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Hereditary dentine disorders are autosomal dominant diseases that affect the
development and structure of dentine, leading to various dental abnormalities
and influencing the individual’s oral health. It is generally classified as
dentinogenesis imperfecta (DGI) and dentine dysplasia (DD). Specifically, DGI
is characterized by the abnormal formation of dentine, resulting in teeth that are
discolored, translucent, and prone to fracture or wear down easily. DD is
characterized by abnormal dentine development, manifested as teeth with
short roots and abnormal pulp chambers, leading to frequent tooth loss. Up
to now, the pathogenesis of hereditary dentine disorders has been poorly clarified
and the clinical intervention is limited. Treatment for hereditary dentine disorders
focuses on managing the symptoms and preventing further dental problems.
Genetic counseling and testing may also be recommended as these conditions
can be passed on to future generations. In this review, we summarize the clinical
features, pathogenic genes, histomorphological characteristics and therapy of
hereditary dentine disorders. Due to the limited understanding of the disease at
present, we hope this review could improve the recognition of the disease by
clinicians, stimulate more scholars to further study the deeply detailed
mechanisms of the disease and explore potential therapeutic strategies, thus
achieving effective, systematic management of the disease and improving the life
quality of patients.
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1 Introduction

Hereditary dentine disorders are rare genetic dental developmental disorders
characterized by abnormalities in the formation and maturation of dentine, leading to
structural and functional damage to the teeth (Yuan and Chen, 2023). Patients with
hereditary dentine disorders typically present with teeth that are grayish-yellow or grayish-
brown in appearance and are prone to wear and fractures. Dental abnormalities can cause
difficulties in chewing function and even have social and psychological implications for
patients (Delgado et al., 2008). The pathogenesis of this condition is associated with
abnormalities in dentine synthesis and mineralization, with common causative genes
including dentine sialophosphoprotein (DSPP), collagen type I alpha 1 (COL1A1),
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COL1A2, secreted modular calcium-binding protein 2 (SMOC2),
vacuolar protein sorting 4B (VPS4B), and Ssu-2 homolog (SSUH2)
(Su et al., 2023). Currently, the treatment of hereditary dentine
disorders primarily focuses on restoring and protecting the teeth to
alleviate symptoms and improve the quality of life via dental
restorations, endodontic therapy and oral surgery. However, due
to the genetic background of hereditary dentine disorders,
conventional treatment methods cannot cure the disease
radically. Therefore, prevention and early diagnosis is crucial for
genetic counseling and family planning. Regular dental check-ups,
seeking professional advice for early detection and treatment of
hereditary dentine disorders, as well as implementing appropriate
preventive measures, can help mitigate the impact of the disease on
the patients.

In 1973, Shields classified the disease into dentinogenesis
imperfecta (DGI) types I, II and III, and dentine dysplasia (DD)
types I and II (Shields et al., 1973). Specifically, DGI-I is a type of
osteogenesis imperfecta (OI) that affects both primary and
permanent dentitions. The affected teeth show varying degrees of
discoloration and wear, with genetic heterogeneity.
Radiographically, they present with bulbous crowns, short and
narrow roots with pulp obliteration. Affected teeth can coexist
with normal teeth in the dental arch. DGI-II is commonly
referred to as hereditary opalescent dentine. Compared to DGI-I,
DGI-II patients exhibit complete teeth discoloration and
translucency. DGI-III, also known as “Brandywine isolate” is
considered a rare and severe phenotype. It is characterized by
enlarged pulp chambers and root canals, with radiographic
features of “shell teeth” changes. DD-I is characterized by
developmental disturbances in root dentine with relatively

normal crown dentine. Due to the developmental anomalies in
root dentine, patients often experience delayed eruption and early
exfoliation of teeth. DD-II primarily affects crown dentine
development. Distinct features such as “thistle tube” pulp
chambers and pulp stones are frequently observed in X-rays. The
clinical features of DD-II in the primary dentition period are similar
to those of DGI-II. It is reported that the incidence of DGI is between
1/6000 and 1/8000 while the incidence of DD is about 1/100,000
(Barron et al., 2008).

Although Shields’ classification is widely used, it mainly relies on
clinical manifestations and relatively neglects genetic factors.
Therefore, based on the clinical spectrum of DSPP variants
associated with DGI, de La Dure-Molla et al. proposed a new
classification method, dividing it into isolated and syndromic
types in 2015. The classification of isolated dentinogenesis
disorders define DD-I as a root-type DGI, while DD-II, DGI-II,
and DGI-III are defined as mild, moderate, and severe forms of DGI,
respectively (shown in Figure 1) (de La Dure-Molla et al., 2015). This
classification approach may help simplify the diagnosis for clinical
practitioners.

2 Pathogenic and histological features
of hereditary dentine disorders

The genetic basis of hereditary dentine disorders lies in
mutations of genes encoding the main protein components of
dentine. Specifically, mutations of COL1A1 or COL1A2 are
responsible for DGI-I, while mutations in the DSPP are
considered to be the cause of DGI-II, DGI-III and DD-II (Su

FIGURE 1
Classification and characteristics of hereditary dentine disorders.
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TABLE 1 Mutations in the coding sequence of COL1A1 and COL1A2 associated with DGI-I.

Gene Location cDNA Protein Mutation
class

Enamel
affected

DEJ
affected

References

COL1A1 Exon 5 c.458dupC p.(Gly154TrpfsX15) Frameshift - - Andersson et al. (2017)

COL1A1 Exon 5 c.440_441insT;
c.441_442insA

- Insertion No obvious
changes

Wider Duan et al. (2016)

COL1A1 Exon 6 c.484C>T p.(Gln162X) Nonsense - - Zhang et al. (2016)

COL1A1 Exon 7 c.573_574delCCinsG p.(Pro193LeufsX72) Frameshift - - Zhang et al. (2016)

COL1A1 Exon 7 c.579delT p.(Gly194ValfsX71) Frameshift - - Andersson et al. (2017)

COL1A1 Exon 8 c.589G>T p.(Gly197Cys) Missense - - Andersson et al. (2017)

COL1A1 Exon 8 c.643-2A>G Splice-2A>G Splice site - - Zhang et al. (2016)

COL1A1 Exon 11 c.752G>A p.(Gly251Asp) Missense - - Andersson et al. (2017)

COL1A1 Exon 11 c.757C>T p.(Arg253X) Nonsense - - Zhang et al. (2016)

COL1A1 Exon 11 c.769G>A p.(Gly257Arg) Missense - - Zhang et al. (2016)

COL1A1 Exon 12 c.851G>C p.(Gly284Ala) Missense - - Andersson et al. (2017)

COL1A1 Exon 15 c.972_978dup p.(Ala327X) Nonsense - - Andersson et al. (2017)

COL1A1 Exon 15 c.977G>A p.(Gly326Asp) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 15 c.994G>A p.(Gly332Arg) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 17 c.1057G>A p.(Gly353Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 17 c.1121G>C P.(Gly374Ala) Missense - - Zhang et al. (2016)

COL1A1 Exon 17 c.1127dupC p.(Gly377TrpfsX15) Frameshift - - Andersson et al. (2017)

COL1A1 Exon 19 c.1201G>A p.(Gly401Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 19 c.1292delG p.(Gly431ValfsX110) Frameshift - - Andersson et al. (2017)

COL1A1 Exon 22 c.1463G>C p.(Gly488Ala) Missense No obvious
changes

- Zeng et al. (2021)

COL1A1 Exon 23 c.1522G>A p.(Ala508Thr) Missense - - Zhang et al. (2016)

COL1A1 Exon 23 c.1588G>A p.(Gly530Ser) Missense - - Zhang et al. (2016)

COL1A1 Exon 25 c.1678G>T p.(Gly560Cys) Missense - - Zhang et al. (2016)

COL1A1 Exon 25 c.1678G>A p.(Gly560Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Intron 26 c.1821 + 1G>A Splice+1G>A Splice site - - Andersson et al. (2017)

COL1A1 Exon 28 c.1930-2A>C Splice-2A>C Splice site - - Zhang et al. (2016)

COL1A1 Exon 31 c.2075G>C p.(Gly692Ala) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 31 c.2089C>T p.(Arg697X) Nonsense - - Andersson et al. (2017)

COL1A1 Exon 31 c.2110G>T p.(Gly704Cys) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 32 c.2155G>A p.(Gly719Ser) Missense - - Andersson et al. (2017)

COL1A1 Intron 32 c.2235 + 1G>A Splice+1G>A Splice site - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 33_34 c.2297C>G p.(Thr766Ser) Missense - - Zhang et al. (2016)

(Continued on following page)
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TABLE 1 (Continued) Mutations in the coding sequence of COL1A1 and COL1A2 associated with DGI-I.

Gene Location cDNA Protein Mutation
class

Enamel
affected

DEJ
affected

References

COL1A1 Exon 33_34 c.2299G>A p.(Gly767Ser) Missense - - Zhang et al. (2016)

COL1A1 Exon 33_34 c.2335G>A p.(Gly779Ser) Missense - - Andersson et al. (2017)

COL1A1 Exon 36 c.2450delC p.(Pro817LeufsX291) Frameshift - - Zhang et al. (2016)

COL1A1 Exon 37 c.2461G>A p.(Gly821Ser) Missense - - Zhang et al. (2016), Andersson
et al. (2017), Malmgren et al.

(2017)

COL1A1 Exon 37 c.2515G>A p.(Gly839Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 37 c.2525delG p.(Gly842AlafsX266) Frameshift - - Andersson et al. (2017)

COL1A1 Exon 38 c.2596G>A p.(Gly866Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 41 c.2867G>C p.(Gly956Ala) Missense - - Zhang et al. (2016)

COL1A1 Exon 42 c.3026delC p.(Pro1009LeufsX99) Frameshift - - Andersson et al. (2017)

COL1A1 Exon 44 c.3118G>A p.(Gly1040Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Intron 44 c.3208-6C>T Splice-6C>T Splice site - - Andersson et al. (2017)

COL1A1 Exon 45 c.3226G>A p.(Gly1076Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 45 c.3235G>A p.(Gly1079Ser) Missense - - Andersson et al. (2017)

COL1A1 Intron 3 c.333 + 2T>C Splice+2T>C Splice site - - Andersson et al. (2017)

COL1A1 Intron 47 c.3424-6C>G Splice-5G>C Splice site - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 48 c.3505G>A p.(Gly1169Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A1 Exon 49 c.3567delT p.(Gly1190ValfsX49) Frameshift - - Andersson et al. (2017)

COL1A1 Exon 49 c.3790A>G p.(Met1264Val;
Met1264GlufsX59)

Frameshift - - Andersson et al. (2017)

COL1A1 Exon 50 c.3815G>T p.(Gly1272Val) Missense - - Andersson et al. (2017)

COL1A1 Exon 52 c.4386delC p.(Phe1463SerfsX63) Frameshift - - Andersson et al. (2017)

COL1A2 Exon 1 c.12T>G p.(Phe4Leu) Missense - - Zhang et al. (2016)

COL1A2 Exon 16 c.752C>T p.(Ser251Phe) Missense Reduced elastic
modulus

Irregular Intarak et al. (2021)

COL1A2 Exon 16 c.758G>T p.(Gly253Val) Missense Reduced elastic
modulus

Irregular Intarak et al. (2021)

COL1A2 Exon 17 c.793G>C p.(Gly265Arg) Missense - - Andersson et al. (2017)

COL1A2 Exon 17 c.794G>A p.(Gly265Asp) Missense - - Andersson et al. (2017)

COL1A2 Exon 17 c.795G>A p.(Gly265Arg) Missense - - Malmgren et al. (2017)

COL1A2 Exon 17 c.812G>A p.(Gly271Asp) Missense - - Zhang et al. (2016)

COL1A2 Exon 17 c.856G>A p.(Gly286Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 19 c.992G>A p.(Gly331Asp) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 19 c.1009G>A p.(Gly337Ser) Missense - - Zhang et al. (2016), Andersson
et al. (2017), Malmgren et al.

(2017)

(Continued on following page)
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et al., 2023; Yamaguti et al., 2023). It should be noted that the
pathogenesis of DD-I remains unclear.

2.1 Dentinogenesis imperfecta type I (DGI-I)

DGI-I is a main manifestation of OI in the oral system. As a
hereditary skeletal dysplasia, OI is characterized by bone fragility,
skeletal deformities, as well as other connective tissue diseases such
as DGI-I, hearing loss and blue sclerae with an incidence rate of 1/
15000 to 1/20000 (Jovanovic et al., 2022). DGI-I is considered as a
collagen-related disease due to defects of collagen type I are the main
pathogenic cause (Yamaguti et al., 2023). Collagen type I, coding by
COL1A1 (17q21.31-q22,51exons) or COL1A2 (7q22.1,52exons), is

the main component of bone, dentine and other connective tissues.
It is a triple-helical structure composed of two α1 chains and one
α2 chain, with a Gly-X-Y tripeptide repeats (Zhang et al., 2016).
Qualitative or quantitative defects in type I collagen can lead to DGI
(Yamaguti et al., 2023; Andersson et al., 2017). Specifically,
quantitative defects are characterized by mutations that generate
premature stop codons, resulting in insufficient protein synthesis.
Qualitative defects are caused by the formation of abnormal type Ⅰ
procollagen fibers due to the amino acid substitutions on the α1 or
α2 chains. Interestingly, mutations at different gene sites can result
in varying degrees of OI ranging frommild to severe, with or without
DGI (Zhang et al., 2016; Thomas and DiMeglio, 2016). While
numerous mutation sites have been reported (Table 1), further
research is still needed to establish the connection between

TABLE 1 (Continued) Mutations in the coding sequence of COL1A1 and COL1A2 associated with DGI-I.

Gene Location cDNA Protein Mutation
class

Enamel
affected

DEJ
affected

References

COL1A2 Exon 21 c.1162G>C p.(Gly388Arg) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 21 c.1171G>A p.(Gly391Ser) Missense Glass-like
appearance

- Andersson et al. (2017), Malmgren
et al. (2017), Lee et al. (2021),

Kantaputra et al. (2018a)

COL1A2 Intron 21 c.1197 + 5G>A Splice+5G>A Splice site - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 23 c.1268G>A p.(Arg423His) Missense - - Andersson et al. (2017)

COL1A2 Exon 25 c.1406G>C p.(Gly469Ala) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 25 c.1451G>A p.(Gly484Glu) Missense - - Kantaputra et al. (2018b)

COL1A2 Exon 26 c.1531G>T p.(Gly511Cys) Missense No obvious
changes

- Nutchoey et al. (2021)

COL1A2 Exon 31 c.1801G>A p.(Gly601Ser) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 32 c.1937G>T p.(Gly646Val) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 34 c.2027G>T p.(Gly676Val) Missense No obvious
changes

- Nutchoey et al. (2021)

COL1A2 Exon 34 c.2081G>A p.(Gly694Asp) Missense - - Zhang et al. (2016)

COL1A2 Intron 43 c.2835 + 1G>A Splice+1G>A Splice site - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 44 c.2918G>T p.(Gly973Val) Missense - - Andersson et al. (2017)

COL1A2 Exon 46 c.3008G>A p.(Gly1003Asp) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 46 c.3034G>A p.(Gly1012Ser) Missense - - Andersson et al. (2017)

COL1A2 Exon 46 c.3089G>C p.(Gly1030Ala) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 47 c.3106G>C p.(Gly1036Arg) Missense - - Andersson et al. (2017), Malmgren
et al. (2017)

COL1A2 Exon 48 c.3197G>T p.(Gly1066Val) Missense - - Zhang et al. (2016)

COL1A2 Exon 48 c.3233G>A p.(Gly1078Asp) Missense - - Lee et al. (2021)

COL1A2 Exon 49 c.3296G>A p.(Gly1099Glu) Missense Enamel pits
and grooves

Irregular Budsamongkol et al. (2019)

(“-” refers to not mentioned in the corresponding literature).
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specific gene mutations and the clinical manifestations associated
with DGI-I.

The histological structure of the affected dentine in DGI-I
showed remarkable abnormalities. Scanning electron microscopy
(SEM) revealed a reduction and disarrangement of dentinal tubules,
rough dentine texture, large holes, and ectopic calcification masses
(Kantaputra et al., 2018b; Nutchoey et al., 2021). Histologically, the
dentine of DGI-I exhibited a decreased quantity of collagen fibers,
although there were conflicting reports regarding changes in fiber
diameter (Duan et al., 2016; Ibrahim et al., 2019). Furthermore, the
increased D-band periodicity may lead to improper collagen
molecule accumulation, resulting in reduced mineralization of the
dentine (Duan et al., 2016). Immunoelectron microscopy showed a
higher expression of type III collagen in DGI-I dentine compared to
normal dentine. Additionally, expression of type VI collagen was
detected in DGI-I dentine, whereas it is not expressed in normal
dentine (Waltimo et al., 1994). Studies have suggested that
dysfunction in odontoblasts was associated with changes in
dentine ultrastructure. On the one hand, gene mutations may
directly result in odontoblast dysfunction (Liang et al., 2023). On
the other hand, due to the intracellular accumulation of abnormal
procollagen, odontoblasts may gradually expand and become
dysfunctional. With the mineralization of secreted collagen fibers,
the dilated odontoblasts would be enveloped, thereby impeding
further collagen secretion (Majorana et al., 2010). In conclusion,
in DGI-I, there are widespread alterations in the organization,
structure, and orientation of collagen fibers and dentinal tubules,
which impact dentine mineralization and reduce the mechanical
strength of the teeth.

There is still controversy regarding whether the dentine-
enamel junction (DEJ) is affected in DGI-I (Martín-Vacas
et al., 2022). Limited research has been conducted on the
impact on enamel, but it is generally believed that enamel
remains unaffected (Devaraju et al., 2014). However, a study
has surprisingly revealed that a heterozygous missense mutation
in COL1A2 can lead to glassy appearance of enamel, suggesting
that type 1 collagen may play a role in enamel mineralization,
resulting in enamel abnormalities in DGI-I (Kantaputra et al.,
2018a). Similarly, Martin-Vacas (Martín-Vacas et al., 2022) also
found structural changes in the enamel of DGI-I teeth, including
fractures in enamel prisms and loss of prism patterns. It is
important to note that it is still not clear whether the changes
in enamel are caused directly by mutations of the COL1 or
indirectly by improper support of harmed dentine.

2.2 Dentinogenesis imperfecta type II
(DGI-II)

DGI-II is a common inherited dental disorder with an estimated
prevalence of 1/8000. Mutations in the DSPP have been identified as
the pathogenic cause of DGI-II (Park et al., 2020). Dentine
sialoprotein (DSP) and dentine phosphoprotein (DPP) are the
main non-collagenous proteins in dentine, derived from
enzymatic cleavage of DSPP. They function as regulating dentine
mineralization initiation, collagen mineralization and maturation
processes (Maciejewska and Chomik, 2012). TheDSPP gene consists
of 5 exons and 4 introns. Exon 2 encodes the signal peptide, exons 2-

4 encode the N-terminal of DSP, and exon 5 encodes the C-terminal
of both DSP and DPP protein (Ritchie, 2018). Over 50 DSPP gene
mutation sites associated with DGI-II have been reported. DSP
mutations commonly occur as missense and nonsense mutations,
while the coding region for DPP is frequently affected by mutations
in the signal peptide coding sequence and frameshift mutations.

Mutations in the signal peptides of DSPP often hinder protein
translocation to the endoplasmic reticulum, thereby affecting the
subsequent transport, modification, and secretion of DSP and DPP.
Due to the reduced levels of DSP and DPP in the extracellular
matrix, the deposition and mineralization of dentine were impaired
(Maciejewska and Chomik, 2012). A study has documented a
missense mutation (c.15C>T) in exon 2 of DSPP in a severe
DGI-II Central American family, resulting in the substitution of
leucine with alanine and potentially altering the structure of the
signal peptide, leading to the occurrence of DGI (Malmgren
et al., 2004).

The N-terminal of the DSP protein contains a highly conserved
tripeptide domain composed of isoleucine, proline, and valine,
which is crucial for maintaining the biological function of DSPP.
When mutations occur in this region, the cleavage of the signal
peptide and protein processing will be interrupted (von Marschall
et al., 2012). The residues P 17 and V18 are speculated to be
mutation hotspots that affect DSPP function. Here, we list the
different mutation sites found in the DSP sequence that disrupt
dentine formation (Table 2).

DPP is a highly hydrophilic acidic protein rich in Asp-Ser-Ser.
The repetitive arrangement of carboxyl-phosphate structures at both
ends provide cross-linking, which facilitates crystal nucleation and
mineral formation (George et al., 1996). Gene site mutations
encoding DPP result in frameshift mutations. Different mutation
sites lead to different manifestations of DGI-II, suggesting a
genotype-phenotype correlation. Changes in protein
hydrophilicity are believed to be the cause of phenotypic
diversity (Lee et al., 2019; Yang J. et al., 2016) (Table 2).

The typical histological features of DGI-II include the
disappearance of the scalloped DEJ, irregular morphology of
dentinal tubules and collagen fibers, decreased mineralization,
occasional presence of interglobular dentine, and rarely
accompanied by enamel changes (Taleb et al., 2018). In early
studies, DEJ defects were believed to be the cause of enamel
fragmentation (Wieczorek and Loster, 2013). However,
subsequent research has shown that even if the DEJ was normal,
the enamel in DGI-II patients was still prone to delamination.
Additionally, the elastic modulus, hardness, and mineral density
of DGI-II dentine were reduced, which was at least partially
responsible for tooth fractures and attrition in DGI teeth (Park
et al., 2020; Porntaveetus et al., 2018; Mao et al., 2021). Surprisingly,
literature has reported the presence of primary hypoplastic enamel
defects in DGI-II patients (Du et al., 2021). Similar enamel defects
have also been found in two other DGI-II pedigrees of Korean and
Caucasian descent (Lee SK. et al., 2011; Wang et al., 2011). It is
speculated that DSPP is not only expressed in odontoblasts but also
transiently expressed in ameloblasts. Although the dental pulp of
DGI-II affected teeth may appear completely resorbed in X-ray,
there may still exist interconnected vascular networks, providing a
pathway for oral bacteria leading to periradicular abscesses (Davis
et al., 2015).
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TABLE 2 Mutations in the coding sequence of the signal peptide, DSP and DPP associated with DGI-II.

Gene Location cDNA Protein Mutation
class

Enamel
affected

DEJ
affected

References

Signal
peptide

Exon 2 c.15C>T p.(Ala15Val) Missense - - Malmgren et al. (2004)

DSP Exon 2 c.49C>T p.(Pro17Ser) Missense Thin and
hypoplastic

Flat Hart and Hart (2007),
Zhang et al. (2007), Taleb
et al. (2018), Qu et al. (2009)

DSP Exon 2 c.49C>A p.(Pro17Thr) Missense - - Xiao et al. (2001)

DSP Exon 2 c.50C>T p.(Pro17Leu) Missense - - Li et al. (2012), Porntaveetus
et al. (2019), Lee et al.
(2013), Hu et al. (2018)

DSP Intron 2 c.52-1G>A p.(Val18_Gln45del) Splice site - - Liu et al. (2016)

DSP Intron 2 c.52-3C>A p.(Val18_Gln45del) Splice site - - Holappa et al. (2006), Lee
et al. (2011a), Wang et al.

(2009)

DSP Intron 2 c.52-3C>G p.(Val18_Gln45del) Splice site - - Li et al. (2012), Lee et al.
(2011a), Kim et al. (2004)

DSP Intron 2 c.52-2A>G p.(Val18_Gln45del) Splice site Thin and
hypoplastic

Flat Taleb et al. (2018)

DSP Exon 3 c.52G>T p.(V18F +
p.V18_Q45del)

Missense Enamel
defects

Flat and
wilder

Holappa et al. (2006), Lee
et al. (2011a), Kim et al.
(2004), Kim et al. (2005),

Song et al. (2006)

DSP Exon 3 c.53T>A p.(Val18Asp) Missense Enamel
defects

- Kida et al. (2009), Lee et al.
(2009), Lee et al. (2011b)

DSP Exon 3 c.53T>G p. (Val18Gly) Missense Enamel
defects

- Du et al. (2021)

DSP Exon 3 c.133C>T p.(Gln45X) Nonsense - - Song et al. (2006), Zhang
et al. (2001)

DSP Intron 3 c.135 + 2T>C Splice+2T>C Splice site - - Zhang et al. (2011)

DSP Exon 3 c.135G>T p.(Gln45His) Missense Thin and
hypoplastic

Flat Taleb et al. (2018)

DSP Intron 3 c.135 + 3A>G p.(Val18_Gln45del) Splice site - - Bai et al. (2010)

DSP Intron 3 c.135 + 1G>A p.(Val18_Gln45del) Splice site - - Xiao et al. (2001)

DSP Intron 3 c.135 + 1G>T p.(Val18_Gln45del) Splice site - - McKnight et al. (2008a)

DSP Exon 4 c.202A>T p.(Arg68Trp) Missense - - Malmgren et al. (2004),
Holappa et al. (2006)

DPP Exon 5 c.1915_1918delAAGT p.(Lys629GlnfsX674) Frameshift Uneven
enamel
surface

- Porntaveetus et al. (2018)

DPP Exon 5 c.2272delA p.(Ser758AlafsX554) Frameshift - - McKnight et al. (2008a)

DPP Exon 5 c.2349delT p.(Ser783ArgfsX531) Frameshift - - Nieminen et al. (2011)

DPP Exon 5 c.2525delG p.(Ser842ThrfsX471) Frameshift - - McKnight et al. (2008a)

DPP Exon 5 c.2593delA p.(Ser865fsX1313) Frameshift - - Song et al. (2008)

DPP Exon 5 c.2666delG p.(Ser889ThrfsX425) Frameshift - - Nieminen et al. (2011)

DPP Exon 5 c.2684delG p.(Ser895MetfsX1313) Frameshift - - Song et al. (2008)

DPP Exon 5 c.2684delG p.(Ser895MetfsX418) Frameshift - - Li et al. (2017)

DPP Exon 5 c.2688delT p.(Asp896GlufsX418) Frameshift No obvious
changes

- Park et al. (2020), Lee et al.
(2011c)

(Continued on following page)
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Several studies have shown changes in the elemental
composition of DGI-II dentine. Park et al. (Park et al., 2020)
reported that compared to normal dentine, DGI-II dentine had
lower levels of magnesium (Mg), while there was no difference in
other elements such as sodium (Na), calcium (Ca) and phosphorus
(P). X-ray microanalysis revealed that compared to normal primary
molars, DGI-II primary molars showed decreased levels of Mg and
carbon (C) and increased levels of oxygen (O) and Na. It was
proposed that Na may be an important element in distinguishing
DGI-II dentine from normal dentine (Sabel et al., 2020). Energy-
dispersive spectroscopy analysis showed that Ca content and Ca/P
ratio in DGI-II teeth were higher than in normal teeth (Du et al.,
2021). The reasons for the varying results in elemental content in
DGI-II are not yet clear. One possible explanation is that primary
and permanent teeth have different elemental compositions,
suggesting that the levels of calcium or phosphorus may be
age-related.

2.3 Dentinogenesis imperfecta type Ⅲ
(DGI-Ⅲ)

Due to the possibility that DGI-III and DGI-II may only differ in
degree, there are few literature just focus on the pathogenesis and
histopathological changes of DGI-III. Previous researches believed
thatDSPPmutations were the only cause of DGI-III (Table 3). It has

been reported that a combined mutations including a 36-bp deletion
together with an 18-bp insertion occurred at exon 5 could contribute
to a shortening of the highly conserved COOH terminus, thereby
altering the carboxyl-phosphate group structure of the DPP protein.
As a result, the initiation, formation and maturation of dentine
crystals are impaired (Dong et al., 2005). Mutations (c.52-2A>G,
p. V18_Q45del; c.53T>A, p. V18D), which occurred in intron 2 and
exon 3 respectively, were also reported to show a DGI-III-like
pattern, including enlarged pulp chambers, root canals associated
with attrition of primary teeth (Wang et al., 2009; Li et al., 2017).
Interestingly, two families with the same mutation (c.52G>T,
p. V18F) showed two different phenotypes of DGI-II and DGI-
III, respectively. This may suggest that DGI-II and DGI-III were not
separate diseases but phenotypic variation of the same disease (Kim
et al., 2005). As a more severe type of DGI, DGI-III showed fewer
dentinal tubules on the surface of fractured dentine. Furthermore,
calcospherites at the calcification front were more irregular or even
absent in the DGI-III compared to DGI-II (Levin et al., 1983).

2.4 Dentine dysplasia type Ⅰ (DD-Ⅰ)

DD-I is characterized by short roots, loose teeth and pain
associated with numerous periapical radiolucencies in non-
carious teeth. Carroll et al. classified DD-I into four subtypes
based on radiographic features (O Carroll et al., 1991). DD-Ia is

TABLE 2 (Continued) Mutations in the coding sequence of the signal peptide, DSP and DPP associated with DGI-II.

Gene Location cDNA Protein Mutation
class

Enamel
affected

DEJ
affected

References

DPP Exon 5 c.3438delC p.(Asp1146fsX1313) Frameshift - - Song et al. (2008)

DPP Exon 5 c.3504_3508dup p.(Asp1170AlafsX146) Frameshift - - Yang et al. (2016a)

DPP Exon 5 c.3509_3521del13bp p.(Asp1170AlafsX139) Frameshift - - Li et al. (2017)

DPP Exon 5 c.3546_3550delTAGCAinsG p.(Asp1182fsX1312) Frameshift - - Song et al. (2008)

DPP Exon 5 c.3560delG p.(Ser1187MetfsX127) Frameshift - - Lee et al. (2011c)

DPP Exon 5 c3582_3591delCAGCAGCGAT p.(Asp1194GlufsX117) Frameshift - - Nieminen et al. (2011)

DPP Exon 5 c.3625_3700del76bp p.(Asp1209AlafsX80) Frameshift - - Nieminen et al. (2011)

DPP Exon 5 c.3676delA p.(Ser1226Alafs X88) Frameshift Enamel
defects

- Bloch-Zupan et al. (2016)

(“-” refers to not mentioned in the corresponding literature).

TABLE 3 Mutations in the coding sequence of DSPP associated with DGI-Ⅲ.

Location cDNA Protein Mutation class Enamel affected DEJ affected References

Intron 2 c.52-2A>G p.(Val18_Gln45del) Splice site - - Li et al. (2017)

Exon 2 c.52G>T p.(Val18Phe) Missense - - Kim et al. (2005)

Exon 2 c.53T>A p.(Val18Asp) Missense - - Lee et al. (2009)

Exon 3 c.133C>T p.(Gln45X) Nonsense Enamel defects Flat Song et al. (2006)

Exon 5 c.3599_3634 del 36bp Del1160-1171 Frameshift - - Dong et al. (2005)

Exon 5 c.3715_3716 ins 18bp Ins1198-1199 Frameshift - - Dong et al. (2005)

(“-” refers to not mentioned in the corresponding literature).
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the most severe, characterized by complete absence of root canal and
root formation, with no evidence of caries in the surrounding region.
DD-Ib shows short roots with a “crescent-shaped” or “horseshoe-
shaped” pulp chamber, with radiolucencies visible around the root
apex. DD-Ic exhibits half the normal length of roots and distinct
“new-moon-shaped” pulp chambers. In DD-Id, the root length is
normal, and the pulp chamber and pulp calculi are visible (O Carroll
et al., 1991; Chen et al., 2019a).

Studies have proposed several potential mechanisms to be
responsible for DD-I. During tooth development, the epithelial
root sheath prematurely invaginated into the dental papilla,
resulting in abnormal root dentine formation. Additionally,
abnormal interactions between ameloblasts and odontoblasts
could lead to abnormal odontoblast function in DD-I patients
(Alhilou et al., 2018). Recently, three mutant genes-SMOC2,
VPS4B, and SSUH2-were found to be closely associated with DD-
I in three different families (Chen et al., 2019a) (Table 4).

SMOC2 belongs to the BM-40 family and is involved in regulating
cell-matrix interactions (Vannahme et al., 2003), particularly in bone
mineralization. A splicing mutation (c.84 + 1G>T) of SMOC2 was
detected in a family, in which the homozygous exhibited DD-I-like
phenotype with short roots, while the heterozygous showed normal
teeth. Knockdown of the smoc2 gene in zebrafish leads to abnormal
tooth development by regulating the expression of dlx2, bmp2, and pitx2
(Bloch-Zupan et al., 2011).

Vacuolar protein sorting 4B (VPS4B) is a versatile protein
widely expressed in pulp tissue. In vivo and in vitro studies
demonstrated that VPS4B regulated odontoblast differentiation
and root formation through the Wnt/β-catenin signaling pathway
(Yang Q. et al., 2016; Li et al., 2020). It is speculated that mutations of
VPS4B may affect the spatial distribution of DSPP and COL1,
inhibiting normal mineralization of dentine and cementum, and
ultimately leading to abnormal root development (Chen
et al., 2019b).

SSUH2 is a nuclear protein with an unclear function (Xiong
et al., 2017). Heterozygousmissense mutation (c.353C>A, p. P118Q)
of the SSUH2may result in protein dysfunction, leading to abnormal
dentine hyperplasia and a narrowed dental pulp chamber (Xiong
et al., 2017). Mechanically, SSUH2 might form a transcriptional
complex by binding upstream regulators associated with the bone
morphogenetic protein (BMP) or DSPP signaling pathway to act as a
chaperone protein in the nucleus, regulating the differentiation of
ameloblast and odontoblast (Xiong et al., 2017).

There is relatively limited literature on the pathogenesis of DD-I, and
the relationship between the three mentioned genes and DD-I is only
based on case studies. The mechanisms of these related genes in dentine
mineralization and tooth root formation still need further exploration.

Histologically, the morphology and color of the DD-I tooth
crown appeared normal. However, the roots were often short or
absent with calcified dentine filling in the root canal. The dentinal
tubules were sparse and narrow, containing spherical calcites.
Periapical lesions showed cyst-like alteration. In addition,
changes including “teardrop-shaped” lacunae near the cervical
enamel, rodless enamel, flat DEJ, thinner dentine and disordered
collagen fibers could be found in DD-I teeth (Devaraju et al., 2014;
Alhilou et al., 2018).

2.5 Dentine dysplasia type Ⅱ (DD-Ⅱ)

DSPP has been recognized as the pathogenic gene of DD-II.
Specifically, exon 2 encoding signal peptides and exon 5 encoding
DPP protein were considered the main mutation sites. Furthermore,
there was a genotype-phenotype correlation in codons encoding
DPP. For example, the frameshift mutations at the N-terminal were
related to DD-II, while mutations at C-terminal were more likely to
lead to DGI-II (Lee et al., 2019) (Table 5).

In DD-II patients, the tooth crown and root showed discrete
histological features. Specifically, the crown dentine appeared
normal, while a superficial layer of dense, amorphous tubular
dentine in the roots. Numerous pulp stones composed of
amorphous calcified masses can be observed in the pulp tissue.
As a consequence, the pulp chamber would gradually obliterate with
age (Perlea et al., 2018). The literature about DD-II is relatively few
since DD-II is a mild form of DD, whose clinical symptoms are mild,
making it difficult to attract the attention of the patients and dentists.

3 Management of hereditary
dentine disorders

Hereditary dentine disorders are genetic developmental
abnormalities of dental hard tissues that can lead to tooth
discoloration, excessive wear, looseness, and tooth loss. Reduced
chewing function and decreased occlusal height might perform
adverse effects on the development of the craniofacial skeleton
and muscles, and may even result in temporomandibular
disorder (TMD), potentially leading to malocclusion (Crothers,
1992). Besides, as mentioned earlier, DGI-I, as a typical oral
manifestation of OI, could provide clues for orthopedics,
pediatrics, and other disciplines to detect and intervene in
systemic diseases early. Therefore, early diagnosis, optimal
treatment, and follow-up are recommended to prevent
further damage.

TABLE 4 Pathogenic gene mutations associated with DD-I.

Gene Location cDNA Protein Mutation class Morphology of root References

SMOC2 Intron 1 c.84 + 1G>T Splice+1G>T Splice site Extremely short Bloch-Zupan et al. (2011)

SMOC2 Exon 1 c.24G>A p.Trp8Ter nonsense Short and blunt Ruan and Duan (2022)

VPS4B Intron 7 IVS7+46C>G Splice+46C>G Splice site Short, blunt and malformed Yang et al. (2016b)

SSUH2 Exon 2 c.353C>A p.(Pro118Gln) Missense Short, blunt and malformed Xiong et al. (2017)

Frontiers in Cell and Developmental Biology frontiersin.org09

Xue et al. 10.3389/fcell.2024.1474966

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2024.1474966


There is growing consensus that interdisciplinary teamwork is
essential for achieving optimal treatment. It is recommended that
the team includes at least one pediatric dentist, periodontist,
orthodontist, prosthodontist, oral surgeon, clinician and genetic
counselor. Treatment should be initiated early and carried out in
stages if necessary (Rousseau et al., 2018). The purpose of early
intervention and treatment goals is to prevent dental caries and
dentine wear, avoid premature tooth loss, restore the chewing
function and aesthetic, and maintain vertical occlusal distance
(Delgado et al., 2008), as well as identify and/or exclude
associated systemic syndromes. Currently, there are no specific
guidelines on when to initiate treatment, but considering the
adverse impacts on the teeth, early intervention is necessary to
prevent the escalation of complexity and risk. A case report has
shown that dental crown treatment was performed under general
anesthesia on a 20-month-old patient, effectively preventing severe
tooth wear and achieving favorable long-term outcomes (Sapir and
Shapira, 2001).

3.1 Tooth wear management

One of the main concerns for patients with DGI is tooth wear.
Due to developmental defects and low mineralization of dental hard
tissues, the enamel is easily peeled off, exposing fragile dentine and
causing varying degrees of tooth wear. Accordingly, dental
restorative treatment is essential to protect the remaining dental
tissues, restore chewing function and maintain bite height.
According to the tooth wear index classifications proposed by
Smith et al. (Smith and Knight, 1984), Grade I and Grade II
(enamel and dentine wear with an exposed area less than

2 mm̂2) can be restored using composite resin bonding to regain
tooth aesthetics and function (Yuan and Chen, 2023; Loomans and
Opdam, 2018). For Grade III and Grade IV wear in primary teeth
(exposed dentine area >2 mm̂2 or pulp exposure), it is
recommended to use stainless steel preformed crowns to prevent
further wear of the tooth crown (Crawford et al., 2007). If severe
wear occurs in primary teeth, overlay dentures can be considered for
restoration (Yuan and Chen, 2023; Chen et al., 2019a). In the mixed-
dentition stage, close monitoring of the eruption of permanent teeth
is necessary. Stainless steel crowns and composite materials, such as
strip crowns, indirect resin crowns, or polycarbonate crowns can be
used to cover permanent molars and incisors, respectively (Shi et al.,
2020). For permanent teeth with Grade III and Grade IV wear
requiring occlusal reconstruction to restore vertical height, options
such as full crowns or onlays can be considered. In cases of severe
tooth wear, the use of overlay or implant-supported prostheses for
restoration may be considered (Syriac et al., 2017).

3.2 Tooth discoloration management

Teeth affected by DGI exhibit discoloration ranging from pale
yellow, brown to bluish brown, especially in the anterior area, which
greatly impacts patients’ smile aesthetics and mental health.
Therefore, the restorations of anterior tooth should consider both
aesthetics and function. For mild wear and discoloration of teeth,
veneer restorations can achieve satisfactory results. However, it
should be noted that there is a risk of enamel delamination due
to decreased mechanical bonding strength between enamel and
dentine. When necessary, full crown restorations can be
considered (Shi et al., 2020). Digital technology is beneficial for

TABLE 5 Mutations in the coding sequence of DSPP associated with DD-Ⅱ.

Location cDNA Protein Mutation class References

Exon 2 c.16T>G p.(Tyr6Asp) Missense Rajpar et al. (2002)

Intron 2 c.52-6T>G(IVS2-6T>G) p.(Val18_Gln45del) Splice site Lee et al. (2008)

Exon 5 c.1686delT p.(Asp562GlufsX752) Frameshift Nieminen et al. (2011)

Exon 5 c.1830delC p.(Ser610ArgfsX704) Frameshift Nieminen et al. (2011)

Exon 5 c.1870_1873delTCAG p.(Ser624TyrfsX687) Frameshift McKnight et al. (2008a)

Exon 5 c.1874_1877delACAG p.(Asp625AlafsX687) Frameshift Li et al. (2017)

Exon 5 c.1918_1921delTCAG p.(Ser640TyrfsX671) Frameshift McKnight et al. (2008a)

Exon 5 c.1918-1921delTCAG p.(Ser640TyrfsX673) Frameshift Nieminen et al. (2011)

Exon 5 c.1922-1925delACAG p.(Asp641AlafsX672) Frameshift Nieminen et al. (2011)

Exon 5 c.2040delC p.(Ser680fsX1313) Frameshift Song et al. (2008)

Exon 5 c.2063delA p(Asp688ValfsX626) Frameshift Nieminen et al. (2011)

Exon 5 c.2134delA p.(Ser712AlafsX602) Frameshift Lee et al. (2019)

Exon 5 c.3135delC p.(Ser1045ArgfsX269) Frameshift Yang et al. (2016a)

Exon 5 c.3141delC p.(Ser1047fsX223) Frameshift McKnight et al. (2008b)

Exon 5 c.3179delG p.(Ser1060ThrfsX254) Frameshift Lee et al. (2019)

Exon 5 c.3480_3481insCTGCT p.(Asp1161LeufsX155) Frameshift Lee et al. (2019)
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achieving aesthetic restorations in the anterior region. It allows
precise design of the restoration’s size, shape, and coordination with
surrounding gingival margin. For patients with clinically short
crowns or poor gingival margin contours, crown lengthening
surgery is also crucial for achieving aesthetic outcomes (Kalsi
et al., 2020).

3.3 Dental pulp and periapical management

When severe tooth wear leads to pulp exposure and
inflammation of the pulp and periapical tissues, root canal
treatment becomes necessary to alleviate pain, eliminate
inflammation and prolong teeth lifespan. However, before
carrying out dental treatment, detailed and comprehensive
clinical and radiological examinations must be conducted to
evaluate the morphology of the pulp cavity, length of root and
status of periapical tissues. The narrow or even absent pulp chamber
and root canal, and the presence of pulp stones undoubtedly increase
the difficulty of clinical procedures. In such cases, the use of cone-
beam computed tomography (CBCT) and microscopy techniques
can help improve the success rate (Buchanan et al., 2021).
Additionally, when the root canal length is sufficient, apical
surgery and retrograde filling have been reported as treatment
options (Ravanshad and Khayat, 2006).

3.4 Dental restoration and implant
management

When encountered with severe dental inflammation, heavy
tooth defects and excessive tooth mobility (due to absent or
extremely short roots appearing in certain subtypes of DGI and
DD), leading to premature tooth loss or poor dental prognosis,
extraction followed by restorative or implant treatment is the best
solution. During the growth and development period, the best
choice is dentures to stimulate and maintain the alveolar bone
mass at the site of missing teeth (Barron et al., 2008). As the
jawbone develops, it is recommended to regularly consult with
the dentist to adjust the denture, making it adapting to the
dental arch at any time. After the growth and development are
completed, restorative treatment and dental implantation can be
chosen. A comprehensive clinical and radiological examination is
necessary to evaluate the bone quality and quantity in the area of
missing teeth. When the periodontal tissues are in good condition
and interdental distance is sufficient, dental implantation could be a
popular therapy. It should be noted that the implantation treatment
of DGI-I patients with moderate to severe OI should be cautious, as
they may face a higher failure rate due to poor bone remodeling
ability (Rousseau et al., 2018).

3.5 Malocclusion management

Studies have found that individuals with DGI-I are more prone
to Class III malocclusion, suggesting the need for early orthodontic
intervention (Kunkel et al., 2019). Although maxillary bone
development is compromised in individuals with DGI, especially

those with type III and type IV OI, traditional methods such as
anterior traction and rapid maxillary expansion may not be effective
due to limited growth potential of sutures and high bone fragility. In
cases of severe skeletal malocclusion, orthognathic surgery and
distraction osteogenesis may be considered when necessary
(Kunkel et al., 2019).

In addition, orthodontic treatment for DD-I patients is
challenging, as short roots make teeth difficult to move under
orthodontic forces, and inappropriate orthodontic forces may
lead to further absorption of the tooth roots. Therefore,
comprehensive examination and sufficient doctor-patient
communication are necessary before starting orthodontic
treatment. Attention should be paid to controlling orthodontic
force to prevent adverse consequences from occurring
(Papagiannis et al., 2021).

3.6 General management and genetic
counseling

Notablely, hereditary dentine disorders could be an
independent phenotype or a part of systemic disorders. In
addition to proverbial OI, it has been reported that systemic
diseases including Schimke immuno-osseous dysplasia,
odontochondrodysplasia, hypophosphatemic rickets and Ehlers-
Danlos syndrome are also accompanied by clinical phenotypes of
noticeable dentine defects (Yuan and Chen, 2023; Su et al., 2023).
Abnormal dentine phenotype may reflect the health status of teeth,
skeletal system, and even the entire body. Therefore, clinical
physicians and genetic counselors must be alert to the
emergence of potential complex diseases or systemic disorders.
For abnormalities in the skeletal system, clinician need to adopt
appropriate bone management strategies as early as possible, such
as professional physical therapy, surgical corrective surgery,
rehabilitation training, etc., to maximize the preservation of
patients’ independent living abilities and improve their life
qualities (Jovanovic et al., 2022). Genetic counseling is also an
important part, using molecular genetic diagnostic methods to
make the best decisions based on the identified pathogenic genes
behind these diseases.

4 Conclusion

So far, the etiology, clinical features, and histopathological
characteristics of hereditary dentine diseases have not been fully
elucidated. Techniques such as atomic force microscopy and
Wallace indentation provides convenience for exploring the
mechanical properties and histological changes of affected teeth.
As more and more cases are discovered, the genetic spectrum is
gradually being delineated. Further research on the relationship
between genotypes and phenotypes provides clues for genetic
counseling. Due to the heterogeneity of tooth damage types and
severity, treatment methods also exhibits personalized and diverse
characteristics. Early detection, diagnosis, and multi-disciplinary
treatment can help develop optimal therapy plans for patients,
maximizing facial aesthetics and oral function, while reducing
social and psychological burdens.
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