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Canonical RAS signaling, including PI3K/AKT- and RAF/MEK-dependent
activities, results mainly from RASsGTP interaction with its effectors at

the plasma membrane. Here, we identified afundamental, oncogenic,
noncanonical RASsGTP activity that increases XPO1-dependent export of
nuclear protein cargo into the cytoplasm and isindependent of PI3K/AKT

and RAF/MEK signaling. This RAS-dependent step acts downstream from
XPO1binding to nuclear protein cargo and is mediated by a perinuclear
protein complex between RAS<GTP and RanGAP1 that facilitates hydrolysis of
Ran+GTP to Ran*GDP, which promotes release of nuclear protein cargo into
the cytoplasm. The export of nuclear EZH2, which promotes cytoplasmic
degradation of the DLC1 tumor suppressor protein, is abiologically important
component of this pro-oncogenic activity. Conversely, preventing nuclear
protein export contributes to the antitumor activity of KRAS inhibition, which
canbe further augmented by reactivating the tumor suppressor activity of
DLC1 or potentially combining RAS inhibitors with other cancer treatments.

Cancer arises as amultistep process that involves genetic, epigenetic
and other nongenetic changes'. Modifications include alterations
in the expression of genes, such as the Ran GTPase and its regula-
tors or effectors, which together are critical for importing the vast
majority of nuclear proteins and exporting a subset of them back
into the cytoplasm**. However, the underlying mechanisms respon-
sible for these changes and their pathogenetic role in cancer remain
underexplored.

We have been studying the deleted in liver cancer 1 (DLCI) tumor
suppressor gene, whichencodes a cytoplasmic focal adhesion protein,

andrecently reportedthatinlungcancer, cytoplasmic EZH2 methylates
aspecific DLC1lysine residue, causing DLC1 ubiquitination and subse-
quent proteasome-dependent degradation®. Analternate mechanism
of ubiquitin-dependent proteasomal degradation of DLC1was recently
described in breast cancer’.

As the EZH2 lysine methyltransferase is usually considered a
nuclear protein whose main activity is the methylation of Lys 27 on
histone H3 (refs. 6-8), we investigated the origin of cytoplasmic EZH2.
Our analysis of the nuclear protein export process has unexpect-
edly implicated KRAS, which is frequently mutated in pulmonary,
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pancreatic and colorectal cancer and in other tumor types’. Our find-
ings indicate that inhibition of mutant KRAS in lung cancer can phe-
nocopy inhibition of the nuclear export protein exportin1 (XPO1)'*",
including the effects on EZH2 and DLC1, whereas increased KRAS
activity has the opposite effects. Despite these similarities between
the pharmacologicinhibition of XPO1and KRAS, they inhibit protein
export at different steps.

The vast majority of RAS oncogenic activity is thought to be
mediated by its canonical signaling, with the best studied effec-
tors being RAF and PI3K family members, which activate MEK/ERK
and AKT/mTOR pathways, respectively’. However, we find that the
effects of KRAS inhibition (KRASi) on XPO1-dependent activity are
independent of MEK and PI3K signaling. Our investigation of the
relationship between RAS and nuclear protein export has resulted
inthe surprising observation that GTP-bound RAS (RAS+GTP) forms
a stable complex with Ran GTPase-activating protein 1 (RanGAP1),
amajor regulator of Ran*GTP. The complex facilitates hydrolysis of
Ran+GTP to Ran+GDP and the release of cargo proteins exported by
XPOlinto the cytoplasm. These findings implicate nuclear protein
exportasacritical noncanonical pro-oncogenic RAS function, high-
light the role of this function in the antitumor activity of RAS inhibi-
tion and suggest possible drug combinations that may cooperate
with RAS inhibition.

Results

Inhibition of XPO1 or KRAS reduces cytoplasmic EZH2 and
increases DLC1

The previously observedincrease in cytoplasmic EZH2 protein expres-
sionin lung cancer* could result from incomplete EZH2 import into
the nucleus, increased export of nuclear EZH2 into the cytoplasm or
both processes. XPOLl is responsible for the cytoplasmic export of
most nuclear proteins, and we identified two putative nuclear export
signalsin EZH2 protein similar to those present in known XPO1 cargo
proteins (Extended Data Fig. 1), which suggested that EZH2 export
might be mediated by XPO1. Therefore, we evaluated the impact of
XPOlinhibition (XPO1i) on the steady-state level of cytoplasmic EZH2
by using the XPO1-specificinhibitor selinexor in the A549 non-small
cell lung cancer (NSCLC) cell line, which expresses DLCI mRNA but
lacks readily detectable DLC1 protein®. Selinexor (XPOli) treatment
resulted inundetectable cytoplasmic EZH2 and XPO1, whereas EZH2
expression in the nucleus was not perturbed (Fig. 1a); a-tubulin and
lamin B1 were used as cytoplasmic and nuclear marker proteins,
respectively.

Ourrecent publication presented preliminary evidence that KRAS
could affect cytoplasmic EZH2 and DLCI (ref. 4). To further explore
this relationship, we knocked down KRAS expression by short inter-
fering RNA (siRNA) in A549 cells (Fig. 1b), which harbor a G12S mutant
(KRAS®>%) and compared the effect of KRAS knockdown to XPOli
(Fig. 1b—d). Survivin protein expression was also examined (Fig. 1c),
asitsnuclearexportisknowntobe XPO1dependent™. The results indi-
cated that KRAS knockdown and XPOli phenocopied each other with
respecttothe reduction of cytoplasmic EZH2 protein and cytoplasmic
survivin protein expression (Fig. 1c,comparelanes 3 and 5) and similar
increases in DLCI protein expression (Fig. 1d). Combined inhibition
of XPO1 and KRAS did not further increase DLC1 protein expression
compared to eachinhibition alone (Fig. 1d), suggesting that XPOland
KRAS may act in the same pathway. An analogous reduction of cyto-
plasmic survivin protein and EZH2 protein expression was detected
in the NCI-H23 NSCLC line, which carries mutant KRAS“?“, when the
KRAS-GI12C-specific inhibitor (KRASi) sotorasib or KRAS siRNA was
used with XPO1li or XPOI siRNA (Extended Data Fig. 2a-d). Similar
results were seen with KRAS siRNA and XPOliin the HI703 NSCLCline,
whose KRAS is wild type, and in the human bronchial epithelial cell
(HBEC) line, which is immortalized but nontransformed® (Extended
DataFig. 2e,f).

KRASi of cytoplasmic exportisindependent of MAPK and
PI3K signaling

Given that KRASi reduced cytoplasmic EZH2 protein expression and
increased DLC1 protein expression, we tested whether overexpression
of mutant KRAS produces the opposite phenotype. Indeed, transfec-
tion of a green fluorescent protein (GFP)-tagged KRAS®*“ construct
into H1703 cells led to reduced endogenous DLCI protein expression
(Fig.1e,comparelanes1land 6) and increased cytoplasmic EZH2 protein
and cytoplasmic survivin protein expression (Extended DataFig.3a,b).
Similar results were observed when GFP-tagged KRAS'*® was trans-
fected into the HBEC line (Extended Data Fig. 3¢,d).

To examine if this phenomenon depends on canonical RAS sign-
aling, we tested whether inhibition of the MEK/ERK and AKT/mTOR
pathways affects the ability of mutant KRAS to increase cytoplasmic
EZH2 protein expression and reduce DLC1 protein expression (Fig. 1e).
Unexpectedly, when H1703 cells stably transfected with KRAS“* were
treated witha MEK inhibitor (U0126-ethanol) or a PI3K inhibitor (wort-
mannin) singly or in combination (Fig. 1e, lanes 2-4), they did not
affect EZH2 or DLC1 protein levels, although bothinhibitors prevented
phosphorylation of their known targets, pERK-T202/Y204 for MEK and
pAKT-S473 for PI3K (Fig. 1e). By contrast, XPOliincreased DLC1 protein
expression (Fig. 1e), as expected. Similarly, MEK inhibition (MEKi) and
PI3K inhibition (PI3Ki; selumetinib and copanlisib, respectively) of the
A549linedid not change the expression of DLCI1 protein, unlike XPO1i
(Extended Data Fig. 3e). From these results, we infer that the effects
of KRAS on XPO1-dependent signaling are independent of canonical
KRAS signaling.

Inhibition of KRAS or XPO1 prevents XPO1-dependent protein
export by distinct mechanisms

Despite the phenotypic similarities between XPO1li and KRASI, we
speculated that they might act by different mechanisms. XPOli pre-
vents protein export by interfering with the interaction between XPO1
and its protein cargo substrates", thereby preventing formation of the
trimeric complex composed of XPO1 and its cargos, such as survivin
and EZH2, together with Ran*GTP. By contrast, if KRASi were prevent-
ingnuclear exportatalater step, formation of these complexes would
not be prevented by KRASi. Therefore, we examined the interaction
between XPO1and EZH2 or survivin in the NCI-H23 line to compare
the effects of XPO1li and KRASi. Although XPOli prevented complex
formationbetween XPOland EZH2 (Fig. 1f,g) or survivin (Fig.1h) in the
nucleus (Extended Data Fig. 3f,g), KRASi or siRNA knockdown of KRAS
did not prevent complex formation (Fig. 1iand Extended Data Fig. 3h,i),
supporting the conclusion that KRAS acts at a step after XPOl-cargo
complex formation.

KRAS+GTP forms an endogenous complex with RanGAP1

A PubMed search of previous publications that might have identified
acomplex between RAS and a molecule implicated in nucleocyto-
plasmic shuttling led us to an article by Wurzer et al., who reported
acomplex between overexpressed mutant HRAS protein and endog-
enous nuclear transport factor 2 (NTF2) protein™, whichis implicated
in nuclear proteinimport through its binding to RanGDP". Although
it was straightforward toidentify an analogous endogenous complex
between KRAS and NTF2 in A549 cells (Extended Data Fig. 3j), we did
notidentify aclearhomology between NTF2 and other proteins known
tointeract with RAS.

We therefore speculated that KRAS might be part of a complex
that includes a different protein involved with Ran regulation™ and
might have homology with other known RAS binding proteins and,
possibly, linkage to XPO1-dependent function. One such protein com-
plex includes NUP358 (also known as RanBP2), which is located on
the cytoplasmic face of the nuclear pore complex (NPC); NUP358 can
bindboth Ran*GTP and Ran*GDP as well as other proteins that interact
with Ran''®, We therefore considered a possible direct interaction
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Fig.1|RAS regulates nuclear protein exportindependently of PI3K and

MEK signaling. a, XPOli (selinexor) prevented cytoplasmic export of EZH2

and XPOL. a-tubulin and lamin Bl were used as cytoplasmic and nuclear marker
proteins, respectively; C, cytoplasmic; N, nuclear. b-d, siRNA knockdown of
KRAS (b) or XPOLli by selinexor reduced cytoplasmic EZH2 (c) and increased
DLC1(d). Combined treatment with selinexor and KRAS siRNA did not further
increase the response. e, Stable transfection of mutant KRAS-G12C in H1703 cells
decreased DLC1 expression, which was not affected by MEKi (U0126-ethanol)

or PI3Ki (wortmannin) but was increased by XPOli (selinexor). Wortmannin
inhibited PI3K activity (measured by pAKT-S473), and U0126-ethanol inhibited
MEK activity (measured by pERK-T202/Y204) in all treated samples. f-i, In the
KRAS-G12C NCI-H23 line, selinexor prevented complex formation between
XPO1land EZH2 (fand g) and between XPO1 and survivin (h), whereas complex
formation was not prevented by the KRAS-G12C inhibitor sotorasib (i). Two
independent experiments were performed for each image, with similar results;
IB, immunoblot; IP,immunoprecipitation; WCE, whole-cell extract.

between KRAS and RanGAP1and that hydrolysis of Ran*GTP toRanGDP
whenbound to NUP358 leads to the cytoplasmic release of the nuclear
export cargo from XPO1, the last step in the XPO1-dependent nuclear
export process'. To evaluate this possibility, we first tested and con-
firmed that KRAS forms acomplex with RanGAP1in A549 cells (Fig. 2a)
and then determined, with siRNA knockdown of RanGAP1 or NFT2
(Fig.2b,c), that the KRAS-NFT2 complex required RanGAP1, whereas

the KRAS-RanGAP1 complex did not require NTF2 (Fig. 2d,e, lanes 1
versus4). TheRanGAP1doubletinFig.2a,b,eis attributable to aslower
migrating form that is SUMOylated and a faster migrating form that
is not®.

If the KRAS-RanGAP1 complex contributes to XPOl-dependent
protein export, KRASi might prevent the cytoplasmic release of
the nuclear protein cargo, whereas increased KRAS activity would
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Fig.2|KRAS and RanGAP1form a protein complex that regulates the
release of nuclear protein cargo (EZH2) from the NPC. a, Complex formation
between KRAS and RanGAP1in A549 cells. Lysates from A549 cells were
immunoprecipitated with antibody to RanGAP1 or mock IgG, followed by
immunoblotting with antibody to KRAS or RanGAP1. b-e, siRNA knockdown

of RanGAP1 (b) abolished the KRAS-NTF2 complex (d; lane 4), whereas siRNA
knockdown of NTF2 (c) did not affect the KRAS-RanGAP1complex (e; lane 4).
GAPDH was used as aloading control. f-h, Sotorasib treatment increased the
complexes between NUP358 and XPO1 (fand g) and between NUP358 and EZH2

(h). Lysates from sotorasib-treated or sotorasib-untreated NCI-H23 cells were
immunoprecipitated with antibody to NUP358 or XPO1 or mock IgG, followed by
immunoblotting with antibody to NUP358, XPO1 or EZH2. i-m, Overexpressing
mutant KRAS-GI12C (i) decreased the complexes between NUP358 and XPO1
(jand k) and between NUP358 and EZH2 (I and m). Lysates from H1703 cells
overexpressing mutant KRAS-G12C were immunoprecipitated with antibody to
NUP358, XPO1 or EZH2 or mock IgG, followed by immunoblotting with antibody
to NUP358, XPO1 or EZH2. Two independent experiments were performed for
eachimage with similar results.

promote protein cargo release. Consistent with this hypothesis,
KRASi of NCI-H23 cells resulted in increased binding of XPO1 and
EZH2 to NUP358 (Fig. 2f-h), and overexpressed mutant KRAS-G12C
decreased this binding (Fig. 2i-m). Furthermore, if the KRAS-Ran-
GAP1 complex regulates the cytoplasmic release of the nuclear
protein cargo by the hypothesized mechanism, KRASi would be
expected to increase cytoplasmic Ran*GTP, whereas KRAS overex-
pression would decrease it. Indeed, KRASi increased cytoplasmic
Ran<GTP (Fig. 3a,b), whereas overexpressing KRAS-G12D decreased
it (Fig. 3c-f).

Additional biochemical analyses confirmed the direct interac-
tion between KRAS and RanGAPL. First, we demonstrated a stable
complex between GFP-tagged mutant KRAS-G12C or KRAS-G12D and
glutathione S-transferase (GST)-tagged full-length RanGAP1 (amino
acids 1-587) or its catalytic domain (amino acids 1-416; Extended
Data Fig. 3k-n). The homology between the catalytic domains of two
well-known RAS-GAPs (RASA1and NF-1) and the analogous domain of
RanGAP1 (Extended Data Fig. 4a) supporttheseresults. Furthermore,
purified wild-type KRAS or mutant KRAS-G12D loaded with either GTP
or GDP and incubated with purified RanGAP1 protein confirmed that
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Fig.3|RAS+GTP and RanGAP1 interact directly and regulate the level of
cytoplasmic Ran+GTP. a-f, KRASi by treatment with sotorasib increased
cytoplasmic Ran*GTP in NCI-H23 cells (a and b), whereas overexpression of
KRAS-G12D decreased cytoplasmic Ran*GTP in H1703 (c and d) and HBEC (e and
f) celllines. Inb, d and f, bar graphs represent mean values of Ran*GTP, and error
barsrepresents.d.; n=3independent experiments. For the statistical analyses
forb,d andf, aparametric unpaired one-tailed ¢-test with Welch’s correction
was performed using Prism software, and no adjustments were made for
multiple comparisons; P=0.0043 for b, P=0.0007 ford, and P= 0.0304 for f.
g-i, Purified RanGAP1(g) bound to KRAS-G12D+GTP but not to KRAS-G12D-GDP
(h). Purified CDCP1(g) was used as a negative control (h). Purified RanGAP1
binds to the GTP-bound form of wild-type KRAS (KRAS-WT) and KRAS-G12D,
but not to their GDP-bound forms. The right two lanes show positive binding

(between GTP-bound KRAS-G12D and RAF-RBD) and negative binding (between
GDP-bound KRAS-G12D and RAF-RBD) controls. Bottom, purified KRAS protein.
j—m, Lysates from serum or EGF-treated or EGF-untreated KRAS-wild-type
H1703 cells were immunoprecipitated with antibody to RanGAP1 or mockIgG,
followed by immunoblotting with antibody to KRAS or RanGAP1. Serum and
EGF treatment induces ERK activity (measured by pERK-T202/Y204; jand ) and
complex formation between KRAS and RanGAP1 (k and m). n—-p, Overexpressing
dominant-negative mutant KRAS-S17N (n) reduces complex formation between
KRAS and RanGAP1 (o) and between KRAS and BRAF to a similar degree (p).
Lysates from NCI-H23 cells overexpressing KRAS-G12C or KRAS-S17N were
immunoprecipitated with antibody to RanGAP1 or mock IgG, followed by
immunoblotting with antibody to KRAS or RanGAP1. Two independent
experiments were performed for each image with similar results.
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Fig.4 | KRAS and RanGAP1 form a perinuclear complex in PDX sections and
NCI-H23 cells. a, PDX tumor sections with KRAS-G12C showed perinuclear

PLA signals of colocalization of RanGAP1and KRAS. Tumor sections were
immunostained with antibodies to RanGAP1and KRAS. DAPI (blue) was used to
stain the nuclei. White oval outlines indicate some of the red perinuclear signals;
scale bar, 5 um. b, Perinuclear PLA colocalization signal between RanGAP1and
KRAS in NCI-H23 cells (first column). The wider cell distribution of the PLA

DAPI

RanGAP1 and RAP1
(NCI-H23; KRAS-G12C)

RanGAP1 and KRAS RanGAP1 and KRAS
without plus probe without minus probe

(NCI-H23; KRAS-G12C) (NCI-H23; KRAS-G12C)

Vinculin and FAK
(NCI-H23; KRAS-G12C)

colocalization signals between vinculin and FAK (third column) was distinct
from that between RanGAP1 and KRAS (first column), while there was no PLA
signal between RanGAP1 and RAP1 GTPase (second column). There was no PLA
signal detected when plus probe (middle columns) or minus probe was omitted
(fourth and fifthimages); scale bar, 10 pm. Two independent experiments were
performed for eachimage with similar results.

only the GTP-loaded KRAS bound RanGAP1 (Fig. 3g-i). As positive and
negative specificity controls, respectively, purified RAF-RAS binding
domain (RAF-RBD) specifically bound to GTP-loaded KRAS (Fig. 3i,
right), whereas purified CUB domain containing protein 1 (CDCP1)
did not (Fig.3h).

Treatment of cells with serum or epidermal growth factor (EGF)
aretwowaystoincrease RASGTP, while adominant-negative (DN) RAS
mutant (KRAS-S17N) can decrease RAS*GTP? >, The above hypothesis
suggested that serum or EGF treatment would increase the level of
KRAS-RanGAP1 complex formation in cells, while a DN RAS mutant
would have the opposite effect. Consistent with this hypothesis, stimu-
lation of wild-type KRAS H1703 cells with serum or EGF increased
KRAS-RanGAP1 complex formation (Fig. 3j—m), while transfection of
DN KRAS-S17N mutant in NCI-H23 cells reduced KRAS-RanGAP1 and
KRAS-BRAF complex formation to a similar degree (Fig. 3n-p).

We used two approachestoidentify the KRAS-RanGAP1 complex
in tumor cells. One approach was a proximity ligation assay (PLA),
which produced a positive PLA colocalization signal for RanGAP1 and
KRAS in sections from a patient-derived xenograft (PDX) with mutant
KRAS-GI12C (Fig. 4a), and the NCI-H23 line with mutant KRAS-G12C
(Fig. 4b, firstimage). Many of the red colocalization signals appeared
tobe perinuclear (Fig. 4a,b, firstimage, white ovals), whereas some
appeared to be in the cytoplasm. There was no PLA signal between
RanGAPland the RAP1GTPase (Fig. 4b, second image, and Extended
Data Fig. 4b), the RAS-related protein that is closest to RAS*, or
with other negative controls (Fig. 4b, fourth and fifth images). PLA
colocalization of the focal adhesion proteins vinculin and FAK was
included as a positive control, where colocalization differs from
KRAS and RanGAP1 (Fig. 4b, third image). Similar perinuclear colo-
calization between KRAS and RanGAP1 was seen in another PDX

section with KRAS-G12D and the A549 (KRAS-G12S) line (Extended
DataFig. 5a,b).

Asasecond approach foridentifying the KRAS-RanGAP1complex
in cells, we made three cell fractions from A549 and NCI-H23 cells,
plasma membrane (PM), cytoplasmic and nuclear envelope (NE), and
analyzed them for the presence of complexes between KRAS and either
RanGAP1 or BRAF (Fig. 5a-g and Extended Data Fig. 6a-g). Specific
markers used were EGF receptor (EGFR) and CD44 for the PM, a-tubulin
forthe cytoplasmand lamin A/C for the NE (Fig. 5a and Extended Data
Fig. 6a). KRAS was present in all three fractions, RanGAP1 was only in
the NE and cytoplasmic fractions, and BRAF was only in the PM and
cytoplasmic fractions (Fig. 5a and Extended DataFig. 6a). There was no
complex formation between RanGAP1 and a non-RAS GTPase CDC42
in a whole-cell extract of A549 cells (Fig. 5b). Although KRAS formed
a complex with BRAF in the whole-cell extract, PM and cytoplasmic
fractions (Fig. 5c-fand Extended Data Fig. 6b-e), the KRAS-RanGAP1
complexwas only presentinthe cytoplasmicand NE fractions (Fig. 5g,h
and Extended DataFig. 6f,g). There was no KRAS-BRAF complexinthe
NE fraction (Extended Data Fig. 6h) or KRAS-RanGAP1complexinthe
PM fraction (Extended Data Fig. 6i).

RAS-RanGAP1 complexes are present in many tumor types
and nontumorigenic lines

The KRAS-RanGAP1 complex occurs in many settings. We identified
this complexin every PDX sample evaluated, including PDXs from lung,
pancreatic and colorectal cancers with mutant KRAS, mutant HRAS or
mutant NRAS and from the HBEC line as well as from the WI-38 nonim-
mortalized nontransformed human lung fibroblast line (Fig. 5i-k and
Extended Data Fig. 6j-0). Consistent with our observation that the
GTP-bound form of KRAS preferentially binds RanGAP1, as complex
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Fig. 5| Cell fractionations for PM, NE and cytoplasmic fractions. The
KRAS-RanGAP1 complex occurs in many tumors, including in primary human
lung cancer, PDXs from lung, pancreas and colorectal cancer and a KRAS-
induced mouse lung cancer model. a, A549 cells were fractionated for PM, NE
and cytoplasmic fractions, and the purity of each fraction was verified by the
expression of specific marker proteins, for example, EGFR and CD44 for the PM,
lamin A/C for the NE and a-tubulin for the cytoplasm. KRAS is presentin all three
fractions, RanGAPlis present only in NE and cytoplasmic fractions, and BRAF

is present only in the PM and cytoplasmic fractions. b, Lysates from A549 cells
were immunoprecipitated with antibody to RanGAP1 or mock IgG, followed by
immunoblotting with antibody to CDC42 or RanGAPI. c-h, Lysates from the
indicated fractions were immunoprecipitated with antibody to BRAF, KRAS or

Primary lung adenocarcinomas

Primary lung
adenocarcinomas

RanGAP1or mockIgG, followed by immunoblotting with antibody to KRAS, BRAF
or RanGAP1; Input, indicated fraction. KRAS formed a complex with BRAF in

the whole-cell extract (c), PM (d and e) and cytoplasmic fractions (f), and KRAS
formed a complex with RanGAP1in the cytoplasmic (g) and NE (h) fractions. i-n,
Lysates from the indicated samples were immunoprecipitated with antibody

to KRAS or RanGAP1 or mock IgG, followed by immunoblotting with antibody

to RanGAP1 or KRAS. KRAS-RanGAP1 protein complexes were identified in

PDXs from lung adenocarcinoma (i), pancreas adenocarcinoma (j) and colon
adenocarcinoma (k); KRAS-inducible lung adenocarcinoma in mice (I) and
primary human lung adenocarcinoma (m and n). Two independent experiments
were performed for each image with similar results.
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Fig. 6 | RanGAP1forms a complex with all three RAS proteins, whichis
enhanced by RAS farnesylation. a, RanGAP1 bound more efficiently to mutant
KRAS-G12D than to wild-type KRAS. b, The RanGAP1-RAS complex formed with
similar efficiency with wild-type HRAS, NRAS and KRAS and was more efficient
with mutant KRAS-G12C and KRAS-GI12D. c-e, H1703 cells were stably transfected
with theindicated KRAS mutant and analyzed for several parameters. The
RanGAP1-KRAS complex was most efficient with farnesylated KRAS, which is
associated with the greatest decrease in DLC1 protein expression. Formation

of the RanGAP1-KRAS complex was greater with KRAS-G12C and KRAS-G12D
mutants (c, lanes 3 and 4) than with isogenic farnesylation-deficient C185S
mutants (¢, lanes 6 and 7), which was correlated with a greater reduction in
DLCl1 protein expression (d, lanes 3 and 4) than observed with the farnesylation-
deficient C185S mutants (d, lanes 6 and 7). The KRAS-G12C and KRAS-G12D
mutants have the highest activation of ERK and AKT (e, lanes 3and 4), as
measured by pERK-T202/Y204 and pAKT-S473 expression, respectively. Two
independent experiments were performed for eachimage with similar results.

formation with wild-type KRAS appeared to be lower than with mutant
KRAS (Fig. 5i, comparelanelwithlanes 4 and 7). The complex was also
foundinlungtumorsfromawidely used conditional mutant KRAS-G12D
mouse model® (Fig. 51). Perhaps most important, the complex was
present in primary human lung adenocarcinomas with wild-type
KRAS, KRAS-G12C mutant and KRAS-G12D mutant, with greater bind-
ing observed in the mutants (Fig. 5m,n), while complex formation was
not detected between RanGAP1 and RAP1 (Extended Data Fig. 6p).

HRAS, NRAS and KRAS bind RanGAP1, with the most efficient
binding requiring RAS farnesylation

To confirm that increased abundance of KRAS-GTP induces more
KRAS-RanGAP1 complex formation, the HBEC line was transfected
with DDK-tagged wild-type KRAS or KRAS-G12D mutant; complex
formation was found to be greater with the mutant KRAS (Fig. 6a). To
determine whether the proteins encoded by the three RAS genes (HRAS,
KRAS and NRAS) bound RanGAP1 with similar efficiency, each wild-type

RAS protein tagged with the same epitope (GFP) was immunoprecipi-
tated with anti-RanGAP1and immunoblotted with anti-GFP, resulting
insimilar binding signals (Fig. 6b, compare lanes 2,3 and 4). RanGAP1
binding was stronger with mutant KRAS-G12C and mutant KRAS-G12D
than with wild-type KRAS (Fig. 6b, compare lane 4 with lanes 5 and 6).

We also discovered that farnesylation of the KRAS protein, which
is dependent on its C-terminal cysteine and increases membrane
association®*?, is required for more efficient RanGAP1 binding and
downstream signaling. To examine this parameter, we compared
wild-type and mutant KRAS protein with or without mutation of the
KRAS C-terminal cysteine (C185S) in the H1703 line. Maximal KRAS-
RanGAP1 binding (Fig. 6¢) and reduced DLC1 protein expression
(Fig. 6d) were detected with mutant KRAS, whereas the C185S mutant
was associated with reduced binding (Fig. 6c) and increased DLC1
protein expression (Fig. 6d). As expected, the C185S mutants did not
induce ERK or AKT activation, whereas their isogenic wild-type coun-
terparts did (Fig. 6e).
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Biological importance of the KRAS-RanGAP1 complex and
XPO1-dependent activity

To explore the biological relevance of our KRAS and XPO1 findings, we
used three experimental models. Two were the mutant KRAS cell lines
NCI-H23 (KRAS-G12C) and A549 (KRAS-G12S). Both cell lines were used
to study the ability of various pharmacologic inhibitors to interfere
with anchorage-independent growth and tumor xenograft growth.
The third was the conditional mutant Kras®?®/Trp53 mouse model®,
where we examined the impact of several combinations of inhibitors.

Ifthe effect of the KRAS-RanGAP1 complexis biologically relevant,
we hypothesized that mutant KRASi would restrict growth to a greater
degree than PI3Ki + MEKi (by copanlisib and selumetinib, respec-
tively), whereas the addition of XPOli (selinexor) to this combination
wouldinhibit growth similar to KRASi. Using anchorage-independent
growth of the NCI-H23 line, we confirmed this possibility; KRASi
inhibited growth to a greater degree than PI3Ki + MEKi, whereas
XPOli + PI3Ki + MEKi was similar to KRASi (Fig. 7a, columns 3-5, and
Extended Data Fig. 7a). The growth inhibitory activity of XPOli was
less than that of PI3Ki + MEKi (Fig. 7a, columns 2 and 3, and Extended
DataFig.7a).

Our previous publication had shown that although EZH2 inhibi-
tion (EZH2i; tazemetostat) stabilized the DLC1 protein®, it had only a
marginal effect on the tumor suppressor activity of DLCI1. Thisreduced
DLC1 activity in human lung cancer was attributable to AKT and SRC
kinase activities, both of which reduce the tumor suppressor activity
of DLC1 via direct phosphorylation of specific tyrosines by SRC and
specific serines by AKT?. However, the combined inhibition of AKT
inhibition (AKTi) + SRC inhibition (SRCi; by mk-2206 and saracatinib,
respectively) can inhibit these phosphorylation activities and reac-
tivate the tumor suppressor activity of DLC1 stabilized by EZH2i*. As
the current results indicated that the impact of KRASi or XPOli on
DLCl1 expression was similar to EZH2i, we experimentally verified that
AKTi + SRCiwould augment the growth inhibitory activities of KRASi
aloneand XPOli alone (Fig. 7a, columns 4-7,and Extended DataFig. 7a).

We extended many of these findings to growth inhibition of tumor
xenografts and anchorage-independent growth assays of the NCI-H23
cell line (Fig. 7b and Extended Data Fig. 7b,c). Specifically, we con-
firmed that KRASi was more potent than PI3Ki + MEKi and that the
growth inhibitory activity of KRASi + SRCi + AKTi was more potent
than KRASi alone. In addition, we constructed an isogenic cell line
from which the DLCI gene had been disrupted (DLCI1-KO) by CRISPR-
Cas9 technology. Although the percentage of growth inhibition by
PI3Ki + MEKi was similar in both the parental (DLCI-WT) and DLCI-KO
line, the degree of KRASi or KRASi + SRCi + AKTi on growth inhibi-
tion was less in the DLCI-KO line than in the DLCI-WT line (Fig. 7c and
Extended DataFig. 7d). These resultsindicate that DLCI contributes to
some ofthe growthinhibitory activity of KRASiand KRASi + SRCi + AKTi
in DLCI-WT cells, but not to the inhibition by PI3Ki + MEKi. Similar
results were seen when these combinations of inhibitors were used
inananchorage-independent growth assay (Extended Data Fig. 7e,f).

We used the A549 cell line and its isogenic DLCI-KO line* to
directly demonstrate that EZH2i and XPOli were similar biologically
in tumor xenograft and anchorage-independent growth assays. In
both assays, the resultsindicated that the growthinhibitory activities
of EZH2i + SRCi + AKTi or XPOli + SRCi + AKTiwere similar in parental
DLCI-WT cellsand that part of the activity of the inhibitor combinations
depended on DLCI (Fig. 7d-f and Extended Data Fig. 8a,b). For the
mice used in the xenograft assay, there were no obvious side effects,
such as weight loss, from either three-drug combination (Extended
DataFig.8c-e).

We previously determined that the EZH2-dependent decrease in
DLClexpressionwas attributable to methylation of DLC1-K678 by cyto-
plasmic EZH2 and its subsequent degradation by ubiquitination and
the proteasome*. To more directly establish arole for EZH2-dependent
methylation of DLC1 in the inhibitory activities of XPO1, we made

stable transfectants of the A549 line by expressing wild-type DLC1,
DLC1-K678A (methylation deficient) or DLC1-K678F (methylation
mimetic) and treated them with XPO1i (Fig. 7g,h). Although the colony
growth of wild-type DLCI transfectants was inhibited by XPOli, the
colony growth of the two methylation-resistant mutant transfectants
was not affected by XPOLi.

We also performed alimited number of studies in the conditional
Kras®*?®/Trp53mouse lung cancer model, with activation of the endog-
enous KRAS-G12D mutation and disruption of p53 by inhalation of
an adenovirus vector encoding the Cre recombinase (Fig. 8a-d). The
results were similar to those found in the NCI-H23 and A549 bioas-
says. Specifically, KRASi alone (by the KRAS-G12D-specific inhibitor
mrtx-1133) was more potent than AKTi + SRCi, KRASi showed even
greater growth inhibition when combined with AKTi + SRCi, and
XPOLli + AKTi + SRCi was more potent than XPOli alone.

Discussion

Inthis study, we identified a previously undescribed complex between
RAS and RanGAP1 that mediates anoncanonical RAS-dependent func-
tion that lies within the XPO1 nuclear protein export pathway. The
cytoplasmic export of EZH2, which methylates the DLC1 tumor sup-
pressor protein and decreases its half-life*, is one critical component of
this pro-oncogenic function. The main findings, which are summarized
in Fig. 8e, have implications for cancer development, maintenance
and treatment.

We determined that most of the previously identified increase in
cytoplasmic EZH2 expression in lung cancer” is derived from nuclear
EZH2 via XPOl-dependent export (Fig. 8e, step 1). XPOli leads to an
increase in the steady-state level of DLC1 protein expression, and it
substitutes functionally for the EZH2i that we reported previously*.
In NSCLC lines, the combination of XPO1i together with AKTi and
SRCi, which reactivate the RhoGAP and tumor suppressor activities
of DLCI (ref. 28), potently inhibited tumor growth. Analysis of iso-
genic cell lines in which DLCI had been disrupted indicated that DLC1
made an important contribution to the growth inhibitory activity
of XPOLli + AKTi + SRCi treatment, although each inhibitor has mul-
tiple targets that, with the notable exception of DLCI, are largely
nonoverlapping.

Although RAS has not been directlyimplicated previously innucle-
ocytoplasmicshuttling, we found thatincreased KRAS activity pheno-
copiedincreased XPOI,including anincrease in cytoplasmic EZH2 and
survivinand adecreasein DLC1 (Fig. 8e, steps 3 and 4), whereas KRASi
had the opposite effects. However, KRASi inhibited XPO1 function at
a step downstream from XPOLli, as KRASi did not affect XPO1-EZH2
complex formation, unlike XPOli.

The RAS-dependent activity results froma previously undescribed
complex between KRAS-GTP and RanGAP1, which regulates the Ran
GTPase, a master regulator of nucleocytoplasmic shuttling? (Fig. Se,
step3). When Ranis bound by GDP, it mediates the import of proteins
fromthe cytoplasmto the nucleus, and, whenbound to GTP, it mediates
the XPO1-dependent export of nuclear proteins into the cytoplasm.
Thelatter process, whichwe have determined is RAS dependent, takes
place onthe cytoplasmicface of the NPC, where the tripartite complex
of Ran*GTP-XPOl-nuclear protein cargo is bound to NUP358 (ref. 19;
Fig.8e,step2). Our datasuggest that the RASsGTP-RanGAP1complex
catalyzes the release of the protein cargo into the cytoplasm when
Ran+GTPis hydrolyzed to Ran-GDP by RanGAP1.

Beyond establishing a mechanistically important role for the
RAS<GTP-RanGAP1 complex in lung cancer, the complex appears
to be a common feature of tumors with mutant RAS. It is present
in PDX tumors of various origins that harbor mutant versions of
KRAS, HRAS and NRAS, with less complex formation detected in
tumors with wild-type RAS. This mechanism also operates in the
immortalized but nontransformed HBEC cell line and in nonim-
mortalized WI-38 fibroblasts. However, it remains to be determined
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Fig.7| The combination of XPOli + MEKi + PI3Kiinhibits cell growth to the
same degree as KRASI, facilitated by DLC1-dependence. a, Quantitation of cell
colonies (>0.4 mm) in response to the indicated treatment. Bar graphs represent
mean, and error bars represent s.d.; n = 3. Combined XPOli + PI3Ki + MEKi
showed similar inhibition as KRASi. KRASi + AKTi + SRCi showed greater
inhibition than KRASI; P = 0.0299 for PI3Ki + MEKi versus XPO1i + PI3Ki + MEKi,
P=0.0408 for KRAS-G12Ci versus KRAS-G12Ci + AKTi + SRCi, and P = 0.0447 for
XPO1i + PI3Ki + MEKi versus XPO1li + PI3Ki + MEKi + AKTi + SRCi. b, In NCI-H23
xenografts, KRASi + AKTi + SRCi had the highest antitumor activity, followed

by KRASi, with PI3Ki + MEKi having the lowest activity. The numbers below each
graphrepresent percent reduction in tumor weight for each treatment group
compared to vehicle; P=0.0004 for vehicle versus KRAS-G12Ci, P= 0.0249

for KRAS-G12Ci versus MEKi + PI3Ki, P= 0.0232 for KRAS-G12Ci versus KRAS-
G12Ci + AKTi + SRCi, and P=0.0042 for KRAS-G12Ci + AKTi + SRCi versus

AKTi + SRCi. ¢, Differences in treatment responses to various inhibitors seen
inthe DLCI-WT parental line were abrogated in a DLCI-KO line; P= 0.0123 for
MEKi + PI3Ki versus KRAS-G12Ciand P= 0.0021 for KRAS-G12Ci versus KRAS-
G12Ci + AKTi + SRCi. d, In A549 xenografts, treatment with AKTi + SRCi plus XPOli

A549 stable clones

or EZH2i had similar antitumor activity. In b-d, individual and average tumor
weight are shown. The bar graphs represent mean, error bars represents.d.; n=4;
P=0.0023for vehicle versus XPO1i + AKTi + SRCiand P= 0.0009 for vehicle
versus EZH2i + AKTi + SRCi. e, Quantitation of colonies after treatment. The four-
drug combination was not more inhibitory than the three-drug combination
without XPOLi or EZH2i; P=0.0014 for control versus EZH2i + AKTi + SRCi,
P=0.0017 for control versus XPO1i + AKTi + SRCi, and P= 0.0013 for control
versus EZH2i + XPO1i + AKTi + SRCi. f, Quantitation of colonies after treatment.
The three-drug combination of XPO1i + AKTi + SRCi was more inhibitory

than XPO1i; P=0.0043 for XPOli versus XPOLli + AKTi + SRCi in DLCI-WT and
P=0.3204 for XPO1i versus XPOli + AKTi + SRCi in DLCI-KO. g,h, Quantitation

of colonies after treatment (g), as shown in photomicrographs (h); scale bar,

2 mm. For e-g, bar graphs represent mean, and error bars represents.d.; n=3.
Anchorage-independent growth in response to XPOli in stably transfected DLC1
mutants. For statistical analyses in a-g, parametric unpaired one-tailed ¢-tests
with Welch’s correction were performed; P=0.0213 for GFP vector versus DLCI-
WT-transfected cells and P = 0.0150 for untreated versus XPOli-treated DLCI-WT-
transfected cells.
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Fig. 8| KRASi or XPOli cooperates with the inhibition of AKT kinase and
SRCkinase in antitumor activity. a,b, In mouse lung tumors (a) induced by
KRAS-GI2D activation and p53 inactivation, the combination of mrtx-1133 + mk-
2206 + saracatinib showed greater antitumor activity than mrtx-1133 alone or
the combination of mk-2206 + saracatinib. Mrtx-1133 had greater antitumor
activity than the selumetinib + copanlisib combination; scale bar, 4 mm.

Bar graphsinb represent mean values of residual tumor area, and error bars
represents.d.; n =8 mice per group; P=0.1673 for vehicle versus AKTi + SRCi,
P=0.0001for vehicle versus KRAS-G12Di, P= 0.0017 for KRAS-G12Di versus
KRAS-GI12Di + AKTi + SRCi, and P= 0.0416 for KRAS-G12Di versus MEKi + PI3Ki.
c,d, The combination of selinexor + mk-2206 + saracatinib had greater antitumor
activity than selinexor alone or the combination of mk-2206 + saracatinib (c);
scalebar,4 mm. Bar graphsind represent mean values of residual tumor area,
and error bars represent s.d.; n =4 mice per group. For the statistical analyses

XPOT1i —| XPO1

forbandd, parametric unpaired one-tailed ¢-tests with Welch'’s correction were
performed using Prism software, and no adjustments were made for multiple
comparisons; P=0.0253 for vehicle versus XPOli + AKTi + SRCi, P= 0.0365 for
XPO1i versus XPOli + AKTi + SRCi, and P= 0.0474 for XPOLi + AKTi + SRCi versus
AKTi + SRCi. e, Model summarizing the key noncanonical steps identified in this
study. (1) Formation of a trimeric protein complex (Ran-GTP-XPO1-cargo) in
the nucleus, which can be abrogated by XPO1i. (2) The trimeric complex that is
exported through the NPC becomes associated with NUP358, which is part of
the cytoplasmic face of the NPC. (3) RASGTP and RanGAP1 form a complex that
facilitates the hydrolysis of RansGTP to Ran*GDP and releases the cargo into the
cytoplasm; RASi can prevent this step. (4) EZH2, which is akey protein cargo
identified in this study, methylates DLC1, which can then be ubiquitinated and
subjected to proteasome-dependent degradation.
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whether this is predominantly a cancer-associated RAS function or
aphysiologic feature of nuclear protein export. Our microscopy and
subcellular fractionation studies identified the RASsGTP-RanGAP1
complex in cytoplasmic and perinuclear locations, but not at the
PM. We therefore favor a model in which the complex forms in the
cytoplasm and translocates to its perinuclear location and may also
form perinuclearly.

The KRAS-GTP-RanGAP1 complex has at least five notable prop-
erties. First, it places active KRAS in a perinuclear location, where we
infer that it has the previously unreported activities described in this
report. Therefore, this result expands the functionally important sub-
cellularlocalization of active RAS?. Second, the KRASsGTP-RanGAP1
complex and its downstream activities are not affected by MEKi and
PI3Ki, implying that they areindependent of canonical RAS signaling.
Third, although both KRAS and Ran are members of the superfamily
of RAS GTPases**, which also have their respective GAPs and GEFs, the
two GTPases and their respective regulators are from different families
within the superfamily. This finding represents the identification of a
mechanistically important interaction between a GTPase from one
family and a GAP from another family. Fourth, although the interaction
between KRAS and RanGAP1 apparently facilitates RaneGTP hydrolysis,
this activity has a positive function, the cytoplasmic release of the
nuclear protein cargo, thus making this a mechanistically unusual
effector functionfor RAS, asitis mediated by its interaction with a GAP.
Fifth,in addition to the noncanonical functional changes attributable
tothe KRAS-RanGAP1 complex, our analyses support the importance
ofits biological activity.

Our results have at least two potentially important clinical impli-
cations for the treatment of tumors with mutant KRAS. Oneis that the
pro-oncogenic role we have uncovered for KRAS in nuclear protein
export provides at least a partial explanation for the limited clinical
success when inhibitors of canonical RAS signaling, such as MEKi and
PI3Ki, have been used in cancer treatment®**". The other is that, at least
forlung cancers with mutant KRAS, our preclinical data have identified
afeasible approach for reactivating the tumor suppressor activity of
DLCI (ref. 4) and suggest that it might be useful to consider combin-
ing SRCi with RASi (the AKT inhibitor might not be critical, as the RAS
inhibitor would presumably blunt AKT activation).

It should be noted that Kim et al. and Khan et al. have reported
asynthetic lethal interaction between mutant KRAS and XPO1 (refs.
32,33).However, there are numerous reports of syntheticlethal interac-
tionswith RAS that do not involve genes regulated by RAS*, and neither
reportinvestigated a possible regulatory relationship between KRAS
and XPOL1. Furthermore, Kim et al. found that XPOliin the A549 cellline
did not exhibit the synthetic lethal phenotype?®?, while this is one of the
lines in which we have positive dataregarding the KRAS-RanGAP1com-
plexandits effects on XPO1-dependent function. Mutant KRAS has also
beenreported to upregulate nuclear EZH2 expressionin experimental
pancreatic cancer and lung adenocarcinoma cell lines*?°.

The precise mechanism by which the KRAS-RanGAP1 complex
increases the rate of XPO1-dependent export remains to be elucidated.
However, our findings strongly suggest thatin mutant KRAS-associated
cancer, the complex substantially increases the efficiency of nuclear
proteinexport. They alsoimplicate farnesylation of KRAS for the most
efficient binding to RanGAP1 and for stimulating XPO1-dependent
export, suggesting thatincreased interaction withamembrane, suchas
the oneassociated withthe NPC, may play arole. In this context, it may
berelevant that Ranis not farnesylated”, in contrast to RAS and other
members of the superfamily. RanGAP1 forms a dimer*®, which makes
it theoretically possible for one RanGAP1 monomer to participate in
an interaction with KRAS, whereas the other RanGAP1 monomer is
available for binding Ran*GTP, leading toits hydrolysis to Ran*GDP. In
addition, our studies do not rule out a possible role for RAS in nuclear
proteinimportation, whichis mechanistically more heterogenous than
nuclear protein export>.

Methods

Our research complies with all relevant ethical regulations. The
mouse studies were approved by the National Cancer Institute (NCI)
Animal Care and Use Committee and were conducted in compliance
with the approved study protocols, and the human lung cancer sam-
ples were acquired under an Emory University institutional review
board-approved protocol.

Plasmids

HA-tag vector (plasmid 38189) and HA-tagged KRAS*¢ (plasmid
58901) and KRAS®?" (plasmid 58902) were obtained from Addgene.
GFP-tagged HRAS-WT, NRAS-WT, KRAS-WT, KRAS-G12C, KRAS-G12D,
KRAS-C185S, KRAS-C185S,G12C, KRAS-C185S,G12D, DDK tag vector,
DDK-KRAS-WT and DDK-KRAS-K12D were provided by D. Esposito
(Protein Expression Laboratory at the Frederick National Laboratory
for Cancer Research).

Antibodies and fluorescent probes

Antibody information, including the catalog numbers and dilutions,
is available in the Reporting Summary linked to this article. Rabbit
anti-DLC1 was generated in our laboratory (clone 428, 1:500), as
described previously®. ‘To make the anti-DLCl specificantibody (clone
428),the cDNA encoding a DLC1 polypeptide (amino acids 82-251) was
subclonedinto the bacterial expression vector PGEX-4T-1(Pharmacia)
using EcoRland Xhol, andits encoded GST fusion protein was induced
by isopropyl 3-D-1-thiogalactopyranoside (IPTG) in bacteria, purified
by aGlutathione Sepharose 4B column, and used toimmunize rabbits’.
Alexa Fluor 568 anti-rabbit IgG (1:250), Alexa Fluor 488 anti-mouse
IgG (1:250) and DAPI (1:2,500) were purchased from Thermo Fisher
Scientific.

Celllines, culture conditions and DNA transfection

NSCLClines H1703, H157, A549,H358 and NCI-H23 were purchased from
ATCC. All cancer cell lines were cultured in RPMI-1640 supplemented
with 10% fetal bovine serum. HEK-293T cells and human fibroblastic
WI-38 cells were purchased from ATCC and were cultured in DMEM and
EMEM supplemented with10% fetal bovine serum, respectively. HBECs
were purchased from ATCC and were cultured in Airway Epithelial Cell
Basal Medium with cell growth kit components. Where indicated,
transient transfections were performed with Lipofectamine 3000
(Thermo Fisher Scientific) according to the manufacturer’s instruc-
tions. Stable clones expressing GFP, GFP-DLC1-WT, GFP-DLC1-K678A
and GFP-DLC1-K678D were made by transfection of A549 cells with
Lipofectamine 3000, followed by selection with G418 (0.9 pg ml™).

siRNA transfection and treatment of cells with serum, EGF and
inhibitors
To suppress expression of specific mRNAs, cells were transfected with
160 nM siRNAs targeting DLC1, XPO1, EZH2, KRAS, NTF2 or RANGAP1 or
with scrambled siRNAs and collected 48 h later. Suppression of pro-
tein expression, at least with two different siRNAs, was confirmed by
immunoblotting. Validated siRNAs for human DLCI (Hs_DLC1siRNA_5,
S103219909; Hs_DLC1siRNA_11,S104952213) were from Qiagen, as were
scrambled siRNAs (control siRNA1,1027280; control siRNA 2,1027310).
Thefollowing siRNAs were purchased from Dharmacon: ON-TARGETplus
Human KRAS (3845) Smart pool (L-005069-00-0005) siRNA,
ON-TARGETplus Human EZH2 (2146) Smart pool L-004218-00-0005)
siRNA, ON-TARGETplus Human XPO1 (7514) SMART pool (L-003030-
00-0005) siRNA, ON-TARGETplus Human NUTF2 (nuclear transport
factor 2) SMART pool (L-012132-00-0005) siRNA and ON-TARGETplus
Human RANGAP1 SMART pool (L-006846-00-0005) siRNA.
The sequences for each siRNA are described in Supplementary Table 1.
After overnight incubation in serum-free medium, cells were
treated with 15% serum or EGF (purchased from Sigma-Aldrich) for
20 min. The final concentration of EGF was 100 ng ml™. AKT inhibitor
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(mk-2206) and SRC inhibitor (saracatinib; used at 10 pM each) were
purchased from Selleck Chemicals. Inhibitors for KRAS-G12C (sotora-
sib), KRAS-G12D (mrtx-1133), EZH2 (tazemetostat), XPO1 (selinexor),
MEK (selumetinib), PI3K (copanlisib) and other pharmacological com-
pounds (used at 1-10 uM each) were provided by the Developmental
Therapeutics Program Chemicals Repository, Division of Cancer Treat-
ment and Diagnosis, NCI.

Coimmunoprecipitation and immunoblotting
Coimmunoprecipitation and immunoblotting were performed accord-
ing to the previously described protocol®. ‘For co-IP experiments,
equal amounts of protein from each cell lysate were precleared with
Protein G Agarose (Thermo Fisher Scientific) and thenincubated with
the indicated antibodies or control IgG for 1 h at room temperature.
Afterincubation, 30 pl of Protein G Agarose was added to eachimmune
reactionand rotated overnight at4 °C. Theimmunopellets were washed
three times with RIPA buffer. Co-IP proteins were eluted by boiling
for 5 min in 50 pl of Laemmli sample buffer containing 5% (vol/vol)
2-mercaptoethanol. Eluted proteins were resolved ona NuPage 4-12%
BisTris gel and detected by IB using specific antibodies. Immunoreac-
tivebands were detected by enhanced chemiluminescence (ECL Plus;
GE Healthcare) using horseradish peroxidase-linked anti-rabbit or
anti-mouse secondary antibodies’.

Immunofluorescence staining

Immunostaining was performed according to the previously described
protocol*. “Tumor tissue sections or cells were seeded onto glass
chambers, incubated for 24 h, and fixed with 4% paraformaldehyde
for 20 min. Fixed cells or deparaffinized tissues sections were per-
meabilized with 0.25% Triton X-100 in PBS and then blocked with 3%
BSAinPBSfor2 h. The cells or tissue sections were incubated with the
indicated primary antibodies at 4 °C overnight. After being thoroughly
washed with PBS, cells wereincubated with the appropriate 1:250 Alexa
Fluor-conjugated secondary antibodies for 1 h. To visualize nuclei,
cells were incubated with DAPI (1:2,500) for 1 h. After staining, cells
were thoroughly washed with PBS and mounted with gel mounting
solution (Biomeda).

PLA

PLA was used to visualize proximity colocalization (<40 nm) of KRAS
and RanGAP1in NSCLC lines or PDX tissue sections using a Duolink
Detection kit (Olink Proteomics), as per the manufacturer’s instruc-
tions. The cells were fixed with 4% paraformaldehyde for 20 min at
room temperature, and fixed cells or deparaffinized tissues sections
were permeabilized with 0.25% Triton X-100 for 5 min. After incubating
with Duolink blocking solution, cells were incubated overnight at 4 °C
withmouseanti-KRAS (WH0003845M1;1:200) and rabbit anti-RanGAP1
(ab92360,1:500) or theindicated primary antibody in Duolink antibody
diluent. After washing, cells wereincubated with secondary antibodies
conjugated to PLA probes (MINUS probe-conjugated anti-rabbit IgG
and PLUS probe-conjugated anti-mouse IgG, Olink Proteomics). Circu-
larization and ligation of the oligonucleotides in the probes were fol-
lowed by anamplification step. Acomplementary fluorescence-labeled
probe was used to detect the product of the rolling circle amplification.
Slides were mounted with Duolink Il mounting medium containing
DAPI. Images were obtained with an LSM 780 confocal microscope
(ZEISS) using ZEN software (ZEISS).

Fluorescence confocal microscopy

Confocal microscopy was performed according to a previously
described protocol*. ‘Confocal microscopy of fluorescent-labeled
cells was performed using a confocal microscope (LSM 780; Carl
Zeiss). Alexa Fluor probes were viewed with excitation wavelengths
of 488 nm (Alexa Fluor 488) and 568 nm (Alexa Fluor 568). Images
were made at room temperature using photomultiplier tubes with

a Plan-Apochromat x63/1.4-NA oil differential interference contrast
objective lens with a 2x magnifier to produce a 125x maghnification.
The images were minimally processed for levels/contrast adjustment
in DAPI panels, and the adjustment was done for allimages using Adobe
Photoshop 2024 (25.0.0) software. The colocalization of two proteins
was analyzed by ZEN microscopy software (version ZEN 2.3 SP1). The
adjustments do not enhance, erase or misrepresent any information
presentinthe original images’.

Anchorage-independent growth assay

The anchorage-independent growth assay was performed according
to our previously described protocol®. ‘For soft agar assays, a 0.6%
agar (BD) base in RPMI-1640 medium was placed in 60-mm dishes
for1hat room temperature. 1.0 x 10° cells were mixed with complete
medium containing 0.4% agar and placed over 0.6% basal agar in
60-mm dishes. Cells were grown for 3 weeks and were continuously
treated without or with selinexor, tazemetostat, sotorasib, selumetinib,
copanlisib, mk-2206 and saracatinib, as indicated, and colonies were
photographed microscopically and quantified with a colony counter.

Generation of DLCI-KO NCI-H23 cells

CRISPR-Cas9-mediated knockout of DLCI inthe NCI-H23 lung cancer
cell line was performed by targeting exon 5 of DLCI transcript variant
2 (ref. 4, NM_006094). The targeted region of DLCI was amplified
from NCI-H23 clones that were negative for DLC1 protein expression
by westernblotting, and PCR products were sequenced to confirm the
presence of insertion/deletion mutations that would cause premature
translation termination of the DLC1 polypeptide. Cells were trans-
fected with two different constructs (pAG0266 and pAG0267) with
single-guide RNA (sgRNA) for DLCI. Lenti-SpCas9-2A-GFP-DLC1-IVT
vector was used to deliver individual sgRNAs. The sequences of sgRNA
primers for DLCI and nontargeted control sgRNA are described in Sup-
plementary Table 2. Lipofectamine 3000 (Life Technologies) was used
to transfect plasmid DNA according to the manufacturer’sinstructions.
GFP*single cellswere sorted using a FACSAria UV into a sterile 96-well
culture plate, yielding single-cell DLCI-KO clones.

Purification of recombinant proteins and preparation of
exclusively GDP-bound and GTP analog GppNHp-bound KRAS
proteins

DDK-RanGAP1 (Origene) and DDK-CDCP1 (a gift from the laboratory
of B. Mock at the NCI) were transfected into HEK-293T cells for 48 h
andlysed, as described previously*. ‘Two days after transfection, cells
were lysed with Golden Lysis Buffer (GLB: 20 mM Tris (pH 7.9),137 mM
NaCl, 10% glycerol, 1% Triton, 5 mM EDTA, 1 mM EGTA, 1 mM Na,;VO,,
10 mM NaF,1 mM sodium pyrophosphate, 0.5 mM 3-glycerophosphate
and protease inhibitor cocktail tablet (Roche)). The cleared superna-
tants were collected, and the amount of protein estimated by BCA kit
(Pierce). The cell extracts wereimmunoprecipitated by DDK Flag beads
(Sigma-Aldrich) and washed thoroughly with HNTG (20 mM HEPES
buffer (pH7.5) containing 150 mM NaCl, 0.1% (wt/vol) Triton X-100 and
10% (wt/vol) glycerol) buffer. The purified GST-tagged RAF-RBD protein
was purchased from EMD Millipore. KRAS4b (1-169) expression clones
of both wild-type and KRAS-G12D mutant for Escherichia coli produc-
tion were generated using a Hisx6-maltose-binding protein fusion.
All proteins were purified as outlined for G-Hs.KRAS4b (1-169), as
described previously*. ‘Cell pellets were resuspended in 20 mM HEPES,
pH 7.3,300 mM NaCl, 1 mM TCEP and 1:200 (vol/vol) protease inhibi-
tor cocktail. Homogenized cells were lysed by passing twice through
aMicrofluidizer at 9,000 psi. Lysates were clarified by centrifugation
at 7,900g for 90 min at 4 °C. Clarified lysates were filtered through
0.45-pm Whatman PES syringe filters, and proteins were purified using
NGC medium-pressure chromatography systems. Clarified lysates were
thawed, adjusted to 35 mM imidazole and loaded at 3 ml min™ onto
IMAC columns equilibrated in IMAC equilibration buffer (EB) of 20 mM
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HEPES, pH7.3,300 mM NaCl,1 mM TCEP, 35 mMimidazole and 1:1,000
protease inhibitor cocktail. The columns were washed to baseline with
EB and proteins eluted with a20 column-volume gradient from 35 mM
to 500 mM imidazole in EB. Elution fractions were analyzed by SDS-
PAGE!. The quantity of all purified proteins was estimated by Coomassie
blue stained gel compared to known concentrations of the albumin
standard. KRAS nucleotide exchange efficiency was determined using
high-performance liquid chromatography. Exchanged proteins were
diluted into 0.1 M K,HPO, and 1 mM tetrabutyl ammonium hydrogen
sulfate (buffer A) and injected onto an Ultrasphere 50DS, 250 x4.6 mm
column (Hichrom). Bound nucleotides were eluted using a linear gradi-
ent of buffer A containing 30% acetonitrile at a flow rate of 0.6 ml min™,
Standards of GDP and GMPPNP (GTP) were included to validate the
identity of the bound nucleotide. GMPPNP exchange efficiency was
routinely >95% pure as measured by this assay.

Generation of full-length GST-RanGAP1 and truncated (1-416)
GST-RanGAP1 constructs by PCR cloning

DDK-RanGAP1 expressing wild-type RanGAP1was used as atemplate.
The designed PCR primers included 5 Kpnl and 3’ Notl restriction
sites. All primer sequences are described in Supplementary Table 2.
Twenty cycles of PCR were performed. The PEBG mammalian expres-
sion vector* was used for GST-tagged proteins after subcloning the
PCR products with Kpnland Notl restriction sites.

Invitro KRAS-RanGAP1 binding assay

Purified KRAS proteins (wild-type KRAS or KRAS-G12D) were mixed
with purified DDK-RanGAP1, DDK-CDCP1 or RAF-RBD in Mg™ lysis
buffer (EMD Millipore) and rotated for 3 h at 4 °C, followed by wash-
ing with HNTC buffer. The pulldown beads were resuspended in 50 pl
of Laemmli sample buffer separated on a reducing SDS-PAGE gel and
immunoblotted with antibodies to DDK and KRAS, followed by second-
ary anti-IgG conjugated to anti-horseradish peroxidase (1:5,000). The
signalsbound to the membranes were detected by an ECL plus kit (GE
Healthcare).

Nuclear and cytoplasmic fractionation

Nuclear and cytoplasmic fractionation was performed according to our
previously described protocol*.‘Nuclear and cytoplasmic fractions of
cells were purified using a Nuclear/Cytosolic Fractionation Kit (AKR-
171, Cell Biolabs), as per the manufacturer’sinstructions. Briefly, cells
were pelleted by centrifugation for 5 min at 4 °C (600g) and washed
with ice-cold PBS. The cell pellets were resuspended with 500 pl of
ice-cold extraction buffer containing DTT and protease inhibitors.
The cell suspensionwas transferred into a prechilled microcentrifuge
tube and incubated on ice for 10 min, 25 pl of cell lysis reagent was
added, vortexed for 10 s and centrifuged at 800g for 10 min at 4 °C.
Theresulting supernatant (cytoplasmic fraction) was transferred toa
clean, chilled microcentrifuge tube and stored at -80 °C until use. For
nuclear protein extraction, the pellet was gently resuspended in 100 pl
of ice-cold nuclear extraction buffer containing DTT and protease
inhibitors, incubated on ice for 30 min, vortexed for 10 s and centri-
fuged at14,000g for 30 minat4 °C. The supernatant (nuclear protein
extract) was stored at —-80 °C until use. All buffers were supplemented
with protease cocktail and phosphatase inhibitors’.

PMisolation

ThePMwasisolated using aMinute Plasma Membrane ProteinIsolation
and Cell Fractionation kit (SM-005, Invent Biotechnologies), as per the
manufacturer’sinstructions. Cells were pelleted by centrifugation for
Sminat4°C(600g), washed with cold PBS, incubated with Buffer A for
10 minonice, vortexed at highspeed for 30 s, transferred toaprechilled
filter cartridge assembly collection tube and centrifuged at 16,0008
for30sat4 °C.Thepellet was resuspended and centrifuged at 700g for
1min, and the supernatant was transferred to a new microcentrifuge

tube and centrifuged at 16,000g for 30 min at 4 °C. For the PM, the
pellet was resuspended in 200 pl of Buffer B by vortexing at moder-
ate intensity for 30 s and centrifuging at 7,800g for 5 min at 4 °C. The
supernatant was transferred to anew microcentrifuge tube,and 1.5 ml
of chilled PBS was added, mixed vigorously for 30 s and centrifuged
at16,000g for 30 min at 4 °C. The pellet containing the PM was resus-
pended in RIPA buffer with protease and phosphatase inhibitors plus
1.0% Triton X-100.

NEisolation

The NE was isolated using a Minute Nuclear Envelope Protein Extrac-
tion kit (NE-013, Invent Biotechnologies), as per the manufacturer’s
instructions. Cells were pelleted by centrifugation at 600g for 5 min
at 4 °C, washed twice with PBS, resuspended in Buffer A, incubated
for10 minonice, mixed vigorously, transferred into a prechilled filter
cartridge assembly tube and centrifuged at 14,000g for 30 sat4 °C. The
pellet was washed with cold PBS, resuspended in Buffer B by vortexing,
incubated onice for 5 min and centrifuged at 5,000g for 5 min at4 °C.
The supernatant was transferred to anew tube, and 1.0 ml of cold PBS
was added, mixed vigorously for 15 s and centrifuged at 16,000g for
15minat4 °C. The NE pellet was then resuspended in RIPA buffer with
protease and phosphatase inhibitors plus 0.25% Triton X-100.

RanGTP assay

A Ran activation assay kit (81701, NewEast Biosciences) was used for
measuring GTP-bound Ran, as per the manufacturer’s instructions.
Briefly, equal amounts of each cytoplasmic fraction (1,000 pg of pro-
tein) wasincubated with 2 pl of anti-Ran*GTP for1 h. After incubation,
30 plof Protein A/G Agarose was added to eachimmune reaction and
rotated at 4 °C for 2 h. The beads were then washed three times with
washing buffer. Washed samples were subjected to separation on
4-12% SDS-PAGE gels, transferred onto nitrocellulose membranes
and detected by immunoblotting using antibody to Ran (Cell Signal-
ing Technology).

Primary human lung adenocarcinoma samples

The primary human lung adenocarcinoma samples were provided
by the lung SPORE from Winship Cancer Institute, Emory University.
Snap-frozen remnant lung tumor tissues were obtained from dei-
dentified individuals by assigning random IDs for the purpose of this
study under an Emory University institutional review board-approved
protocol.

PDX models

Flash-frozen tumor fragments from PDX models 941728-121-R (lung
adenocarcinoma), 422866-222-R5 (pancreatic adenocarcinoma),
463931-005-R (pancreaticadenocarcinoma), 572918-348-R (colon ade-
nocarcinoma), 144555-231-T (colon adenocarcinoma), 765993-094-R
(nasopharyngeal carcinoma with mutant HRAS-G12D) and 782815-
120-R (colon adenocarcinoma with mutant NRAS-Q61R) were obtained
fromthe NCI's Patient Derived Models Repository (NCI Frederick, Fred-
erick National Laboratory for Cancer Research; https://pdmr.cancer.
gov/). Flash-frozen tumor fragments from PDX models LGO703-F948
(lung adenocarcinoma) and KO0052-001-T (lung adenocarcinoma)
were developed by The Jackson Laboratory and are available from the
NCI Patient Derived Models Repository.

Development and treatment of the KRAS-G12D mouse lung
cancer model

Allmouse studies were approved by the NCI Animal Care and Use Com-
mittee and were conducted incompliance with the approved protocols.
The animals were housed under standard laboratory conditions on a
12-h dark/12-h light cycle (0600 to 1800 h) at ambient temperature
20-24 °C with 30-70% humidity and were provided with continuous
food and water. Mouse lung tumors were generated by conditional
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expression of oncogenic KRAS and inactivation of p53 (ref. 25). The
Kras'S“°?"* (B6.129S4-Kras™™/)) and Trp53" (B6.129P2- Trp537™6m/y)
mouse strains were purchased from The Jackson Laboratory and were
bred to produce Kras*S“°?>*; Trp53V" mice. Adenovirus expressing
Cre recombinase (Ad5CMVCre) was provided by the University of
lowa Viral Vector Core Facility, and a dose of 2.5 x 10’ plaque-forming
units per mouse was delivered to the respiratory tract of mice anes-
thetized with isoflurane, using the modified intranasal method of
Santry et al.”’. Three months after adenovirus infection, mice were
randomly divided into groups and were treated daily for 3 weeks via
intraperitoneal injection of KRAS-G12D inhibitor mrtx-1133 (15 mg
per kg (body weight)) alone, oral administration of the XPOlinhibitor
selinexor (30 mg per kg (body weight)) alone, the three-drug combi-
nation of mrtx-1133 (15 mg per kg (body weight)) + saracatinib (50 mg
per kg (body weight)) + mk-2206 (50 mg per kg (body weight)) or
selinexor (30 mg per kg (body weight)) + saracatinib (50 mg per kg
(body weight)) + mk-2206 (50 mg per kg (body weight)), the two-drug
combination of selumetinib (15 mg per kg (body weight)) + copan-
lisib (15 mg per kg (body weight)) or saracatinib (50 mg per kg (body
weight)) + mk-2206 (50 mg per kg (body weight)) or vehicle (Captisol),
andintactlungs with residual tumors were then excised and processed
for biochemical assays after treatment.

Invivo tumorigenesis and treatment of mice with inhibitors
For the development and treatment of mice with xenograft tumors,
A549 or NCI-H23 cells with DLCI-WT or DLCI-KO were trypsinized,
washed with cold PBS, diluted to 107 cells per ml with serum-free
medium/Matrigel basement membrane matrix (BD Biosciences)
at a ratio of 3:1 and injected subcutaneously into NOD-scid mice
(106 cells per injection). When tumors were approximately 0.5 cm
in diameter, mice were randomly divided into groups and were
treated daily with oral EZH2 inhibitor tazemetostat (25 mg per kg
(body weight)), the XPO1 inhibitor selinexor (30 mg per kg (body
weight)) or the KRAS-G12C inhibitor sotorasib (15 mg per kg (body
weight)), the two-drug combination of selumetinib (15 mg per kg
(body weight)) + copanlisib (15 mg per kg (body weight)) for 1 week,
followed by treatment with the indicated combination of tazem-
etostat (25 mg per kg (body weight)) + saracatinib (50 mg per kg
(body weight)) + mk-2206 (50 mg per kg (body weight)) or sotora-
sib (15 mg per kg (body weight)) + saracatinib (50 mg per kg (body
weight)) + mk-2206 (50 mg per kg (body weight)), allthree drugsin the
indicated combination or vehicle (Captisol) for anadditional 2 weeks,
and the remaining tumor tissues were excised, weighed and processed
for biochemical assays after treatment. The maximal tumor size was
not exceeded as permitted by the ethics committee and approved pro-
tocols. Sex was not considered in the study design because sex-based
analysis was not relevant to the study. Therefore, this information
was not collected.

Data analysis, statistics and reproducibility

At least two independent experiments were performed for all experi-
ments. Immunoblots were quantified by densitometric scanning using
Fiji software. Resultsin bar graphs are displayed as mean values + s.d.
from two or three experiments. No statistical methods were used to
predetermine sample sizes, but our sample sizes are similar to those
reported in previous publications within this field of research**, All
animal experiments were grouped randomly based on genetically
related cohorts and tumor size. For all other experiments, the sample
allocation was random. The investigators were blinded to group alloca-
tionduring datacollection and/or analysis. No animals and data points
were excluded from the analyses. All experiments were designed with
matched control conditions within each experiment. Datadistribution
was assumed to be normal, but this was not formally tested. For the
statistical analyses, parametric unpaired one-tailed t-test with Welch’s
correction was performed using Prism software (version10.1.1(270),

GraphPad), and no adjustments were made for multiple comparisons.
A Pvalue of <0.05 was considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data generated or analyzed during this study are included in the
published article and its Supplementary Information files. Source data
are provided with this paper.

Code availability

No new code was developed in this study.
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Extended Data Fig.1| EZH2 protein sequence contains two consensus nuclear export signals, highlighted in red. EZH2 protein sequence with two Nuclear Export

EZH2 protein sequence with two Nuclear Export Signals (NESs) in Red identified by
NES Mapper (perl program https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003841)
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Extended DataFig. 3| Overexpression of mutant KRAS increases nuclear
export of EZH2 and Survivin, whichisindependent of PI3K and MEK
signaling; KRAS inhibition does not prevent XPO1:Survivin complex
formation. a-d Overexpression of KRAS-G12C in H1703 (a,b) or KRAS-G12D
inHBEC (c,d) linesincreased the level of cytoplasmic EZH2 and cytoplasmic
Survivinand decreased the cytoplasmic DLC1 protein. a-tubulin and lamin
Blwere used, respectively, as cytoplasmic and nuclear marker proteins. C,
Cytoplasmic; N, Nuclear. e In A549 cells, MEK inhibitor U0126-ethanol and PI3K
inhibitor wortmannin did not affect the level of DLC1 protein, while the XPO1
inhibitor selinexor did increase DLC1 protein. U0126-ethanol inhibited MEK
activity (measured by pERK-T202/Y204) and wortmannin inhibited PI3K activity
(measured by pAKT-S473) in all treated samples. f,g In the KRAS-G12C NCI-H23

line, selinexor prevented the complex formation between XPO1and EZH2 in the
nucleus, as itis confirmed from the purified nuclear extract. h,i KRAS inhibition
by sotorasib (h) or siRNA knockdown of KRAS (i) did not prevent XPO1:Survivin
complex formation. Lysates from NCI-H23 cells treated without or with
sotorasib or KRAS siRNA were IP with antibodies to XPO1, Survivin, or mock IgG,
followed by IB with antibodies to Survivin or XPO1. WCE, whole cell extract. j
Complex formation between KRAS and NTF2in A549 cells. Lysates from A549
cells were IP with antibodies to KRAS or mock IgG, followed by IB with antibodies
to NTF2 or KRAS. k-n Overexpressed KRAS-G12C (k,I) or KRAS-G12D (m,n)
formed a complex with full-length RanGAP1 (k,m) and the RanGAP1 catalytic
domain (I,n). Two independent experiments were performed for each image,
with similar results.
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A. RanGAP1, NF1 and RASA1 sequence alignment
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Extended Data Fig. 4 | Sequence alignment of the indicated proteins. Multiple sequence alignment using CLUSTAL Omega (1.2.4, https://www.ebi.ac.uk/Tools/msa/
clustalo/). a Protein sequence alignment among RanGAP1, NF1, and RASAL b Protein sequence alignment between KRAS and RAP-1A.
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A (PDX; KRAS-G12D) B (as49; KRAS-G125) (A549; KRAS-G12S) (A549; KRAS-G12S) (A549; KRAS-G12S) (A549; KRAS-G12S)
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Extended Data Fig. 5| KRAS and RanGAP1 form a perinuclear complexin colocalization signal between Vinculin and FAK (third panel) was distinct from
PDX and A549 cells. a PDX tumor sections with KRAS-G12D showed perinuclear that between RanGAP1 and KRAS (first panel), while there was no PLA signal
PLA signals of colocalization of RanGAP1and KRAS. Tumor sections were between RanGAP1 and RAP1 (second panel). There was no PLA signal detected
immunostained with RanGAP1and KRAS antibodies. DAPI was used to stain when plus probe (middle panels) or minus probe was omitted (fourth and fifth
nuclei (blue). White oval outlines indicate red perinuclear signals. Scale bar panels). Scale bar =10 pm. Two independent experiments were performed for
=5 pm. b Perinuclear PLA colocalization signal between RanGAP1and KRAS eachimage with similar results.

were also observed in A549 cells (first panel). The wider distribution of the PLA
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Extended DataFig. 6 | Cell fractionations for plasma membrane (PM), nuclear
envelope (NE), and cytoplasmic (C) fractions. The RAS:RanGAP1 complexes
are presentin many tumor types and non-tumorigeniclines. aNCI-H23

cells were fractionated for PM, NE, and cytoplasmic fractions whose purity was
verified by specific marker proteins, for example, EGFR and CD44 for the PM,
lamin A/C for the NE, and a-tubulin for the cytoplasmic marker protein. KRAS

is presentinall three fractions, RanGAP1is present only in NE and cytoplasmic
fractions, while BRAF is present only in PM and cytoplasmic fractions. b-i Lysates
fromindicated fractions were IP with antibodies to BRAF, KRAS, RanGAP1, or
mock IgG, followed by IB with antibodies to KRAS, BRAF, or RanGAP1. WCE, whole
cellextract, Input, indicated purified fraction. KRAS formed a complex with BRAF
inthe WCE (b), PM (c,d), and cytoplasmic fraction (e). KRAS formed a complex
with RanGAP1in cytoplasmic fraction (f) and NE (g). h As BRAF is not present in

WI-38 primary lung adenocarcinomas

NE (a), there was no complex formation between KRAS and BRAF in NE fraction. i
Since RanGAP1is not presentin PM (a), there was no complex formation between
KRAS and RanGAP1in PM fraction. j-p Lysates from indicated samples were IP
withantibodies to KRAS, RanGAP1, or mock IgG, followed by IB with antibodies
to RanGAP1 or KRAS. WCE, whole cell extract. KRAS:RanGAP1 protein complexes
were identified in: PDX’s from pancreas adenocarcinoma (j), PDX’s from colon
adenocarcinoma (k), and PDX’s from HRAS mutant Nasopharyngeal Carcinoma
(I), PDX’s from NRAS mutant colon adenocarcinoma (m), non-transformed HBEC
line (n), non-immortalized, non-transformed WI-38 fibroblasts (0). In contrast
to the positive results of complex formation between KRAS and RanGAP1in
primary human lung cancer shownin Fig. 51,m, the complex formation was not
detected between RanGAP1and the RAP1 (p). Two independent experiments
were performed for each image, with similar results.
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Extended Data Fig.7 | The combined inhibition of XPO1, MEK, and PI3K
inhibits cell growth to the same degree as KRAS inhibition. The combined
inhibition of KRAS, AKT, and SRC has the highest antitumor activity;

DLC1 expression makes a critical contribution to this antitumor activity.
aPhotomicrographs of colonies quantified in Fig. 7a. Scale bar =2 mm.
Anchorage-independent colonies growth in responses to treatment with the
KRAS inhibitor sotorasib alone or in the combination of the indicated drugs
treatment. The combined inhibition of XPO1, PI3K, and MEK have similar colonies
growth inhibition as KRAS inhibition. The combined inhibition of KRAS, AKT,
and SRC had greater colonies growth inhibition compared to KRAS inhibition
alone. b Xenograft tumors after 3 weeks of treatment with the indicated
inhibitors quantified in Fig. 7b. c Quantitation of agar colonies (>0.4 mm) after
theindicated drugs treatment. Bar graphs represent mean value and error
barsrepresent SD. N =3 independent experiments. p = 0.0004 for control
versus KRAS-G12Ci, p = 0.0022 for control versus MEKi+PI3Ki, p = 0.0112 for
KRAS-G12Ci versus MEKi+PI3Ki, and p = 0.0146 for KRAS-G12Ci versus KRAS-

DLC1-KO

G12Ci+AKTi+SRCi. d Excised xenograft tumors after treatment with the indicated
inhibitors. In the NCI-H23 xenograft tumors, combined inhibition of KRAS, AKT,
and SRC has the highest antitumor activity in DLC1 expressed tumors. Most of the
antitumor activity was attributable to DLC1 protein expression, as the isogenic
DLC1-KO line was much less susceptible to the three-drug combination. e,f
Quantitation (e) of agar colonies (>0.4 mm) after the indicated drugs treatment,
as photomicrographs of colonies shown (f). In figure E, bar graphs represent
mean value and error bars represent SD. N = 3 independent experiments.

p =0.0071 for MEKi+PI3Ki versus KRAS-G12Ci and p = 0.0069 for KRAS-G12Ci
versus KRAS-G12Ci+AKTi+SRCi. In Figure F, hotomicrographs of anchorage-
independent colonies growth in responses to treatment with KRAS inhibitor
sotorasib and with the indicated inhibitors in NCI-H23 parental line and isogenic
DLC1-KO line. Scale bar =2 mm. For the statistical analysis for Figures CandE,
parametric unpaired one tailed ¢-test with Welch’s correction was performed
using Prism software, and no adjustments were made for multiple comparisons.
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Extended Data Fig. 8 | Selinexor and tazemetostat treatment induce DLC1 performed using Prism software, and no adjustments were made for multiple
protein expression in tumors. Treatment with the combination of three- comparisons. p = 0.0091 for vehicle versus XPOLli, p = 0.0001 for vehicle versus
drugsis not associated with changes in mouse coat appearance or weight XPO1i+AKTi+SRCi, and p = 0.0088 for vehicle versus EZH2i+AKTi+SRCi. ¢
loss. a Sections from selinexor and tazemetostat treated tumorsin Fig. 7d and Treatment of tumor bearing mice with three-drug combination did not show
Extended Data Fig. 8C wereimmunostained with antibodies to DLC1 (red) and visible side effects, such as change in coat appearance or weight loss unrelated
DAPI was used to stain nuclei (blue). Tumor treated with selinexor alone or in toadecreasein tumor weight. N =4 mice per group. d,e Graphs show average
combination with mk-2206 and saracatinib expressed higher levels of DLC1 body weight of mice before treatment (d) and after three weeks treatment (e) in
protein than the vehicle control tumors. Scale bar, 100 um. However, there allgroups. InFigure D and E, bar graphs represent mean value of mice weight for
were no upregulation of DLC1 protein in DLC1-KO line. b Quantification of DLC1 eachgroup, anderror bars represent SD. N = 4 mice per group for both D and E.
mean intensity in arbitrary units. Bar graphs represent mean value and error The numbers at the bottom of panel E represent the average tumor weight. Much
barsrepresent SD. N = 4 tumor sections per group. For the statistical analyses of the change in weight is attributable to the weight of the tumor.

for Figure B, parametric unpaired one-tailed ¢-test with Welch’s correction was
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tubes with a Plan-Apochromat 63x/1.4 NA oil differential interference contrast objective lens.

Data analysis The colocalization of two proteins was analyzed by ZEN microscopy software (version ZEN 2.3 SP1). For the statistical analyses, parametric
unpaired one tailed t-test with Welch’s correction was performed using Prism software (version 10.1.1 (270); GraphPad) and no adjustments
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender There were no sex or gender based analysis in this study, and this information has not been collected. Sex and gender were
not considered in the design of the study.

Reporting on race, ethnicity, or ' This information was not provided and was not considered in the design of the study.
other socially relevant

groupings

Population characteristics No data on population characteristics was collected/used.

Recruitment The recruitment of the patients were done as per an Emory University institutional review board approved protocol. For the
purpose of this study, lung tumor tissues were obtained from the de-identified patients by assigning random IDs.

Ethics oversight The primary human lung adenocarcinoma samples were provided by the lung SPORE from Winship Cancer Institute, Emory

University, Atlanta, GA USA. Snap-frozen, remnant lung tumor tissues were obtained from the de-identified patients by
assigning random IDs for the purpose of this study under an Emory University institutional review board approved protocol.
The written consent was obtained from the patients the patient samples derive from, as per requirements for the Emory
University institutional review board approved protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size At least two independent experiments were performed for all in vitro experiments and at least four animals (n=4) were used per group for all
in vivo experiments. Sample sizes were determined based on our experience with the specific type of experiment and commonly used sample
sizes in ours and others previous publications within this field of research (Tripathi et al., 2017, Journal of Cell Biology; Tripathi et al., 2019,
Journal of Cell Biology, Tripathi et al., Nature Communications, 2021). The sample sizes and number of repeats are also defined in each figure
legends. Immunoblots were quantified by densitometric scanning using Fiji software 2.14.0. Results are expressed as mean + standard
deviation (SD) from two or three experiments. All experiments were designed with matched control conditions within each experiment. For
the statistical analyses, parametric unpaired one tailed t-test with Welch’s correction was performed using Prism software (version 10.1.1
(270); GraphPad) and no adjustments were made for multiple comparisons, and p < 0.05 was considered statistically significant.

Data exclusions  No data were excluded from the analysis.

Replication At least two independent experiments were performed for all experiments. All attempt at replication were successful. At least four animals
(n=4) were used per group for all in vivo experiments. The experimental findings reported in this article were reliably reproduced. All other
experiments were performed independently two times and all replication attempts were successful. Results in bar graphs are displayed as
mean + standard deviation (SD) from two or three experiments. All experiments were designed with matched control conditions.

Randomization  All animal experiments were grouped randomly based on genetically related cohorts and tumor size. When tumors were approximately 0.5
cm in diameter, mice were randomly divided into groups and were treated with drugs. For all other experiments, the sample allocation was
random and the investigators were blinded to group allocation.
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Blinding The investigators were blinded to group allocation during data collection and/or analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZ D ChiIP-seq
Eukaryotic cell lines IZI |:| Flow cytometry
Palaeontology and archaeology IZ D MRI-based neuroimaging
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Animals and other organisms
Clinical data

Dual use research of concern
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Antibodies

Antibodies used The following antibodies, with the catalog number and the dilution used in parenthesis, were purchased from Cell Signaling
Technology: XPO1 (46249, 1:1000), ERK (9102, 1:1000), pERK-Thr202/Tyr204 (9101, 1:1000), AKT (4691, 1:1000), phospho-AKT-
pS473 (4060, 1:1000), SRC (2108, 1:1000), phospho-SRC-pY416 (2101, 1:1000), EZH2 Rabbit (5246, 1:1000), EZH2 Mouse (3147,
1:1000) Survivin Rabbit (2808, 1:1000), Survivin Mouse (2802, 1:1000), NTF2 (3053, 1:1000), RAN (4462, 1:1000), CDC42 (2466,
1:1000), GST Mouse (2624, 1:1000) GST Rabbit (2622, 1:2000), FAK (3285, 1:1000), CD44 (37259, 1:1000), EGFR (4267, 1:1000),
Lamin A/C (4777, 1:2000), and GAPDH (2118, 1:5000). RAN-GAP (67146, 1:1000) and KRAS (12063-1-AP, 1:1000) were purchased
from Proteintech. RAN-GAP Mouse (33-0800, 1:1000) and KRAS Mouse (415700, 1:500) were purchased from Invitrogen. KRAS-G12D
(26036, 1:500), RAN (21097, 1:1000) and RAN-GTP (26915, 1:500) were purchased from NewEast Biosciences. DDK Mouse (TA50011,
1:2000) was purchased from Origene. Two DLC1 antibodies were used: one, generated in our laboratory (DLC1 Rabbit antibody;
clone 428, 1:500), and the other DLC1 Mouse (612021, 1:500) was purchased from BD Biosciences. RAS (ab180772, 1:1000), KRAS
(ab275876, 1:1000), B-Tubulin (ab4074, 1:5000), Lamin B1 (ab65986, 1:500), NTF2 (ab254146, 1:1000), KRAS-G12D (ab221163,
1:500), BRAF (ab33899, 1:1000), RANBP1 (ab97659, 1:500), RANBP2 (NUP358, ab245563, 1:500), RAP1 Mouse (ab175329, 1:500),
RAP1 Rabbit (ab272863, 1:500), RAP1-GAP (ab32373, 1:500), GFP mouse (ab1218, 1:1000), GFP Rabbit (ab290, 1:2000), and RAN-
GAP (ab92360, 1:1000) antibodies were purchased from Abcam. RAP1 (07-196, 1:500) antibody was purchased from EMD Millipore.
NUP358 (RANBP2; sc74518, 1:500) and DLC1 (271915, 1:200) antibody was purchased from Santa Cruz Biotechnology. KRAS mouse
(WH0003845M1, 1:200), Vinculin (V9131, 1:1000), and Actin (A4700, 1:3000) antibodies were purchased from Sigma Aldrich. Anti-
Rabbit (NA934V, 1:5000) and anti-Mouse (NXA931V, 1:3000) IgG horseradish peroxidase-linked secondary antibodies were
purchased from GE Healthcare.

Validation We have used and validated most of the antibodies that are listed here in our previous studies (Tripathi et al., Journal of Cell Biology,
2014; Tripathi et al., Journal of Cell Biology, 2017; Tripathi et al., Journal of Cell Biology, 2019, Tripathi et al., Nature Communications,
2021). For validation of new antibodies, we have used antibody profiles of online databases from the company site and the relevant
citation for each primary antibody. All new antibodies used in this study were procured directly from manufacturers and were
validated by the manufacturers for both antigen specificity and reactivity with human cells using western blot, immunoprecipitation
and/ or immunoblotting. Comprehensive details on the validation procedures for each antibody are available in the technical
datasheet and references provided by the respective manufacturers. All antibodies used in this study exhibited expected
immunoblotting and immunostaining results in accordance with the existing literature.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) HEK-293T cells and human fibroblastic WI-38 cells were purchased from ATCC and were cultured in DMEM and EMEM
supplemented with 10% FBS, respectively. Human Bronchial Epithelial cells (HBEC) were purchased from ATCC and were
cultured in Airway Epithelial Cell Basal Medium with cell growth kit components. NSCLC lines H1703, H157, A549, NCI-H23,
and H358 were purchased from ATCC. All cancer cell lines were cultured in RPMI-1640 supplemented with 10% FBS. All cells
were cultured at 37°C in a humidified atmosphere of 95% air and 5% CO2.

Authentication We have used the reliable sources for each cell lines, such as ATCC, but we did not authenticated. STR analysis and COI assay
were used to authenticate each cell line by the supplier.

Mycoplasma contamination All cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines  No misidentified cell lines have been used in this study.
(See ICLAC register)




Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals

Wild animals

Reporting on sex

Field-collected samples

Ethics oversight

The mouse studies were approved by the National Cancer Institute Animal Care and Use Committee and conducted in compliance
with the approved protocols. NOD.SCID/NCR mice were obtained from Charles River Laboratory, National Cancer Institute centralized
animal order system. We used 6-8 weeks old mice for this study. The animals were housed under standard laboratory conditions in
12 hours dark/light cycle (6 am to 6 pm) at ambient temperature 68-76F with 30%-70% humidity and were provided continuous food
and water supply. Mouse lung tumors were generated by conditional expression of oncogenic Kras and inactivation of p53. The
KrasLSL-G12D/+ (B6.12954-Krastm4Tyj/J) and Trp53fl/fl (B6.129P2-Trp53tm1Brn/J) mouse strains were purchased from The Jackson
Laboratories and were bred to produce KrasLSL-G12D/+; Trp53fl/fl mice. Adenovirus expressing Cre recombinase (Ad5CMVCre) was
provided by the University of lowa Viral Vector Core Facility, and a dose of 2.5x107 pfu per mouse was delivered to the respiratory
tract of mice anesthetized with isoflurane. The maximal tumor size was not exceeded to the permitted by the ethics committee and
approved protocols.

The study did not involve wild animals.

Sex and gender based analysis were not relevant to the study, and this information has not been collected. Sex and gender were not
considered in the study design.

No field collected samples were used in the study
The mouse studies were approved by the National Cancer Institute Animal Care and Use Committee and conducted in compliance

with the approved protocols. Animals were housed under standard laboratory conditions and water and food were continuously
available.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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