturer’s
protocols. Purified libraries were analysed by an Illu-
mina HiSeq X Ten sequencer with 150-bp paired-end
reads.

scRNA-seq data preprocessing
For data generated by our lab and collaborators, Cell
Ranger (version 3.0, 10x Genomics Inc) was used for
sequencing reads mapping against the GRCh38 human
reference genome and unique molecular identifiers
(UMIs) counting. For previously published scRNA-seq
data, count data were collected from original publica-
tions (Supplementary Table S1). Only samples of pri-
mary cancer and normal controls were kept, and cells
with fewer than 200 detected genes or 500 UMI counts
were filtered out. No more than 10% mitochondrial
www.thelancet.com Vol 109 November, 2024
reads were generally allowed per cell, although the up-
per limit was increased as high as 40% for a small
number of libraries according to its distribution.17

DoubletFinder18 was applied to each sequencing li-
brary to remove potential doublets. Finally, all datasets
were downsampled to no more than 100,000 cells to
reduce the computational burden.

Cell type identification
Uniform pipelines were performed on all datasets to
identify the main cell lineages, although cell annotation
tables of published data were obtained as references.
Seurat19 (v4.3.0) was used to identify top 2000 highly
variable genes, perform dimensional reduction and
cluster cells into groups, which were then annotated
using canonical markers of the main cell lineages
(Supplementary Table S2).

To distinguish malignant cells from non-malignant
epithelium, inferCNV (https://github.com/broadin
stitute/inferCNV) was used to estimate initial copy
number variations (CNVs) for BRCA, CRC, LUAD and
PAAD. The CNV score of each cell was calculated as the
quadratic sum of the inferred CNV values. For cancers
with low CNV signals (PRAD and STAD), we used the
algorithm described by Zhang et al.20 to identify malig-
nant cells. Briefly, differentially expressed genes be-
tween tumour and normal samples from The Cancer
Genome Atlas (TCGA) database were first calculated
using the limma21 package. Then, each epithelial cell
was assigned an initial malignant/non-malignant score
based on the top 50 highly expressed genes. Putative
malignant and non-malignant epithelial cells were
defined based on the two scores using the k-means
clustering algorithm. The initial recognition derived
from the TCGA bulk tissues is biased due to the in-
clusion of non-epithelial cells. Thus, we next generated
differentially expressed genes between putative malig-
nant and non-malignant epithelial cells, calculated new
malignant/non-malignant scores and reclassified
epithelial cells. These processes were repeated iteratively
until the misclassification rate (compared to the previ-
ous round) was less than 0.001.

CD4+ (CD3+CD4+CD8-) and CD8+ (CD3+ CD4-

CD8+) T cells were isolated based on the average
expression of CD3 genes (CD3D, CD3E, CD3G), CD4
and CD8 genes (CD8A, CD8B). Briefly, cells with CD3 >
0, CD4 > 0 and CD8 = 0 were assigned as CD4+; cells
with CD3 > 0, CD4 = 0 and CD8 > 0 were assigned as
CD8+; other T cells were unassigned.

Pathway scoring
Metabolic genes and pathways were manually curated
based on a previous study9 and out-of-date gene symbols
were updated (Supplementary Table S3). Gene sets of
Gene Ontology (C5.GOBP) and Hallmark (H) were
downloaded from MsigDB (https://www.gsea-msigdb.
org/gsea/msigdb/), and cancer hallmarks were
3
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manually curated from Hallmark gene sets. Signatures
of T and B cell subtypes were defined by Zheng et al.22

and Ma et al.,23 and the top 50 genes of each subtype
were used. Signatures of the functional phenotype of
macrophages were obtained from a previous study.24

Pathway scores of metabolic pathways, regulons,
cancer hallmarks and immune signatures for single cells
were calculated using the command aucell of pyscenic.
Pathway scores for bulk, pseudo-bulk and cell type spe-
cific pseudo-bulk samples were calculated using GSVA.25

Identification of cell type-specific metabolic
signatures and reprogramming patterns
Cell type-specific metabolic signatures and reprogram-
ming patterns were identified using the FindMarkers
function in Seurat with the default Wilcoxon rank sum
test, and P values were adjusted using the Benjamini &
Hochberg (BH) method. Significant genes were defined
as those with log2 fold change >0.1, false discovery rate
(FDR) < 0.01 and percent of expressed cells in either
population >10%. For pathways and regulons, the log2
fold change threshold was set as 0.01.

Cell lineage prediction using metabolic gene
expression
For each dataset, samples were split randomly into two
groups with equal size and 10,000 cells were subsampled
from each group to form the training and test sets,
respectively. Then L1-regularized linear regression models
were trained on the training sets using the glmnet R
package with 10-fold cross validation, and AUC values
were calculated on test sets for performance evaluation.

Quantification of cell-to-cell metabolic similarity
Due to the high dropout rates in scRNA-seq data, the
correlation coefficient of metabolic gene expression was
significantly correlated with the number of expressed
metabolic genes in cells. Thus, principal component
analysis (PCA) was performed on metabolic gene
expression profiles, and the Spearman correlation coef-
ficient of the first 30 PCs was calculated as cell-to-cell
metabolic similarity.

Analysis of mass cytometry data
Mass cytometry data of CRC were collected from a previ-
ous study7 and clustered using the FlowSOM26 R package
and the indicated input channels. The resulting clusters
were manually annotated as the main cell lineages based
on their lineage markers. Uniform manifold approxima-
tion and projection (UMAP) embeddings were calculated
using the R uwot implementation with the following pa-
rameters: n_neighbors = 15 and min_dist = 0.02.

Identification of metabolic meta-programs (MMPs)
MMPs were defined according to an algorithm
described by Gavish et al.27 with minor modification,
with the following steps employed.
Data preprocessing
Samples with fewer than 20 cells were excluded for each
cell type. The expression matrix of each sample was
normalized using Seurat NormalizeData function and
top 500 metabolic genes with highest mean expression
were retained. Gene expression values were scaled
across cells, and negative values in each scaled matrix
were set to zero.

Identifying NMF programs
Non-negative matrix factorization (NMF) was performed
on each sample separately to capture the metabolic
heterogeneity within each tumour. Multiple K parame-
ters (ranging from 4 to 9) were set, resulting in 39
programs for each tumour. Each program was sum-
marized by top 30 genes based on NMF coefficients.
Robust NMF programs were defined as below: (1)
robust within the sample (at least 70% gene overlap with
NMF programs identified by different K value); (2)
robust across tumours (at least 20% gene overlap with
NMF programs from other tumours); (3) non-redundant
within the tumour (within each tumour, NMF programs
were sorted in descending order by max gene overlap
with NMF programs from other tumours; then pro-
grams were selected from top to bottom, and once an
program was selected, any other programs with more
than 20% gene overlap with the selected one was
removed).

Defining MMPs
Robust NMF programs from all tumours were clustered
using a custom approach. In brief, programs were first
sorted in descending order by number of similar pro-
grams with more than 20% gene overlap (must be
programs from other tumours due to non-redundancy
within the tumour). The top program was selected as
founder of a new cluster, and MMP was initialized as
the genes in the program. Next, the program with the
highest gene overlap with MMP was added and the
MMP was updated as top 30 genes with the most
occurrence in all included programs. This process was
repeated until no programs have more than 20% gene
overlap with this MMP and the resulted MMP was
recorded. An attempt to find and extend a new cluster
was made as above in the remaining programs until the
number of similar programs less than 5 cases. When
clustering is done, MMPs with less than 10 programs
were removed and the remaining MMPs were annotated
according to enriched metabolic pathways.

MMP abundance assessment
The observed number of MMP-related programs for
each cancer type was counted as it is. The expected
number of MMP-related programs for each cancer types
was calculated as NMMP×Ncancer

Nrobust
, where NMMP is the number

of programs in a MMP, Ncancer is the number of robust
www.thelancet.com Vol 109 November, 2024
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programs in a caner type, and Nrobust is the number of
all robust programs. Then abundance was calculated as
log2

observed + 1
expeted + 1 , and the Bonferroni-adjusted P value was

defined by hypergeometric test. Finally, abundance was
stratified as: high (observed >10 or abundance >1; if
adjusted P value < 0.05 then high and significant), me-
dium (2 ≤ observed ≤10 or 0 < abundance ≤1), low
(observed = 1 and −1.5 < abundance ≤0), absent
(others).

Metabolic regulons and MMP regulators
The python implementation of the SCENIC28 algorithm
(pyscenic) was used to infer the gene regulatory
network. The transcription factor list and annotation
files used were downloaded from cisTarget (https://
resources.aertslab.org/cistarget). Transcription factors
and their metabolic targets were kept to construct
metabolic regulons, and regulons with fewer than five
targets were removed.

To identify MMP regulators, we calculated both the
Pearson and Spearman correlation between MMP
scores and regulon scores within each tumour. For each
combination of dataset and MMP, the Pearson correla-
tion coefficients were then averaged between tumours,
and significance was defined by one-sided t-test and
adjusted by BH correction. Regulons with adjusted P
value (both Pearson and Spearman) < 0.05 and absolute
mean Pearson correlation coefficient >0.4 were kept. If
more than three regulons exist, then only top three were
retained. Finally, regulons for all combinations of data-
sets and MMPs were combined for visualization.

Spatial transcriptomics prep, sequencing and
analysis
Formalin fixed paraffin embedded (FFPE) tissues were
sectioned and placed on a Visium Spatial Gene
Expression Slide. Initially, tissues sections underwent
deparaffinization, staining and decrosslinking as
directed by Visium Spatial Protocol CG000409 Rev B.
Subsequent steps, including probe hybridization, liga-
tion, release, extension and library construction, were
conducted in accordance with Visium Spatial Protocol
CG000407 Rev C. Briefly, Human whole transcriptome
probed panels were introduced to the tissue, hybridized
to their gene targets and subsequent intermolecular
ligation. Upon RNase treatment and permeabilization,
the resulting ligation products were released from the
tissue and captured by primers on a specific spot share a
common spatial Barcode. The libraries were generated
from the probes and subjected to sequencing by an
Illumina HiSeq X Ten sequencer, with all kits employed
in the process sourced from 10X Genomics.

Then feature-barcode matrix and associated H&E
image for each sample were obtained using Space
Ranger (v1.3.1) with GRCh38 genome reference 2020-A.
And spots were manually annotated by a pathologist
www.thelancet.com Vol 109 November, 2024
using Loupe Browser 5.0. Finally, Seurat (v4.3.0) was
used for visualization.

Correlation between pathway or MMP scores with
various factors
For correlation of pathway scores with clinical metrics,
the individual CNV score was calculated as the average
of all malignant cells from specific individual. Metrics
including age, sex, clinical stage and CNV score were
tested for correlation with metabolic pathway scores. For
each of those metrics, a linear model was fitted using
the R function lm. The adjusted R2 was interpreted as
the proportion of variance explained (PVE). The P value
of the F test by function anova and adjusted P value
using the BH method were reported.

The Pearson correlations between MMP scores and
other gene sets (cancer hallmarks, immune signatures
and meta-programs) were calculated within each
tumour, similar to correlations between MMPs score
and regulon scores, and then averaged within each
dataset or across all tumours. The significance was
defined by one-sided t-test and adjusted by BH correc-
tion. Correlations with adjusted P value (both Pearson
and Spearman) < 0.05 and absolute mean Pearson cor-
relation coefficient >0.1 were assigned as significant.

IHC staining
Demographic information of samples for IHC staining
was provided in Supplementary Table S1. Tissue sec-
tions underwent deparaffinization and rehydration, fol-
lowed by the blocking of endogenous peroxidase activity
using 3% (v/v) hydrogen peroxide in methanol. Antigen
retrieval was achieved with 1 mM EDTA buffer (pH 7.4)
in a microwave oven. Sections were then incubated in
3% BSA for 30 min to prevent nonspecific staining.
Primary antibodies against panCK (1:500, Servicebio,
GB122053) and SOD1 (1:500, Santa Cruz, sc-17767,
RRID AB_628301) were applied and allowed to incu-
bate overnight at 4 ◦C. Fluorescent secondary antibodies
(Servicebio, G1222 and G1223) were used for staining,
with a 50-min incubation at room temperature. Whole-
slide imaging was performed using the Pannoramic
MIDI scanner (3DHISTECH). Quantification of fluo-
rescence intensity was performed using ImageJ.

CCLE data analysis
Gene expression data were downloaded from the
Cancer Cell Line Encyclopedia (CCLE) website (https://
portals.broadinstitute.org/ccle). Metabolomics data and
drug response data were obtained from previous
studies.29,30

For analysis between breast cancer subtype, only cell
lines derived from primary tumours of either estrogen
receptor-positive breast cancer (ERBC) or triple-negative
breast cancer (TNBC) were kept, and pathway scores
were calculated using GSVA. Significant metabolic
pathways (FDR <0.05) and metabolites (P value < 0.05)
5
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between BRCA subtypes were defined via unpaired two-
tailed t test.

For drug sensitivity analysis, MMP scores for cell
lines were defined using GSVA. Pearson correlations
were calculated between MMP scores and IC50 values
for each cancer type, and P values for correlation test
were adjusted using the BH method. Correlations with
adjusted P value (both Pearson and Spearman) < 0.05
and absolute mean Pearson correlation coefficient >0.3
were assigned as significant.

Cell culture and establishment of stable cell lines
NCI-H1299 (RRID CVVL_0060), PANC-1 (RRID
CVCL_0480), HCT116 (RRID CVCL_0291) and
HEK293T (RRID CVCL_0063) cell lines were purchased
from the American Type Culture Collection, authenti-
cated by STR locus analysis and tested for mycoplasma
contamination. All cell lines used in this study were
maintained in DMEM (Corning), supplemented with
10% FBS (PAN) in a 37 ◦C incubator with 5% (v/v) CO2.

The shRNA targeting sequences for human FOSL1
were synthesized and cloned into the pLKO.1-TRC
cloning vector (Addgene, RRID Addgene_10878). Then
the vectors were co-transfected with PMD2.G (Addgene,
RRID Addgene_12259) and psPAX2 (Addgene, RRID
Addgene_12260) into HEK293T cells at a ratio of 4:1:3
for 48 h and the cell culture media with virus was
collected for transfection. PANC-1 and H1299 cells were
transfected with virus supernatant for 12 h shRNA
positive cells were selected by puromycin at a dose of
2 μg/mL for 4 days. The efficiency of shRNA was
measured by reverse-transcription quantitative poly-
merase chain reaction (RT-qPCR).

Drug sensitivity assays
Elesclomol (TargetMol, T6170) was dissolved in
dimethyl sulfoxide (DMSO) to prepare a stock solution.
The impact of elesclomol on cell viability was assessed
through a colorimetric assay utilizing Cell Counting kit-
8 (CCK8, Beyotime, C0038). HCT116 cells were seeded
in 96-well plates at a density of 2 × 103 cells per well and
allowed to adhere for 12 h. Subsequently, cells were
treated with varying concentrations of elesclomol
(ranging from 0 to 100 μM) or DMSO for a 24-h period.
The absorbance at 450 nm was measured using a
spectrophotometer, and the experiment was conducted
in six replicates. Cell viability curves corresponding to
different concentrations were generated using Prism
GraphPad software v9.0.2. The data is presented as the
mean ± SEM.

RT-qPCR
RNA was isolated from cultured cells using TRIzol
(Invitrogen, 10296010) according to the manufacturer’s
protocol. RNA was reverse transcribed using a com-
mercial kit (TransGen Biotech, AE341-02), and RT-
qPCR was run in an ABI 7500 Real-Time PCR System
using TransStart® Green qPCR SuperMix (TransGen
Biotech, AQ101) and gene-specific primers. For quan-
titative analysis, samples were normalized using ACTB
with the delta CT method.

Bulk RNA-seq
Total RNA was isolated from cultured cells using TRIzol
(Invitrogen, 10296010). After quality check, samples
were sent to library preparation using the NEBNext
Ultra RNA Library Prep Kit for Illumina (#E7530L, NEB,
USA). High-throughput sequencing was performed us-
ing the Illumina HiSeq X Ten platform with 150 bp
paired-end reads according to the manufacturer’s in-
structions. FastQC was used for quality control of the
sequencing data. Reads were aligned to the human
(GRCh38) reference genome using STAR31 (v2.7.2b) and
assigned to genes using featureCounts32 (v2.0.1).
Differentially expressed genes between experimental
groups were identified using DESeq233 (v1.38.3).

Sample preparation and data analysis for
metabolomics study
Cells were harvested and mixed with methanol. After
centrifugation at 13,000 rpm at 4 ◦C for 15 min, the
supernatant was recovered, and metabolites levels were
measured with ultrahigh-performance liquid
chromatography-tandem mass spectroscopy (MS/MS).
Raw data were extracted, peak-identified and quality-
control processed using MSDIAL software. PCA was
performed to reduce the dimension of the data. The
pathway analysis using MetaboAnalyst (http://www.
metaboanalyst.ca) with the default setting was per-
formed for the metabolites significantly changed (un-
paired two-tailed Student’s t test, P < 0.05) in
knockdown cell lines compared to controls.

Co-occurrence of MMPs of different cell types
The fraction of cells with MMP score >0.5 in each
tumour was calculated and the resulted value were
scaled within each dataset. Then Pearson correlations
were calculated between MMPs of all cell types and only
positive correlations with P value < 10−5 were kept for
plot.

Clustering of metabolic pathways and cell type
specific pseudo-bulk samples
Consensus clustering (consensusClusterPlus package in
R) was used to determine the optimal number of clus-
ters using 1000 iterations and resampling of 80%.

Survival analysis of TCGA data
The TCGA Toil re-computed expression data were
downloaded from the UCSC Xena website (https://
xenabrowser.net/). Clinical information of TCGA pa-
tients was obtained from PanCanAtlas (https://gdc.
cancer.gov/about-data/publications/pancanatlas). Sam-
ples of colon adenocarcinoma and rectum
www.thelancet.com Vol 109 November, 2024
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adenocarcinoma were combined as CRC, lung cancer
(LC) samples were also combined, and PRAD was not
included due to lack of clinical stage data. We performed
Cox regression with age, sex, and clinical stage as
covariates on TCGA data of each cancer type. Then the
per-cancer-type models were combined into a pan-
cancer model by meta-analysis using a random effect
model implemented using R package meta. Kaplan–
Meier curve was plotted to show the survival differ-
ence using R package survival and survminer.

Statistics
Statistical analysis was indicated in the Figure legends
or specific Methods sections.

Data and code availability
Bulk RNA-seq data can be obtained from Gene
Expression Omnibus (GSE230729). Accession number
of all scRNA-seq datasets were described in
Supplementary Table S1. ST data from our unpublished
study are available from the corresponding author upon
reasonable request, and data from the previous study34

can be found on the HTAN Data Coordinating Centre
Data Portal at the National Cancer Institute: https://
data.humantumoratlas.org/ (under the HTAN WUSTL
Atlas). The authors declare that all the other data sup-
porting the findings of this study are available within the
article and its Supplementary information files and
from the corresponding author on reasonable request.

Our analysis code has been uploaded into the
GitHub (https://github.com/ZedekiahZhou/PanCan_
scMetab). All software and algorithms used in this
study are publicly available and are listed in the Methods
section.

Role of the funding source
The funders did not play any role in the study design,
data collection, management, analysis, interpretation,
review, approval of the manuscript, or the decision to
submit the manuscript for publication. All authors were
not precluded from accessing the data in the study, and
they accept responsibility to submit for publication.
Results
Construction of single-cell transcriptome atlas of
metabolic heterogeneity
We devised a computational framework to jointly
explore the metabolic gene expression profiles in diverse
solid tumours at single-cell resolution (Fig. 1a). In brief,
we curated and annotated 10 scRNA-seq datasets
covering six common cancer types (BRCA, CRC, LUAD,
PAAD, PRAD and STAD). After rigorous quality-control
filtering, the datasets comprised 764,432 cells from 296
samples, integrating both tumour and normal tissues
(Fig. 1b). While most samples were from public data-
sets, BCRA and LUAD incorporated additional data
www.thelancet.com Vol 109 November, 2024
from samples collected by our laboratory and collabo-
rators (Supplementary Table S1). Utilizing uniform
pipelines, we processed all datasets, identifying 12 main
cell lineages, seven of which were shared across all
datasets (Fig. 1c; Supplementary Fig. S1 and Table S2).
Malignant cells and non-malignant epithelium were
distinguished by copy number variations (CNV) or a
score-based method (Supplementary Fig. S2). Subse-
quently, a curated metabolic gene and pathway signa-
ture (Supplementary Table S3) was collected, and
metabolic regulons (transcriptional regulators and their
metabolic target genes) were reconstructed via SCE-
NIC28 analysis. This process culminated in the con-
struction of a single-cell transcriptome atlas of metabolic
heterogeneity, serving as the foundation for down-
stream analysis.

To assess the overall characteristics of metabolic
gene expression, we investigated the number of
expressed metabolic genes, the UMI counts, and the
percentage of metabolic reads within each cell
(Supplementary Fig. S3). Remarkably, metabolic gene
expression patterns varied significantly across cell types,
with malignant and myeloid cells displayed a higher
percentage of metabolic reads compared to T and B
cells, consistently observed across different cancer types.
Unsupervised clustering based on metabolic genes
effectively distinguished main cell lineages, resembling
the results based on highly variable genes (Fig. 1d).
Integrating cells across all 10 datasets using metabolic
genes resulted in cells of the same major lineage being
correctly grouped together, regardless of their dataset
origin (Supplementary Fig. S4 and b). Furthermore,
metabolic features predict cell identities independently
of cell lineage markers, as indicated by high area under
the receiver operating characteristic curve (AUC) values
(Supplementary Fig. S4c). Additionally, metabolic
pathway and regulon scores could also distinguish cell
lineages, albeit to a lesser extent (Fig. 1d). Together,
these results collectively underscore the robustness of
metabolic differences across the main cell lineages.

Another insight from clustering analysis revealed
that malignant cells formed sample-specific clusters,
while non-malignant cells formed cell type-specific
clusters, suggesting higher intertumour metabolic het-
erogeneity of malignant cells (Supplementary Fig. S5a–c).
To validate this finding, we utilized a principal compo-
nents (PC)-based correlation coefficient to quantify cell-
to-cell metabolic similarity (Methods for details). Using
this metric, we observed that malignant cells exhibited
lower intertumour metabolic similarity than intratumour
metabolic similarity, a trend not significant for non-
malignant cells (Supplementary Figs. S5d and S6). This
was further corroborated by ROGUE35 analysis, assessing
the purity of single-cell populations (Supplementary
Fig. S5e). Furthermore, cells from patients within the
same cancer subtypes exhibited higher metabolic simi-
larity than those from different subtypes (Supplementary
7
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Fig. 1: Pan-cancer landscape of metabolic gene expression at single-cell resolution. (a) Schematics of the computational framework. (b) Bar
plots showing the number of samples and cells derived from tumour and normal tissues in each dataset. (c) Bar plots showing the cell type
composition of tumour and normal tissues in each dataset. Of note, no normal tissues were collected in the original publication of the
BRCA_valid1 dataset. N, normal tissues; T, tumours. (d) t-distributed stochastic neighbour embedding (t-SNE) visualization of the main cell
lineages for the main datasets based on highly variable genes, metabolic genes, pathways and regulons, respectively.
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Fig. S5f), highlighting the multilayered nature of tumour
metabolic heterogeneity.

Cell type-specific metabolic properties in TME
Given the substantial metabolic variations among cell
types, our focus shifted to unravelling cell type-specific
metabolic properties within tumour tissues
(Supplementary Table S4). A staggering 75% of all
metabolic genes exhibited differential expression levels
across cell types in at least one dataset, with 18%
demonstrating consistency across all tumours (Fig. 2a).
Malignant cells showcased the highest number of highly
expressed metabolic genes, while T and B cells exhibited
relatively few metabolic gene signatures (Fig. 2b).
ROGUE analysis highlighted the pronounced metabolic
heterogeneity of malignant cells across datasets, con-
trasting with the higher homogeneity observed in T and
B cells (Fig. 2c). Specific metabolic genes, such as
www.thelancet.com Vol 109 November, 2024
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Fig. 2: Cell type-specific metabolic properties in TME. Cell type-specific metabolic properties were identified using Wilcoxon rank sum test, see
Methods for details. (a) Pie chart showing the proportion of cell type-specific metabolic genes in all metabolic genes. (b) Bar plot showing the
number of cell type-specific metabolic genes for each cell type in each dataset. (c) Lollipop plot showing the similarity of metabolic gene profiles
among cancer types for each major cell lineage by ROGUE. (d) Heatmap showing the conserved metabolic signature genes for distinct cell types,
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UQCRQ/PCBD1, GLUL/FTH1, SOD3, SLCO2A1,
HCST and SPCS3, consistently exhibited high expres-
sion in malignant, myeloid, fibroblast, endothelial, T
and B cells, respectively (Fig. 2d and e). Notably, some of
these genes, including FTH1 and SLCO2A1, play pivotal
roles in tumour progression.36,37 Nevertheless, further
investigations are warranted to elucidate the functions
of most cell type-specific metabolic genes in the TME.
Certain metabolic genes exhibited substantial hetero-
geneity across cancer types (Supplementary Fig. S7). For
example, SOD3, specific to fibroblasts in most tumours,
is expressed at high levels in normal epithelial cells and
stellate cells but suppressed in malignant cells of PAAD,
associated with the promotion of an aggressive pheno-
type.38 LDHB, widely expressed across different cell
types, appears to be suppressed in malignant cells of
BRCA and PAAD. To validate our scRNA-seq findings,
we reanalysed published bulk RNA-seq data and mass
cytometry data. Rohatgi et al.39 identified cancer- and
stroma-specific metabolic genes in bulk tumours sam-
ples using a deconvolution approach. We confirmed the
cell type specificity of these genes within our datasets
(Supplementary Fig. S8a), and provided a more nuanced
resolution for stroma-specific metabolic genes, which
were predominantly expressed in myeloid cells. Addi-
tionally, Hartmann et al. identified cell type-specific
proteins using mass cytometry data from CRC sam-
ples.7 We found consistent metabolic markers of ma-
lignant cells in both their data and ours (Supplementary
Fig. S8b–e), demonstrating the robustness of these
markers at both the gene and protein levels.

To provide a systematic view of the metabolic prop-
erties of each cell type, we identified cell type-specific
metabolic pathways. Of the 96 metabolic pathways
investigated, 83 exhibited significant differences across
cell types (Fig. 2f), reflecting divergence in almost all
aspects of their metabolic networks. Malignant cells
displayed the largest number of upregulated metabolic
pathways compared to other cell types, consistent with
the gene-level results. Key pathways, including pterin
biosynthesis, oxidative phosphorylation (OXPHOS),
ROS detoxification, pentose phosphate pathway (PPP),
purine metabolism, glycolysis and gluconeogenesis
were identified as specific pathways of malignant cells in
at least 80% (8/10) of datasets, aligning with their rapid
proliferation and high energy demands. Despite
increased glutaminolysis being reported as a hallmark
of cancer metabolic reprogramming,3 our finding
revealed that the glutamate metabolism pathway
exhibited the highest activity in myeloid cells rather than
malignant cells in most datasets (Supplementary
Fig. S9). Further investigation of core enzyme genes
color indicating log2 fold change compared with all other cells. (e) t-
Supplementary Fig. S4a, color-coded according to expression levels of r
showing conserved metabolic signature pathways, color indicating the n
specific cell type. (g) Heatmap showing the top conserved metabolic sig
indicated limited expression of GLS and GLUD1 across
all cell types, while GLUL consistently exhibited high
expression levels in myeloid cells, signifying active
glutamine anabolism triggered by excessive glutamine
uptake by malignant cells.40

To explore cell type-specific regulation of metabolic
networks, we reconstructed and identified cell type-
specific metabolic regulons in each dataset indepen-
dently (Fig. 2g). Among them, NELFE and SMARCA4,
known participants in the progression of multiple can-
cers,41,42 raised questions about their specific role in
metabolic regulation. Similarly, IRF5, implicated in the
metabolic response of airway macrophage,43 hinted at
potential functions in cancer, demanding further
validation.

Cell type-specific metabolic reprogramming
patterns in TME
Incorporating normal tissues allowed us to investigate
cell type-specific metabolic reprogramming patterns
across cancers (Supplementary Table S5), referring to
the metabolic alterations compared to corresponding
cell types in normal tissues. For malignant cells,
consistently upregulated metabolic genes were pre-
dominantly associated with cancer hallmark pathways,
including glycolysis (GAPDH, GPI and LDHA),
OXPHOS (COX6B1 and ATP5MC2), and nucleotide
metabolism (TK1, GUK1, NME1) (Fig. 3a). The most
representative downregulated gene, CA2 (Fig. 3b), en-
codes one of several isozymes of carbonic anhydrase.
While CA9, a family member, is upregulated by hyp-
oxia in many cancers, and its inhibitors are used as
anticancer drugs.44 CA2 displayed an opposite expres-
sion trend to CA9, warranting further investigation of
its role in cancer. Additionally, several genes exhibited
significant expression differences across cancers, such
as SCD and ASAH1, downregulated in LUAD but
upregulated in other cancers. Pathway-level results
corroborated the gene-level findings (Fig. 3c). Despite
the common notion of malignant cells favouring a
switch from OXPHOS to glycolysis, our findings
revealed a significant upregulation of OXPHOS in
most tumours compared to normal tissues, high-
lighting the metabolic plasticity of malignant cells.
Pathways associated with lipid and amino acid meta-
bolism were generally downregulated across cancers,
particularly in LUAD, indicating inherent characteris-
tics of this cancer type.16 Conversely, fatty acid
biosynthesis and the citric acid cycle (CAC) displayed
heterogeneity across cancer types (Fig. 3b and c),
reflecting the tissue-specific biology of their tissue of
origin.
SNE plots for combined datasets based on metabolic genes as in
epresentative metabolic markers of main cell lineages. (f) Heatmap
umber of datasets in which a pathway is significantly upregulated in
nature regulons for each cell type.
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Fig. 3: Cell type-specific metabolic reprogramming patterns. Cell type-specific metabolic reprogramming patterns were identified using Wilcoxon
rank sum test, see Methods for details. (a) Dot plot showing the alteration of metabolic gene expression in malignant cells compared to
epithelial cells in normal tissues. N (up) indicates the number of datasets in which a gene is significantly upregulated, and N (down) indicates
the number of datasets in which a gene is significantly downregulated. The dot is coloured according to N (up) – N (down), and the dot size
indicates the number of overlapping genes. (b) Violin and box plots showing the levels of representative genes and pathways between tumours
and normal tissues across cancer types. (c) Dot plot showing the alteration of metabolic pathways in malignant cells compared to epithelial cells
in normal tissues. The dot is coloured according to differential score, and the dot size indicates the absolute value of log2 fold change. The
absolute value of differential score equals to -log10(FDR), and a positive value indicates upregulated, while a negative value indicates down-
regulated. (d) Clustered heatmap showing the correlation between cellular level and individual-level metabolic reprogramming, which is defined
as the Spearman correlation coefficient between two groups of log2 fold change values.
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Metabolic reprogramming patterns of non-malignant
cells yielded unexpected results. The glycolysis pathway
and associated genes were upregulated in nearly all cell
types within tumours compared to their counterparts in
normal tissues (Supplementary Fig. S10 and S11). This
suggests an overall increase in the energy demand of the
TME. Notably, as a metabolic feature of myeloid cells,
FTH1 was upregulated in the CRC and STAD datasets
but downregulated in all BRCA and LUAD datasets
compared to corresponding normal tissues (Fig. 3b).
Many metabolic pathways of myeloid cells exhibited
opposite regulation in BRCA and LUAD, including
OXPHOS, hinting at potential differences in the func-
tional phenotype of myeloid cells in these two cancer
types.

To explore the alteration in degree of metabolic
heterogeneity between tumours and normal tissues, we
assessed the cell-to-cell metabolic similarity in these two
groups. However, no significant differences were
observed for most cell types (Supplementary Fig. S12a
and b). Since metabolic reprogramming patterns at the
individual level has been extensively explored,9–11 we
investigate the correlation of results obtained at cellular
level with those from individual level. Individual-level
results were first reproduced using TCGA-GTEx data
(Supplementary Fig. S12c), and then their correlations
with cellular-level results were determined (Fig. 3d). We
found that the metabolic reprogramming of each cell
type was indeed quite different from individual-level
results (maximum correlation coefficient <0.5), indi-
cating that the individual-level studies masked the dif-
ferences among diverse cell types. Pooled pseudo-bulk
samples showed the highest similarity with real bulk
samples, followed by malignant cells, suggesting that
malignant cells may dominate the shaping of the
tumour metabolic microenvironment.

Intertumour metabolic heterogeneity of malignant
cells and associated factors
Given the higher metabolic heterogeneity of malignant
cells compared to non-malignant cell types, we con-
ducted an in-depth exploration of the pathways involved
and factors associated with them. Examining the corre-
lation between averaged pathway scores and individual
clinical metrics revealed no tight association with age
and sex. However, fatty acid metabolism appeared to be
linked to cancer stage in several datasets
(Supplementary Fig. S13a). Pterin biosynthesis and
DNA synthesis exhibited correlation with the CNV
score, indicating heterogeneity in chromosomal aber-
rations among different patients.

Another significant factor associated with metabolic
heterogeneity is the cancer subtype from which the
tumour cells originated. For instance, malignant cells
from ERBC exhibited higher levels of the carnitine
shuttle pathway and lower levels of other pathways,
including triacylglycerol synthesis, pyrimidine
metabolism, and glycolysis, compared to TNBC
(Supplementary Fig. S13b and c). These differences
were supported by RNA-seq and metabolomics data
from cultured cancer cell lines in the CCLE database
(Supplementary Fig. S13d and e). Malignant cells from
mismatch repair-deficient (MMRd) and mismatch
repair-proficient (MMRp) CRC also demonstrated sig-
nificant differences in multiple pathways
(Supplementary Fig. S13f), potentially linked to dispar-
ities in their mutational burden.

Intratumour metabolic heterogeneity of malignant
cells revealed by metabolic meta-programs
The functional diversity of tumour cells within the local
microenvironment prompted an investigation into
intratumour metabolic heterogeneity. To accomplish
this, we defined MMPs using an algorithm described by
Gavish et al.27 with minor modifications. Briefly, NMF
was utilized to characterize metabolic gene expression
programs that vary within each tumour, and then robust
NMF programs shared by tumours were clustered into
MMPs. This resulted in 15 MMPs (Fig. 4a and
Supplementary Table S6), each summarized by its top
30 genes that are coordinately upregulated in sub-
populations of cells within many tumours. Several
MMPs resembled the meta-programs identified by
Gavish et al. but emphasized the intratumour hetero-
geneity of metabolic processes (Supplementary
Fig. S14a), while others are newly identified. The most
frequently identified MMP was annotated to DNA syn-
thesis, consistent with the proliferative nature of tu-
mours. Other broadly identified MMPs were annotated
to steroid metabolism, OXPHOS, glycolysis, CAC and
transport, all of which were fundamental cellular
metabolic processes. Several less frequent MMPs could
not be annotated to specific pathways, underscored the
intricate interplay between metabolic processes.

To explore MMP significance, we investigated their
associations with cancer hallmarks (Supplementary
Fig. S14b). MMPs related to DNA synthesis,
OXPHOS, and CAC exhibited positive correlations with
DNA repair but negative correlations with angiogenesis,
apoptosis, epithelial–mesenchymal transition (EMT),
and inflammatory response, highlighting their pivotal
roles in tumour progression. Examining clinical rele-
vance, MMPs associated with overall survival were
identified (Supplementary Fig. S14c). Apart from
glycolysis related MMP4 and DNA synthesis related
MMP1, an unannotated MMP11 also associated with
worse overall survival, emphasizing the importance of
related metabolic processes.

Although MMPs were defined as clusters of recur-
rent NMF programs in multiple tumours, they were not
needed to be shared across cancer types. Thus, we
investigated the abundance of each MMP in each cancer
type (Fig. 4b and c, Supplementary Table S7). We found
that a great part of MMPs were indeed identified in
www.thelancet.com Vol 109 November, 2024
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Fig. 4: MMPs for malignant cells. (a) Heatmap showing Jaccard similarity indices for comparisons among robust NMF programs, which were
ordered by clustering and grouped into MMPs. Only clustered NMF programs were shown. (b) The circles reflect the proportion of cells assigned
to each MMP in all tumours (top), CRC (left bottom) and PAAD (right bottom). The cancer-specific MMPs for CRC and PAAD were labelled. (c)
Abundance of each MMP (rows) in each cancer type (columns), defined as absent, low, medium, high or high and significant. (d) Validation of
representative gene (SOD1) expression of MMP9 by IHC in PAAD. Scale bars, 200 μm (top) and 20 μm (bottom). The ratio of fluorescence
intensity of SOD1/panCK, quantified using ImageJ, is 0.73 (bottom left) versus 0.11 (bottom right). (e) Scatter plot shows the correlation
between MMP7 scores and IC50 values of elesclomol in colorectal cancer cell lines in CCLE datasets. Pearson correlation coefficients and P values
from linear models are shown. (f) Volcano plot of MMPs showing significant correlations (Pearson correlation coefficients >0.3 or < −0.3, and
FDR <0.05) with IC50 values of elesclomol in all cancer cell lines in CCLE datasets. Significant correlations are labelled in the plot. (g) The effect
of TST overexpression on drug response to elesclomol at 24 h in HCT116 cells. Data are represented as mean ± SEM. Compared to negative
control (Student’s t test), ns means not significant; ***P < 0.001; ****P < 0.0001.
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most cancer types, indicating that intratumour meta-
bolic heterogeneity shows recurrent patterns across
cancer types. Nonetheless, certain MMPs exhibited sig-
nificant context specificity, not necessarily associated
with the specificity of high expression (Supplementary
Fig. S15). For instance, MMP9, significantly enriched
www.thelancet.com Vol 109 November, 2024
in PAAD (Fig. 4c and Supplementary Fig. S16),
demonstrated intratumour heterogeneity confirmed by
immunohistochemistry (IHC) (Fig. 4d). Further exami-
nation of MMP9 via spatial transcriptomics (ST) data
from our lab (unpublished) and a previous study34

(Supplementary Fig. S17) revealed that it is specifically
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enriched in pancreatic intraepithelial neoplasia (PanIN)
lesions, which is a histologically well-defined precursor
to PAAD, hinting at a potential benign metabolic
marker for PAAD. As a second example, MMP7 is
enriched in CRC (Fig. 4c and Supplementary Fig. S16)
and exhibited medium abundance in other digestive
system neoplasms. To explore the clinical significance of
these cancer type-specific MMPs, we systematically
investigated their correlation with drug sensitivity using
CCLE datasets (Supplementary Fig. S18a). While most
significant correlations were observed in lung cancer
cell lines, potentially due to the larger sample size, un-
expected correlations were found, such as potential
resistance to elesclomol in colorectal cancer cell lines
with higher MMP7 expression (Fig. 4e). Elesclomol is a
copper ionophore and reported to induce a new form of
programmed cell death, called cuproptosis, via a mito-
chondrial respiration dependent way. Interestingly, our
analysis also found that lung cancer cell lines with
higher OXPHOS (MMP3 and MMP12) and CAC
(MMP5) were more sensitive to elesclomol (Fig. 4f),
consistent with previous study,45 supporting the reliance
of our analysis results. Thus, we sought to further vali-
date the specific correlation between MMP7 and ele-
sclomol in colorectal cancer. We found that
HCT116 cells with overexpressed MMP7 representative
genes (TST and FUT3) were indeed more resistant to
elesclomol treatment compared to control (Fig. 4g and
Supplementary Fig. S18b), implying that patients with
CRC with who have lower MMP7 scores may be more
likely to benefit from elesclomol treatment. However,
further investigation is required to elucidate the mech-
anism by which these genes are involved in cuproptosis.

Master regulators of malignant cell MMPs
Given the tight clinical associations observed for MMPs
of malignant cells, we sought to explore the regulation of
these MMPs. Through an examination of the correlation
between regulon scores and MMP scores within each
tumour, we identified highly recurrent master regula-
tors across caner types (Supplementary Fig. S19). This
analysis not only revealed expected regulators for an-
notated MMPs, such as the MYB family transcription
factor (MYBL2) for DNA synthesis and the sterol regu-
latory element-binding transcription factor (SREBF2) for
steroid metabolism but also uncovered many putative
new regulatory interactions.

To screen regulators with clinical significance for
experimental verification, we assessed the association of
the expression of these regulators with overall survival
(Fig. 5a). Remarkably, FOSL1 (in PAAD and LUAD) and
MYBL2 (in PAAD and BRCA) consistently showed as-
sociations with worse survival across multiple cancer
types. FOSL1 was inferred as a potential regulator of
MMP4 (Glycolysis), MMP6 (Transport), MMP10
(Amino acid metabolism) and MMP11. To experimen-
tally validate these findings, we initiated shRNA
knockdown experiments targeting FOSL1 in the LUAD
cell line H1299 and the PAAD cell line PANC-1 (Fig. 5b
and Supplementary Table S8). The results demonstrated
a significant reduction in the expression of glycolytic
enzymes upon FOSL1 knockdown. Subsequent RNA-
seq analysis of the FOSL1 knockdown PANC-1 cell
line revealed downregulation of glycolytic genes (ENO2
and PFKFB3) and transporters (SLC2A1 and SLC2A3),
accompanied by upregulation of genes associated with
fatty acid and steroid metabolism (FADS2, DHCR24
and SCD) (Fig. 5c). Gene set enrichment analysis46

(GSEA) further supported the dysregulation of these
MMPs (Fig. 5d). Untargeted metabolomics provided
insights into the metabolic changes induced by FOSL1
knockdown, identifying metabolites with significant
differences compared to scrambled shRNA controls
(Fig. 5e and Supplementary Table S9). Pathway-based
enrichment analysis of these differential metabolites
suggested a metabolic disorder involving multiple
amino acids indicated by MMP10 (Fig. 5f). While
FOSL1 has been reported as an oncogene in multiple
cancers including PAAD,47 its role in metabolic regula-
tion remains unclear. Further studies will be essential to
determine whether its association with prognosis is
dependent on its regulation of tumour metabolism.

Metabolic heterogeneity of non-malignant cells in
TME
Shifting our focus to the intratumour metabolic het-
erogeneity of non-malignant cells, we defined MMPs in
various common cell types within the TME (Fig. 6a and
Supplementary Table S6). MMPs of non-malignant cell
types exhibited limited similarity to those of malignant
cells, with exceptions in several DNA synthesis and
OXPHOS related MMPs (Supplementary Fig. S20),
emphasizing the diverse metabolic properties in
different cell types within the TME. Context specificity
analysis revealed that most non-malignant MMPs were
shared across cancer types (Supplementary Fig. S21),
underscoring the inherent metabolic heterogeneity of
these cells.

To understand the significance of non-malignant
MMPs, we explored their association with immune
cell differentiation. Particularly, we focused on tumour-
infiltrating CD8+ T cells, known to undergo T cell
exhaustion, a state that compromises the efficacy of
immunotherapies. Zheng et al.22 inferred two paths of T
cell exhaustion via pan-cancer analysis: the first path
(P1) through GZMK+ effector memory T (Tem) cells and
the second path (P2) through ZNF683+CXCR6+ tissue-
resident memory T (Trm) cells (Supplementary
Fig. S22a). Signature genes of CD8+ T cell meta-
clusters during exhaustion paths exhibited a gradual
transition of gene expression patterns during T cell
exhaustion (Supplementary Fig. S22b). Correlating
these signature scores with MMP scores (Fig. 6b) also
revealed a gradual transition of metabolic patterns.
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Fig. 5: Validation of master regulators of malignant cell metabolism. (a) Clinical associations of the expression of identified regulators with
patient overall survival in TCGA. Significant associations (P value < 0.05) are coloured with red or blue. Red indicates that higher expression of a
regulator is associated with worse prognosis and blue indicates the opposite. The hazard ratios and P values were calculated using Cox
regression models with the age, sex and clinical stages corrected. (b) Bar plot showing the change in relative mRNA levels of FOSL1 and
glycolytic enzyme genes between knockdown cell lines and controls. The experiment was performed in triplicate, and the data are shown as the
mean ± SEM. Unpaired two-tailed Student’s t test was employed to calculated the statistical significance. ns, not significant; *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001. (c) Volcano plot of genes showing significant changes (FDR <0.05 and |log2FC| > 0.5) after FOSL1
knockdown in PANC-1 cell lines. The x-axis shows log2 fold change (log2 FC), and the y-axis shows -log10(FDR). Representative metabolic genes
are labelled in the plot. (d) Bar plot showing significant MMPs (P < 0.05) identified by GSEA. The x-axis represents the normalized enrichment
score (NES). (e) Volcano plot of metabolites showing significant changes (Student’s t test, P < 0.05) after FOSL1 knockdown in PANC-1 cell
lines. (f) Metabolic pathways showing significant changes in FOSL1 knockdown cell lines. The dot color indicates the level of significance, and
the dot size indicates the pathway impact. The P value was calculated from the enrichment analysis in MetaboAnalyst.
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Fig. 6: MMPs of non-malignant cells and metabolic crosstalk in TME. (a) Pie chart depicting the cell proportion of main non-malignant cell
lineages in all tumours, with the number of cells, tumour samples and MMPs labelled. (b) Heatmap showing the correlations between MMP
scores and signature scores of CD8+ T cell metaclusters during exhaustion paths. Pearson correlation coefficients were calculated within each
tumour and then averaged across tumours within each dataset. Significant correlations (Mean Pearson correlation coefficient >0.1 or < −0.1,
and FDR <0.05) are coloured according to the correlation coefficients. Only MMPs with consistently significant correlations with at least one
signature in more than 40% (4/10) datasets were shown. (c) Network visualization of positive correlations (edges) between MMPs (nodes) from
different cell types. Node color indicates cell types and edge color indicates the correlations’ significance.
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Naïve T cells exhibited high OXPHOS activity,
IL7R+ memory T cells (Tm) were characterized by
MMP2, and terminal exhausted T cells (Tex) signatures
correlated with MMP4, involving genes related to
glycolysis, folate, and fatty acid metabolism.

For CD4+ T cells, naïve T (Tn) cells differentiated into
IFNG+ follicular helper T cell (Tfh)/T helper 1 (Th1)
dual-functional cells, TNFRSF9+ regulatory T (Treg) cells,
and terminally differentiated effector memory or
effector (Temra) cells (Supplementary Fig. S22c). Notably,
TNFRSF9+ Treg cells were significantly characterized by
MMP3 expression, which included various pathways
like sulphur compound metabolic process
(Supplementary Fig. S22d). Exploring the link between
individual metabolic genes and the signature scores of
CD4+ T cell metaclusters revealed significant differences
in Treg scores between cells grouped by the expression of
key components of MMP3, including ENTPD1, GLRX,
GCNT1 and HACD1 (Supplementary Fig. S22e), sug-
gesting the involvement of these metabolic genes in the
acquisition of immunosuppressive properties by CD4+

T cells.
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In vitro, macrophages exhibit M1/M2 dualistic po-
larization states with co-expression of M1 and M2
signature genes observed in tumour-associated macro-
phages (TAMs).48,49 M1 and M2 scores, however, dis-
played different correlation patterns with metabolic
processes (Supplementary Fig. S22f). M2 scores were
positively correlated with multiple MMPs, including
mixed MMP1 and CAC related MMP7, while being
negatively correlated with DNA synthesis related
MMP3. In contrast, M1 scores exhibited fewer signifi-
cant associations. Beyond M1/M2 phenotypes, Zhang
et al.24 defined dichotomous functional phenotypes
(angiogenesis/phagocytosis) of TAMs in CRC. Interest-
ingly, angiogenesis and phagocytic signatures showed
similar correlation patterns as M1 and M2 signatures,
respectively, with the exception of glycolysis associated
MMP9, which positively correlated with angiogenic and
M2 signatures, aligning with their association with poor
prognosis.49 Significant differences in phagocytic
signature scores were identified between cells grouped
by the expression of key components of MMP1, such as
HMOX1, ASAH1 and SDS (Supplementary Fig. S22g).
These genes, as well as GLUL, were previously identi-
fied as significant metabolic signatures of myeloid cells
(Fig. 2d), suggesting a potential role in the protumour
function of TAMs.50

B cells also play crucial roles in adaptive immune
system, primarily through antibody generation. Tradi-
tionally, antibody-secreting cells (ASCs) were thought to
originate from germinal centre response. However, Ma
et al. identified an alternative extra-follicular differenti-
ation pathway in a pan-cancer analysis of tumour-
infiltrating B cells, leading to atypical memory (AtM) B
cells, which display an exhausted and bystander
phenotype within TME.23 Our analysis of B cell sub-
clusters revealed that geminal centre B (GCB) cells,
known for their rapid proliferation, exhibit active DNA
synthesis (Supplementary Fig. S22h). In contrast, AtM B
cells showed metabolic patterns similar to those of naïve
B cells, suggesting a dysfunction state. Unlike Ma et al.’s
findings, we did not observe a strong cancer type pref-
erence for these metabolic patterns, nor did we identify
a significant association between glutamine metabolism
and AtM B cells, possibly due to the limited number of
cancer types analysed.

Metabolic associations between cell types in TME
In the intricate landscape of the TME, diverse cell types
may engage in metabolic interactions, competing for
nutrients or providing each other with metabolic
substrates. To unravel these effects, we explored the co-
occurrence of MMPs of different cell types, determined
by the correlation of centred fractions of cells with high
scores for each MMP in each tumour (Methods). The
positive correlation network revealed five clusters
(Fig. 6c). The largest cluster (Cluster 1) comprised
MMPs from various cell types, with malignant cells
www.thelancet.com Vol 109 November, 2024
acting as the hub, indicating extensive crosstalk be-
tween tumour cells and non-malignant cells in the
TME. Within this cluster, two subclusters corre-
sponding to specific metabolic processes were also
highlighted, one associated with DNA synthesis in
malignant cells and two subtypes of T cells, while the
other related to glycolysis in malignant cells, fibroblasts
and myeloid cells. These correlations suggest a poten-
tial synergistic effect among these cell types. The
smallest clusters (Cluster 5) consisted of five unanno-
tated MMPs, each originating from different cell types.
To uncover the potential functions of this cluster, we
merged the genes of these MMPs and conducted
functional enrichment analysis using Gene Ontology
(C5.GOBP) and Hallmark (H) gene sets from MsigDB.
Apart from multiple metabolic process, cluster 5
exhibited enrichment in mTOC1 and TNFα signalling
pathways (Supplementary Table S10), suggesting
intricate regulation across different cell types under the
influence of common signalling pathways. The
remaining three clusters primarily consisted of MMPs
specific to particular cell type, highlighting the intricate
interweaving of the metabolic network within these
cells.

Subtyping of patients based on metabolic
properties of specific cell types
Finally, we sought to uncover the potential clinical im-
plications of cellular-level metabolic heterogeneity. We
reconstructed cell type specific pseudo-bulk samples by
aggregating gene expression profiles from all single cells
within a given cell type of a particular tumour. Metabolic
pathways were then scored for these cell type specific
pseudo-bulk samples using gene set variation analysis
(GSVA). To capture the underlying structure, pathways
were initially clustered into five highly correlated mod-
ules based on correlations across all cell type specific
pseudo-bulk samples (Supplementary Fig. S23a–d).
Subsequently, we clustered all cell type specific pseudo-
bulk samples according to these metabolic modules,
revealing distinct branches primarily segregated by cell
type (Supplementary Fig. S23e). Importantly, cell type
specific pseudo-bulk samples originating from different
datasets of the same cancer type clustered together,
underscoring the limited impact of batch effects on our
results.

We further refined the clustering by examining cell
type specific pseudo-bulk samples for each cell type
individually. For malignant specific pseudo-bulk sam-
ples, the clustering was dominated by tissue-of-origin.
Specifically, C1 encompassed the majority of BRCA
and LUAD samples, while samples from other tumours
constituted C2 (Supplementary Fig. S24a). In contrast,
non-malignant specific pseudo-bulk samples from
various cancer types were intricately mixed (Fig. 7a and
b; Supplementary Fig. S24b–d), with certain cancer
types displaying discernible preferences. Notably,
17

http://www.thelancet.com


Fig. 7: Metabolic subtypes of pan-cancer defined by cellular metabolic properties. (a) and (b) Heatmap showing the clustering results of pan-
cancer samples based on the metabolic pathways of myeloid and endothelial cells. (c) Forest plot reporting the effect of myeloid C2 signatures
on overall survival. The hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using Cox regression models with the age, sex and
clinical stages corrected. The black solid line indicates hazard ratio 1 (meaning no effect). Red for P < 0.05. (d) Kaplan–Meier plots showing the
survival curves of patients with LUAD and STAD grouped by levels of myeloid C2 signature scores. P values by both log-rank and Cox regression
(with sex, age and clinical stage as covariates) are shown. (e) Similar plot as in (c) reporting the effect of endothelial C2 signatures. (f) Similar
plot as in (d) for endothelial C2 signature scores.
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samples from C2 exhibited higher overall metabolic
activities across all cell types compared to C1.

To elucidate the clinical significance of these meta-
bolic types, we identified gene signatures corresponding
to the aforementioned metabolic types. These signatures
were then employed to stratify patients from The Cancer
Genome Atlas (TCGA). Intriguingly, tumours charac-
terized by higher myeloid and endothelial C2 signature
scores exhibited worse overall survival across multiple
cancer types, including lung cancer (LC), PAAD, and
STAD, as well as in the pan-cancer model (Fig. 7c–f).
This highlights the potential of these cellular-level
metabolic types as a reference for understanding the
metabolic heterogeneity within different cell types in the
TME, offering valuable insights for patient stratification
and treatment guidance.
Discussion
Most tumours are complex ecosystems that evolve un-
der diverse selective pressures, leading to the substantial
spatiotemporal heterogeneity at genetic, epigenetic,
transcriptional, phenotypic, and metabolic levels within
the TME.51 Such heterogeneity promotes cancer
www.thelancet.com Vol 109 November, 2024
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progression and therapeutic resistance, yet offers po-
tential targets for innovative treatments. Despite the
well-established link between cell function and meta-
bolic demands,4,5 comprehensive exploration of meta-
bolic heterogeneity has been constrained by studies on
bulk samples or limited by low throughput and sample
size.2,3,7,8,12,13

Our study presents a single-cell level metabolic gene
expression atlas, consolidating scRNA-seq data from
nearly 300 tumour and normal samples. Although only
six cancer types were included, they are among the most
common with the highest morbidity and mortality. To
ensure the reproducibility and credibility of our results,
data from our lab and collaborators were combined with
published datasets and uniform analysis pipelines were
performed. As expected, consistent results were ob-
tained from diverse datasets of the same cancer types.

Our pan-cancer analysis revealed a multilayered
landscape of metabolic heterogeneity across cancers.
The first layer unfolds across different cell types,
unveiling unique metabolic properties and reprogram-
ming patterns associated with specific functions. Our
findings are consistent with previous studies but pro-
vide a more nuanced resolution. First, cancer cells
exhibited the highest metabolic activity in many vital
processes, including OXPHOS, compared to other cells
within the TME.14,39 This highlights the metabolic plas-
ticity of malignant cells, which can flexibly switch be-
tween OXPHOS and glycolysis to meet their metabolic
demands. Second, non-malignant cells also exhibited
Warburg-like phenotype compared to their counterparts
in normal tissue, with myeloid cells displaying glycolytic
activity comparable to that of malignant cells.15 This
indicates a global elevation of energy demands within
the TME, potentially leading to competition and coop-
eration for metabolic resources. Third, while most
stroma-specific metabolic genes and pathways identified
in previous studies39 showed specificity within certain
stromal compartment, our analysis revealed that they
were not uniformly expressed across all stroma cell
types. However, some inconsistencies were also
observed. For example, associated genes of metabolites
in NAD+ biosynthesis pathway were reported to be
broadly enriched in immune-related process.52 None-
theless, in our analysis, the NAD metabolism pathway
were predominantly activated in stromal cells (e.g., fi-
broblasts and endothelial cells, Fig. 2f), with activation
in B cells observed only in certain datasets. These dif-
ferences might stem from the varying methodologies,
sample types, or the number of cancer types analysed,
and they underscore the complexity of metabolic in-
teractions within the TME.

The second layer delves into intratumour heteroge-
neity within specific cell types. By applying non-negative
matrix factorization (NMF) to characterize robust
metabolic gene expression programs and clustering
them into metabolic meta-programs (MMPs), we found
www.thelancet.com Vol 109 November, 2024
that most of them were shared across different cancers,
indicating common metabolic states among cancer cell
subtypes of different cancer. However, we also identi-
fied certain cancer type-specific MMPs. For example,
MMP9 in PAAD was specifically enriched in premalig-
nant lesions, indicating a potential benign metabolic
marker. MMP7 in CRC was associated with sensitivity
to elesclomol, offering insights into the mechanism
study and clinical application of this promising anti-
cancer drug.45,53 Additionally, our analysis of master
regulators of cancer MMPs deepens our understanding
of cancer metabolism regulation. Furthermore, investi-
gation of MMPs in non-malignant cells reveals meta-
bolic crosstalk under the influence of common
signalling pathways.

The third layer of heterogeneity involves cell type-
specific intertumour differences and their associa-
tions with clinical outcomes. Stratifying patients based
on cell type-specific metabolic properties provide a
more refined approach to patient segmentation
compared to previous studies that relied on individual
metabolic characteristics.11,54 This stratification could
enhance the efficacy of existing treatments or lead to
the development of new therapeutic modalities, by
allowing for the targeting of specific metabolic pro-
cesses in distinct cell types and cancer types. Such an
approach holds promise for more personalized and
effective cancer therapies, particularly in overcoming
resistance mechanisms driven by metabolic
heterogeneity.

Although our data provide a valuable resource for
exploring the complexities of tumour metabolic hetero-
geneity, certain limitations remain. As mentioned
earlier, the cancer types included in this study are not
yet sufficient to depict a comprehensive picture of pan-
cancer metabolic heterogeneity. Additionally, the
complexity of data sources raises the possibility of se-
lection bias in the scRNA-seq cell isolation protocols of
certain datasets. For instance, we were unable to detect
clear CNV signals in malignant cells from PRAD and
STAD, and therefore adopted a compromised method
for labelling malignant cells. Thus, more comprehen-
sive datasets, collected and processed under standard-
ized and uniform protocols, would further enhance the
interpretability of these findings. Finally, the expression
patterns of metabolic genes reflect only an indirect
molecular layer of the metabolic network. Future studies
incorporating additional data types, such as metab-
olomics and metabolic flux data in single-cell resolution,
are anticipated to advance this field.
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