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Association of cardiovascular-
kidney-metabolic index with
all-cause mortality during
hospitalization in critically ill
patients: a retrospective cohort
study from MIMIC IV2.2
Xiaolong Qu1†, Yuping Liu2†, Peng Nie1* and Lei Huang3*
1Department of Cardiovascular Medicine, Renji Hospital, Shanghai Jiaotong University School of
Medicine, Shanghai, China, 2Department of Nutrition, Gongli Hospital of Shanghai Pudong New Area,
Shanghai, China, 3Department of Cardiology, Renji Hospital Ningbo Branch, Shanghai Jiao Tong
University School of Medicine, Ningbo, China
Background: The cardiovascular-kidney-metabolic index (CKMI), a novel
functional indicator proposed in this study, aims to accurately reflect the
functional status of the heart, kidneys, and metabolism. However, its ability to
predict mortality risk in critically ill patients during their stay in the intensive
care unit (ICU) remains uncertain. Therefore, this study aims to validate the
correlation between the CKMI during hospitalization and all-cause mortality.
Methods: The study utilized the Medical Information Mart for Intensive Care IV
2.2 (MIMIC-IV) dataset for a retrospective analysis of cohorts. The cohorts
were divided into quartiles based on CKMI index levels. The primary endpoint
was all-cause mortality during ICU and hospital stay, while secondary
endpoints included the duration of ICU stay and overall hospitalization period.
We established Cox proportional hazards models and employed multivariable
Cox regression analysis and restricted cubic spline (RCS) regression analysis to
explore the relationship between CKMI index and all-cause mortality during
hospitalization in critically ill patients. Additionally, subgroup analyses were
conducted based on different subgroups.
Results: The study enrolled 1,576 patients (male 60.79%). In-patient and ICU
mortality was 11.55% and 6.73%. Multivariate COX regression analysis
demonstrated a significant negative correlation between CKMI index and the
risk of hospital death [HR, 0.26 (95% CI 0.07–0.93), P= 0.038] and ICU
mortality [HR, 0.13 (95% CI 0.03–0.67), P=0.014].RCS regression model
revealed that in-hospital mortality (P-value =0.015, P-Nonlinear =0.459) and
ICU mortality (P-value =0.029, P-Nonlinear =0.432) increased linearly with
increasing CKMI index. Subgroup analysis confirmed consistent effect size and
direction across different subgroups, ensuring stable results.
Conclusion: Our research findings suggest that a higher CKMI index is
associated with a significant reduction in both in-hospital and ICU mortality
among critically ill patients. Therefore, CKMI index emerges as a highly
valuable prognostic indicator for predicting the risk of in-hospital death in this
population. However, to strengthen the validity of these results, further
validation through larger-scale prospective studies is imperative.
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Introduction

The intricate interplay and significant impact of cardiovascular,

renal, and metabolic functions on patient outcomes make them

pivotal in critically ill individuals (1–3). Throughout the entire

duration of Intensive Care Unit (ICU) stay, a comprehensive

evaluation of various biomarkers and indices is regularly

conducted to ascertain prognosis and guide treatment decisions.

Conventional markers such as left ventricular ejection fraction

(LVEF), estimated glomerular filtration rate (eGFR), and

triglyceride-glucose index (TyG) have been linked to adverse

outcomes in critically ill patients (4–6).

LVEF is a critical indicator of cardiac function, reflecting the

proportion of blood expelled by the left ventricle with each

heartbeat. As an established marker of cardiovascular health, it has

demonstrated associations with mortality in various patient

populations (7). The eGFR is considered to be a more precise

indicator of renal function than the creatinine level alone. In

patients with chronic kidney disease, a decreased eGFR is linked to

adverse cardiovascular outcomes and increased mortality (8). The

TyG, which represents the degree of insulin resistance, has been

associated with elevated cardiovascular risk and increased

mortality in individuals diagnosed with metabolic syndrome (9, 10).

In our study, we aimed to integrate three key indicators,

namely LVEF, eGFR, and TyG, into a novel comprehensive index

known as the Cardiovascular- Kidney- Metabolic index (CKMI).

This comprehensive index is specifically designed for a thorough

evaluation of cardiovascular, kidney, and metabolic functions in

critically ill patients, as well as assessing the prognostic value of

CKMI in predicting overall mortality during ICU hospitalization.

To the best of our knowledge, this pioneering research represents

the first attempt to amalgamate these three indicators into a

unified index and evaluate its prognostic utility in critically ill

patients. The CKMI is not simply a simplistic scoring system for

physiological indicators, but rather an all-encompassing and

systematic assessment tool for evaluating physiological stress and

multi-organ function. It integrates crucial health indicators from

the cardiovascular, renal, and metabolic systems. This

interdisciplinary approach surpasses conventional scoring systems

like APACHE II and SOFA (11, 12), which typically focus solely

on acute physiological changes and organ failure while neglecting

to fully consider the significant impact of cardiac, renal, and

metabolic systems on patients’ overall physiological state. By

comprehensively considering multiple key physiological

parameters, the CKMI can accurately identify high-risk patients

and provide robust support for clinical decision-making. In

comparison to traditional scoring systems, the CKMI exhibits

substantial improvements in predictive accuracy and clinical

applicability, thereby offering a reliable scientific foundation for

patient treatment and prognosis management.

The primary objective of this retrospective cohort study is to

investigate the association between serum creatine kinase levels

during hospitalization and overall mortality in critically ill

patients. Data analysis was conducted using the Medical

Information Mart for Intensive Care IV 2.2 (MIMIC-IV)

database. By utilizing this innovative biomarker to identify high-
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risk patients, clinicians may be able to personalize treatment

strategies more effectively and enhance the prognosis of critically

ill individuals.
Methods

Data source

The present study is a retrospective observational investigation,

utilizing data obtained from the online international database

MIMC-IV (version 2.2) (https://mimic.mit.edu). MIMC-IV

represents a longitudinal single-center repository established by

the Computational Physiology Laboratory at Massachusetts

Institute of Technology(MIT), Beth Israel Deaconess Medical

Center at Harvard Medical School(BIDMC), and Philips Medical

(13). This comprehensive database encompasses information

pertaining to patients admitted to BIDMC between 2008 and

2019.This dataset has undergone examination and certification to

grant author (X.Q.) access (Record ID 62252237), and it is

responsible for data extraction. The project has received approval

from the Institutional Review Board of MIT and BIDMC. As

patient health information remains anonymous in the database,

individual consent is not required.
Population selection

The inclusion criteria for this study were as follows: (1) 18

years aged 80 years; (2) admission to the ICU; (3) availability of

CKMI index calculation for patients; (4) ICU stay exceeding

24 h. In total, 1,576 patients were enrolled in the study and

divided into four groups based on the CKMI index quartile.

Please refer to Figure 1 for a detailed explanation of the

research methodology.
Data extraction

The baseline patient characteristics were obtained utilizing

Structured Query Language (SQL) along with PostgreSQL (version

14.2). These attributes included patient demographic details

comprising of age, gender, body mass index (BMI) as well as

ethnicity. Additionally, vital signs like heart rate (HR), systolic

blood pressure (SBP), diastolic blood pressure (DBP), mean arterial

pressure (MAP), arterial oxygen saturation (SpO2), and body

temperature (T) were recorded. The severity upon admission was

evaluated based on the Sequential Organ Failure Assessment

(SOFA) score, Acute Physiological Score III (APS III), systemic

Inflammatory response syndrome (SIRS) score, Simplified Acute

Physiological Score II (SAPSII), Oxford Acute Disease Severity

Score (OASIS score), and Glasgow Coma Scale (GCS score).

Intravenous vasoactive agents, including dobutamine, dopamine,

and norepinephrine, are utilized. Laboratory test results encompass

red blood cell (RBC), white blood cell (WBC), platelet, hemoglobin

level, albumin concentration, serum creatinine (Scr) level as
frontiersin.org
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FIGURE 1

Flow chart of study participants.
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well as sodium, potassium and calcium ion concentrations.

Additionally included are fasting blood glucose (FBG) value;

glycated hemoglobin (HbA1c) level; anion gap; triglyceride (TG);

total cholesterol (TC); high-density lipoprotein cholesterol

(HDL-C); low-density lipoprotein cholesterol (LDL-C); alanine

aminotransferase (ALT), and aspartate aminotransferase (AST).

Cardiac ultrasonography findings represent the mean values of left

ventricular ejection fraction (LVEF) during intensive care unit

stay.Additionally, the following comorbidities were extracted from

the MIMIC-IV database: coronary heart disease (CHD), congestive

heart failure (CHF), myocardial infarction (MI), hypertension,

diabetes, hyperlipidemia, chronic kidney disease (CKD), acute

kidney injury (AKI), chronic obstructive pulmonary disease

(COPD), respiratory failure (RF), stroke, liver disease (LD),

pneumonia, sepsis and cancer.

The CKMI index is calculated using the following formula:

CKMI index = In [LVEF(%) × eGFR(ml/min/1.732)/2]/

TyG Index.

The TyG index was calculated by employing the following

formula, which takes into account levels of TG and FBG (14):

TyG Index = ln [TG (mg/dl) × FBG (mg/dl)/2]
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Notably, the CKD-EPl equation for estimating GFR, developed

in 2021 (in ml/min/1.73 m2), does not incorporate a race

coefficient (15): Female and SCr ≤0.7 mg/dl: 143 × (SCr/

0.7)−0.241 × 0.9938age in years Female and SCr >0.7 mg/dl: 143 ×

(SCr/0.7)−1.200 × 0.9938age in years Male and SCr ≤0.9 mg/dl: 142 ×

(SCr/0.9)−0.302 × 0.9938age in years Male and SCr >0.9 mg/dl: 142 ×

(SCr/0.9)−1.200 × 0.9938age in years
Primary outcomes and secondary
outcomes

The primary outcomes measure of this study was the occurrence

of all-cause mortality during hospitalization, encompassing both the

ICU and general ward settings. Secondary outcomes included the

duration of ICU stay and overall hospitalization period.
Statistical analysis

To provide a comprehensive and easily understandable

representation of data distribution, we conducted an extensive
frontiersin.org
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review of relevant literature and categorized CKMI into four groups

based on quartiles (16). Continuous variables were reported as

mean ± standard deviation (SD) or median quartile range (IQR),

while categorical variables were presented as total and frequency

(%). Pairwise comparison of continuous variables was conducted

using Student’s t-test, and multi-group comparison was performed

using one-way ANOVA. Chi-square test was applied for pairwise

comparison of categorical variables. After screening, more than

10% of variables with missing values are excluded from the

analysis. For variables with missing values less than 10%, we

employ multiple interpolation techniques to process and impute the

missing data using the most appropriate dataset. Additionally, for

variables exhibiting outliers, we apply a screening method based on

the 1st and 99th percentile cutoff points. The Kaplan-Meier (K-M)

curve and Cox proportional risk model were employed to assess

the association between the CKMI index and the risk of in-hospital

mortality. Only those variables exhibiting a significance level of

p < 0.05 among the CKMI quartile groups were included in the

multivariate model, considering baseline variables. Furthermore,

multicollinearity was assessed using the variance inflation factor

(VIF) to ensure independence of selected variables, with a proposed

VIF value of 5 adopted based on previous research experience (17).

Based on clinical expertise and relevant literature, we meticulously

selected covariates that are closely associated with the research

outcomes and further identified statistically significant covariates

through univariate Cox regression analysis. Subsequently, three Cox

proportional hazards models were constructed using the

aforementioned approach: Model A, which included no

adjustments; Model B, adjusted for age and BMI; and Model C,
FIGURE 2

Histogram of CKMI.
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which further incorporated comorbidities such as CHD, CHF,

hypertension, diabetes, stroke, sepsis, along with laboratory

parameters including WBC, RBC, hemoglobin, albumin, HbA1c,

and ALT in addition to the adjustments made in Model B. The

association between the CKMI index and in-hospital mortality

across various subgroups was examined through subgroup analysis.

Additionally, the dose-response relationship between the CKMI

index and mortality was investigated using restricted cubic splines

(RCSs). Finally, receiver operating characteristic (ROC) curve

analysis was performed to evaluate predictive ability alongside

sensitivity and specificity. In addition, the effectiveness and

robustness of the prediction model were evaluated through stepwise

regression analysis, cross-validation analysis, as well as assessment

of parameter correlation and interaction.
Results

A total of 1,576 patients were included in the study. The mean

age of enrolled patients was 60.00 ± 13.45 years, with a majority

being males (958; 60.79%). The mean CKMI index value for all

participants was determined to be 0.81 ± 0.12 (Figure 2). In-

hospital and ICU mortality rates were observed at rates of

11.55% and 6.73%, respectively.
Baseline characteristics

The baseline characteristics of the patients enrolled in this

study are presented in Table 1. Patients were stratified into
frontiersin.org
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TABLE 1 Baseline characteristics of the critically ill patients stratifed by the CKMI index quartiles.

Characteristic CKMI p-value

Q1 [0.29,0.74],
N= 394

Q2 [0.74,0.82],
N= 394

Q3 [0.82,0.89],
N = 394

Q4 [0.89,1.85],
N = 394

Demographic
Age, years, n (%) <0.001

<60 142 (36.0%) 171 (43.4%) 171 (43.4%) 204 (51.8%)

≥60 252 (64.0%) 223 (56.6%) 223 (56.6%) 190 (48.2%)

Gender, n (%) 0.712

Female 157 (39.8%) 145 (36.8%) 160 (40.6%) 156 (39.6%)

Male 237 (60.2%) 249 (63.2%) 234 (59.4%) 238 (60.4%)

Ethnicity, n (%) 0.393

White 230 (58.4%) 256 (65.0%) 236 (59.9%) 259 (65.7%)

Black 45 (11.4%) 30 (7.6%) 38 (9.6%) 28 (7.1%)

Asian 8 (2.0%) 7 (1.8%) 10 (2.5%) 13 (3.3%)

Hispanic/Latino 13 (3.3%) 15 (3.8%) 17 (4.3%) 12 (3.0%)

Other 98 (24.9%) 86 (21.8%) 93 (23.6%) 82 (20.8%)

Weight, kg, median [IQR] 91 (75, 107) 89 (74, 107) 81 (71, 95) 80 (67, 95) <0.001

Height, cm, median [IQR] 170 (163, 178) 173 (163, 178) 171 (163, 176) 172 (164, 177) 0.431

BMI, kg/cm2, n (%) <0.001

<28 134 (34.0%) 148 (37.6%) 196 (49.7%) 213 (54.1%)

≥28 260 (66.0%) 246 (62.4%) 198 (50.3%) 181 (45.9%)

Vital signs
HR, bpm, n (%) <0.001

<80 98 (24.9%) 111 (28.2%) 149 (37.8%) 183 (46.4%)

80–100 140 (35.5%) 157 (39.8%) 143 (36.3%) 134 (34.0%)

≥100 156 (39.6%) 126 (32.0%) 102 (25.9%) 77 (19.5%)

SBP, mmHg, median [IQR] 121 (104, 140) 125 (110, 144) 130 (109, 147) 130 (112, 149) <0.001

DBP, mmHg, median [IQR] 67 (55, 80) 72 (60, 86) 72 (62, 84) 73 (63, 84) <0.001

MBP, mmHg, median [IQR] 79 (68, 93) 85 (73, 98) 86 (75, 100) 87 (75, 99) <0.001

SpO2, %, median [IQR] 97.0 (94.0, 99.0) 97.0 (94.3, 100.0) 98.0 (95.0, 100.0) 98.0 (95.0, 100.0) 0.088

Severity scores
SOFA score, median [IQR] 7.0 (4.0, 11.0) 4.0 (2.0, 8.0) 3.0 (1.0, 6.0) 2.0 (1.0, 5.0) <0.001

APSIII score, median [IQR] 59 (44, 77) 43 (32, 59) 36 (27, 50) 33 (24, 45) <0.001

SIRS score, median [IQR] 3.00 (2.00, 4.00) 3.00 (2.00, 3.00) 3.00 (2.00, 3.00) 2.00 (2.00, 3.00) <0.001

SAPSII score, median [IQR] 43 (33, 54) 32 (25, 43) 29 (22, 38) 27 (20, 35) <0.001

OASIS score, median [IQR] 35 (29, 43) 31 (26, 37) 30 (24, 37) 28 (23, 34) <0.001

GCS score, median [IQR] 15.00 (14.00, 15.00) 15.00 (14.00, 15.00) 15.00 (14.00, 15.00) 15.00 (13.00, 15.00) 0.068

Comorbidities
CHD, n (%) 0.026

No 342 (86.8%) 350 (88.8%) 361 (91.6%) 365 (92.6%)

Yes 52 (13.2%) 44 (11.2%) 33 (8.4%) 29 (7.4%)

CHF, n (%) <0.001

No 215 (54.6%) 267 (67.8%) 285 (72.3%) 345 (87.6%)

Yes 179 (45.4%) 127 (32.2%) 109 (27.7%) 49 (12.4%)

MI, n (%) <0.001

No 314 (79.7%) 312 (79.2%) 329 (83.5%) 352 (89.3%)

Yes 80 (20.3%) 82 (20.8%) 65 (16.5%) 42 (10.7%)

Hypertension, n (%) <0.001

No 276 (70.1%) 207 (52.5%) 187 (47.5%) 211 (53.6%)

Yes 118 (29.9%) 187 (47.5%) 207 (52.5%) 183 (46.4%)

Diabetes, n (%) <0.001

No 203 (51.5%) 256 (65.0%) 302 (76.6%) 352 (89.3%)

Yes 191 (48.5%) 138 (35.0%) 92 (23.4%) 42 (10.7%)

Hyperlipemia, n (%) 0.601

No 256 (65.0%) 253 (64.2%) 259 (65.7%) 270 (68.5%)

Yes 138 (35.0%) 141 (35.8%) 135 (34.3%) 124 (31.5%)

CKD, n (%) <0.001

No 269 (68.3%) 341 (86.5%) 367 (93.1%) 384 (97.5%)

Yes 125 (31.7%) 53 (13.5%) 27 (6.9%) 10 (2.5%)

(Continued)
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TABLE 1 Continued

Characteristic CKMI p-value

Q1 [0.29,0.74],
N= 394

Q2 [0.74,0.82],
N= 394

Q3 [0.82,0.89],
N = 394

Q4 [0.89,1.85],
N = 394

AKI, n (%) <0.001

No 110 (27.9%) 206 (52.3%) 283 (71.8%) 339 (86.0%)

Yes 284 (72.1%) 188 (47.7%) 111 (28.2%) 55 (14.0%)

COPD, n (%) 0.235

No 363 (92.1%) 360 (91.4%) 373 (94.7%) 370 (93.9%)

Yes 31 (7.9%) 34 (8.6%) 21 (5.3%) 24 (6.1%)

RF, n (%) <0.001

No 166 (42.1%) 224 (56.9%) 249 (63.2%) 284 (72.1%)

Yes 228 (57.9%) 170 (43.1%) 145 (36.8%) 110 (27.9%)

Stroke, n (%) 0.016

No 355 (90.1%) 354 (89.8%) 346 (87.8%) 329 (83.5%)

Yes 39 (9.9%) 40 (10.2%) 48 (12.2%) 65 (16.5%)

HD, n (%) 0.990

No 355 (90.1%) 357 (90.6%) 357 (90.6%) 355 (90.1%)

Yes 39 (9.9%) 37 (9.4%) 37 (9.4%) 39 (9.9%)

Pneumonia, n (%) <0.001

No 225 (57.1%) 237 (60.2%) 255 (64.7%) 285 (72.3%)

Yes 169 (42.9%) 157 (39.8%) 139 (35.3%) 109 (27.7%)

Sepsis, n (%) <0.001

No 249 (63.2%) 315 (79.9%) 322 (81.7%) 345 (87.6%)

Yes 145 (36.8%) 79 (20.1%) 72 (18.3%) 49 (12.4%)

Cancer, n (%) 0.458

No 361 (91.6%) 348 (88.3%) 352 (89.3%) 356 (90.4%)

Yes 33 (8.4%) 46 (11.7%) 42 (10.7%) 38 (9.6%)

Laboratory tests
WBC, K/ul, median [IQR] 13 (9, 19) 12 (8, 16) 11 (8, 14) 10 (7, 13) <0.001

RBC, m/ul, median [IQR] 3.56 (3.05, 4.21) 3.90 (3.30, 4.44) 4.04 (3.43, 4.50) 4.03 (3.48, 4.50) <0.001

Platelet, K/ul, median [IQR] 198 (136, 261) 204 (154, 266) 209 (158, 265) 207 (159, 266) 0.067

Hemoglobin, g/dl, median [IQR] 10.50 (9.10, 12.70) 11.70 (9.80, 13.30) 12.00 (10.20, 13.60) 12.20 (10.50, 13.60) <0.001

Albumin, g/dl, median [IQR] 3.00 (2.60, 3.50) 3.20 (2.70, 3.61) 3.36 (2.82, 3.78) 3.50 (3.00, 3.87) <0.001

Sodium, mEq/L, median [IQR] 138.0 (134.3, 140.0) 138.0 (136.0, 141.0) 139.0 (136.0, 142.0) 139.0 (136.0, 141.0) <0.001

Potassium, mEq/L, median [IQR] 4.40 (3.90, 4.90) 4.10 (3.70, 4.50) 4.00 (3.70, 4.30) 3.90 (3.60, 4.20) <0.001

Calcium, mg/dl, median [IQR] 8.20 (7.60, 8.80) 8.30 (7.73, 8.90) 8.50 (7.90, 8.90) 8.50 (8.03, 9.00) <0.001

Glucose, mg/dl, median [IQR] 172 (121, 244) 144 (116, 193) 121 (103, 147) 106 (93, 126) <0.001

HbA1c,%,median [IQR] 6.50 (5.90, 7.63) 6.10 (5.79, 6.98) 5.86 (5.66, 6.20) 5.70 (5.50, 5.90) <0.001

Aniongap, mEq/L, median [IQR] 18.0 (15.0, 21.0) 15.0 (13.0, 17.0) 14.0 (12.0, 16.0) 14.0 (12.0, 15.8) <0.001

TG, mg/dl, median [IQR] 207 (131, 343) 162 (119, 230) 129 (100, 175) 84 (65, 109) <0.001

TC, mg/dl, median [IQR] 128 (110, 158) 140 (119, 174) 146 (121, 186) 143 (123, 175) <0.001

HDL-C, mg/dl, median [IQR] 31 (24, 38) 35 (29, 41) 37 (30, 44) 43 (35, 54) <0.001

LDL-C, mg/dl, median [IQR] 67 (55, 84) 72 (59, 102) 77 (60, 112) 77 (60, 103) <0.001

LT, IU/L, median [IQR] 43 (22, 102) 38 (21, 94) 34 (21, 72) 31 (18, 65) <0.001

AST, IU/L, median [IQR] 70 (32, 186) 57 (28, 159) 47 (27, 111) 41 (24, 92) <0.001

Creatinine, mg/dl, median [IQR] 2.00 (1.30, 3.60) 1.00 (0.80, 1.40) 0.90 (0.70, 1.10) 0.70 (0.60, 0.90) <0.001

eGFR, ml/min/1.732, n (%) <0.001

Stage5 <15 282 (71.6%) 82 (20.8%) 27 (6.9%) 9 (2.3%)

Stage4 15–30 94 (23.9%) 205 (52.0%) 209 (53.0%) 136 (34.5%)

Stage3 30–60 18 (4.6%) 105 (26.6%) 157 (39.8%) 243 (61.7%)

Stage2 60–90 0 (0.0%) 2 (0.5%) 1 (0.3%) 5 (1.3%)

Stage1 ≥90 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.3%)

LVEF, %, n (%) <0.001

<50 158 (40.1%) 103 (26.1%) 71 (18.0%) 36 (9.1%)

≥50 236 (59.9%) 291 (73.9%) 323 (82.0%) 358 (90.9%)

Treatment measures
Ventilation, n (%) <0.001

No 63 (16.0%) 69 (17.5%) 88 (22.3%) 117 (29.7%)

Yes 331 (84.0%) 325 (82.5%) 306 (77.7%) 277 (70.3%)

(Continued)
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TABLE 1 Continued

Characteristic CKMI p-value

Q1 [0.29,0.74],
N= 394

Q2 [0.74,0.82],
N= 394

Q3 [0.82,0.89],
N = 394

Q4 [0.89,1.85],
N = 394

CRRT, n (%) <0.001

No 294 (74.6%) 365 (92.6%) 379 (96.2%) 388 (98.5%)

Yes 100 (25.4%) 29 (7.4%) 15 (3.8%) 6 (1.5%)

Dobutamine, n (%) <0.001

No 355 (90.1%) 383 (97.2%) 387 (98.2%) 393 (99.7%)

Yes 39 (9.9%) 11 (2.8%) 7 (1.8%) 1 (0.3%)

Dopamine, n (%) <0.001

No 358 (90.9%) 373 (94.7%) 378 (95.9%) 382 (97.0%)

Yes 36 (9.1%) 21 (5.3%) 16 (4.1%) 12 (3.0%)

Norepinephrine, n (%) <0.001

No 200 (50.8%) 275 (69.8%) 290 (73.6%) 339 (86.0%)

Yes 194 (49.2%) 119 (30.2%) 104 (26.4%) 55 (14.0%)

Events
LOS Hospital, days, median [IQR] 17 (8, 28) 12 (6, 26) 10 (4, 21) 9 (5, 20) <0.001

LOS ICU, days, median [IQR] 7 (3, 13) 4 (2, 10) 3 (1, 9) 3 (2, 5) <0.001

Hospital mortality, n (%) <0.001

No 317 (80.5%) 348 (88.3%) 360 (91.4%) 369 (93.7%)

Yes 77 (19.5%) 46 (11.7%) 34 (8.6%) 25 (6.3%)

ICU mortality, n (%) <0.001

No 344 (87.3%) 366 (92.9%) 380 (96.4%) 380 (96.4%)

Yes 50 (12.7%) 28 (7.1%) 14 (3.6%) 14 (3.6%)

CKMI, cardiovascular-kidney-metabolic index; BMI, body mass index; HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; SOFA, sequential

organ failure assessment; APSIII, acute physiology score III; SIRS, systemic infammatory response syndrome; SAPSII, simplifed acute physiological score II; OASIS, oxford acute severity of
illness score; GCS, Glasgow coma scale; CHD, Coronary Heart Disease; CHF, congestive heart failure; MI, myocardial infarction; CKD, chronic renal failure; AKI, acute kidney injury; COPD,

chronic obstructive pulmonary disease; RF, respiratory failure; HD, hepatic disease; WBC, white blood cell; RBC, red blood cell; HbA1c, hemoglobin A1c; TG, triglyceride; TC, total cholesterol;

HDL, high density lipoprotein; LDL, low density lipoprotein; ALT, alanine aminotransferase; AST, aspartic transaminase; eGFR, estimated glomerular filtration rate; CRRT, continuous renal

replacement therapy; LOS, length of stay; ICU, Intensive Care Unit.
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quartiles based on their admission CKMI index(Q1: 0.29–0.74; Q2:

0.74–0.82; Q3: 0.82–0.89; Q4: 0.89–1.85), with mean CKMI levels

for each group being 0.65 ± 0.07, 0.78 ± 0.02, 0.85 ± 0.02, and

0.94 ± 0.06, respectively. Compared to the high-value group,

patients with a lower CKMI index generally exhibit advanced age

and higher BMI. In terms of vital signs upon admission, they

present with an elevated heart rate, decreased blood pressure,

and reduced SpO2 levels. The severity of disease at admission is

also heightened, accompanied by an increased incidence of

complications such as CHD, CHF, MI, diabetes, CKD, AKI, RF,

pneumonia, sepsis, etc. Furthermore, there are significant

elevations in WBC, serum potassium, Serum creatinine

concentration, and FBG level; HbA1c content and anion gap are

also notably increased. TC levels and ALT/AST enzyme activities

are all elevated. Mechanical ventilation demand and CRRT

treatment requirement escalate while rescue drug application

frequency rises accordingly. However, these patients demonstrate

a decreasing trend in the incidence of hypertension and stroke

accidents. Additionally noted trends include decreased RBC,

platelet, hemoglobin as well as albumin content reduction.

Simultaneously observed are lower serum sodium concentration

and serum calcium level along with diminished TC levels

including HDL-C and LDL-C, finally yet importantly worth

mentioning is the decrease in eGFR and LVEF. Moreover, with

an increase in the CKMI index, there is a gradual decrease
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observed in the duration of ICU stay (7 days vs. 4 days vs. 3

days vs. 3 days, P < 0.001), length of hospitalization (17 days vs.

12 days vs. 10 days vs. 9 days, P < 0.001), all-cause ICU mortality

(12.7% vs. 7.1% vs. 3.6% vs. 3.6%, P < 0.001) and in-hospital

mortality (19.5% vs. 11.7% vs. 8.6% vs. 6.3%, p < 0.001).
Primary outcomes

In this study, we constructed three Cox proportional hazards

models to investigate the association between the CKMI index

and in-hospital mortality as well as ICU mortality. The results

demonstrated significant negative correlations between the

continuous CKMI index and both in-hospital mortality [Model

A: HR, 0.25 [95% CI 0.08–0.77], P = 0.016; Model B: HR, 0.25

[95% CI 0.08–0.76], P = 0.015; Model C: HR, 0.26 [95% CI 0.07–

0.93], P = 0.038] and ICU mortality [Model A: HR, 0.14 [95% CI

0.03–0.59], P = 0.008; Model B: HR, 0.15 [95% CI 0.03–0.62],

P = 0.009; Model C: HR, 0.13 [95% CI 0.03–0.67], P = 0.014]

across all three models, unadjusted Model A, partially adjusted

Model B, and fully adjusted Model C. Notably, in model C

where adjustments were made for variables related to population

characteristics and confounding factors, each one-standard-

deviation increase in CKMI led to a remarkable 74% reduction

in in-hospital mortality and 87% reduction in ICU mortality.
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When considering the CKMI index as a categorical variable, there

was no significant association observed between the CKMI index

and hospitalization or ICU mortality in Group Q2 compared to

the lowest quartile (Group Q1) across all three Cox proportional

risk models. However, a significant correlation was found in

Groups Q3 and Q4, indicating that higher quartile arrays were

associated with lower risks when compared to lower quartile

arrays. In Model C, following comprehensive adjustment for

potential confounders, CKMI index Q3 and Q4 exhibited a

significantly decreased risk of hospital mortality compared to CIMI

index Q1 [Q1 vs. Q3: HR, 0.71 [95% CI 0.45–0.91], P = 0.023;

Q4: HR, 0.53 [95% CI 0.32–0.87], P = 0.012]. Furthermore, there

was an inverse correlation between the increase in CKMI index

value and the escalation of risk level. Cox proportional hazards

analysis was employed to investigate the association between CKMI

index and ICU mortality, yielding consistent findings [Q1 vs. Q3:

HR, 0.42 [95% CI 0.22–0.79], P = 0.007; Q4: HR, 0.44 [95% CI

0.23–0.85], P = 0.014] (refer to Table 2).

The incidence of major outcomes in each group, based on the

CKMI index quartile, was analyzed using Kaplan-Meier survival

analysis curve as depicted in Figure 3. Patients with a higher

CKMI index exhibited a decreased risk of hospitalization and

ICU mortality.

In the fully adjusted model C, a restricted cubic spline

regression model was employed to demonstrate a consistent

linear decline in both hospital mortality (P-value = 0.015,

P-Nonlinear = 0.459) and ICU mortality (P-value = 0.029,

P-Nonlinear = 0.432) as the CKMI index increased (Figure 4).
ROC analysis of the CKMI index and its
comparison with established severity scores

The clinical efficacy of the CKMI index was evaluated using

ROC analysis, revealing that the CKMI index exhibited a certain

predictive value (AUC for in-hospital death: 0.635; AUC for ICU

death: 0.658). The cutoff values for the CKMI index were

determined as 0.825 and 0.794 for hospital deaths and ICU

deaths respectively (Figure 5).
TABLE 2 Cox proportional hazard ratios (HR) for all-cause mortality.

Variables Q1 Q2

HR (95% CI) p-
value

HR (95% CI) p-
value

HR (95

Hospital mortality
Model A Ref. – 0.75 (0.52, 1.08) 0.127 0.71 (0.4

Model B Ref. – 0.74 (0.51, 1.06) 0.102 0.67 (0.4

Model C Ref. – 0.75 (0.51, 1.11) 0.150 0.71 (0.4

ICU mortality
Model A Ref. – 0.72 (0.45, 1.15) 0.166 0.46 (0.2

Model B Ref. – 0.71 (0.45, 1.13) 0.151 0.44 (0.2

Model C Ref. – 0.74 (0.45, 1.21) 0.234 0.42 (0.2

HRs, hazard ratios; CI, confidence interval; CKMI, cardiovascular-kidney-metabolic index; ICU, in

failure; WBC, white blood cell; RBC, red blood cell; HbA1c, hemoglobin A1c; ALT, alanine amin

adjusted by age, BMI, CHD, CHF, hypertension, diabetes, stroke, sepsis, WBC, RBC, hemoglobi
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In order to conduct a more rigorous evaluation of the

predictive performance of CKMI, we compared ROS analysis

with established severity scoring tools such as SOFA, APSIII, and

SIRS. In terms of predicting mortality in the ICU, CKMI

exhibited a lower AUC value compared to established severity

scores such as SOFA [0.759 (95% CI 0.716–0.802), P < 0.001],

APSIII [0.796 (95% CI 0.753–0.839), P < 0.001], and SAPSII

[0.775 (95% CI 0.732–0.818), P < 0001]. However, it

demonstrated a significantly higher AUC value than OASIS

[0.621 (95% CI 0.581–0.670), P = 0.043] and GCS 0.476 (95% CI

0.423–0.530, P < 0001)], while showing no statistical difference

with SIRS [0.654 (95% CI 0.607–0.702), p = 0.923] (refer to Table 3).

In the prediction of hospital mortality rate, CKMI exhibited a

lower AUC value compared to established severity scores such as

SOFA [0.728 (95% CI 0.692–0.764), P < 0.001], APSIII [0.766

(95% CI 0.732–0.801), P < 0.001], and SAPSII [0.774 (95% CI

0.742–0.805), P < 0001]. However, it demonstrated a significantly

higher AUC value than OASIS [0.605 (95% CI 0.545–0.659),

P = 0.039] and GCS [0.459 (0.418–0.500), P < 0001], with no

statistically significant difference observed when compared to

SIRS [0.624 (95% CI 0.585–0662), P = 0.698] (refer to Table 3).
Secondary outcomes

The results of multiple linear regression analysis revealed a

significant negative correlation between the CKMI index and the

length of stay in both ICU and general wards, even when not

adjusting for confounding factors (LOS Hospital: β = −24.05,
P < 0.001; LOS ICU: β = −14.51, P < 0.001) (refer to Table 4). This

association remained consistent among hospitalized patients, even

after partial (LOS Hospital: β = −25.99, P < 0.001; LOS ICU:

β = −14.69, P < 0.001) or complete adjustment for confounders

(LOS Hospital: β = −9.40, P = 0.031; LOS ICU: β = −7.83,
P < 0.001) (refer to Table 4). These findings suggest that higher

levels of CKMI may be indicative of longer hospital stays, thereby

highlighting its potential as an effective indicator for assessing

resource utilization in ICUs or hospitals, particularly in predicting

critically ill patients who require extended periods of hospitalization.
Q3 Q4 CKMI

% CI) p-
value

HR (95% CI) p-
value

HR (95% CI) p-
value

7, 0.95) 0.035 0.58 (0.37, 0.91) 0.017 0.25 (0.08,0.77) 0.016

5, 0.97) 0.042 0.54 (0.34, 0.85) 0.008 0.25 (0.08,0.76) 0.015

5, 0.91) 0.023 0.53 (0.32, 0.87) 0.012 0.26 (0.07,0.93) 0.038

5, 0.83) 0.010 0.52 (0.29, 0.93) 0.029 0.14 (0.03,0.59) 0.008

4, 0.81) 0.008 0.49 (0.27, 0.88) 0.018 0.15 (0.03,0.62) 0.009

2, 0.79) 0.007 0.44 (0.23, 0.85) 0.014 0.13 (0.03,0.67) 0.014

tensive care unit; BMI, body mass index; CHD, coronary heart disease; CHF, congestive heart

otransferase. Model A: unadjusted covariates. Model B: adjusted by age and BMI. Model C:

n, albumin, HbA1c, and ALT.
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FIGURE 3

The Kaplan-Meier survival analysis curves depict the cumulative probability of all-cause mortality in quartile groups within the hospital (a), and ICU (b).

FIGURE 4

RCS analysis was conducted to examine the association between CKMI and all-cause mortality in both hospital and ICU settings. (a) The RCS curve
illustrates the relationship between CKMI and all-cause hospital mortality. (b) The RCS curve demonstrates the correlation between CKMI and
ICU mortality.

Qu et al. 10.3389/fcvm.2024.1513212
Subgroup analysis

To further investigate potential disparities within the specific

population, we conducted Cox regression analysis on various

subgroups, encompassing crucial variables including age, gender,

ethnicity, BMI ≥28, hypertension, diabetes, CHD, and CHF. By

constructing subgroup forest plots, several noteworthy findings

were revealed:
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Upon further examination of the relationship between the

CKMI index and ICU mortality, we observed a significant

inverse association in specific subgroups including individuals

aged ≥60 years [HR, 0.06 (95% CI 0.02–0.18), P = 0.001], females

[HR, 0.04 (95% CI 0.01–0.62), P = 0.021], white ethnicity [HR,

0.35 (95% CI 0.21–0.82), P = 0.027], diabetic patients [HR, 0.05

(95% CI 0.02–0.27), P = 0.008], and those with CHD [HR, 0.11

(95% CI 0.02–0.63), P = 0.014]. In contrast, no such correlation
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FIGURE 5

The CKMI correlation ROC curve for predicting in-hospital (a) and ICU mortality (b).

TABLE 3 ROC analysis of the CKMI index and its comparison with established severity scores.

Predictor ICU mortality AUC
(95% CI)

The p-value compared
to CKMI

Hospital mortality AUC
(95% CI)

The p-value compared
to CKMI

CKMI 0.658 (0.602–0.714) – 0.635 (0.591–0.679) –

SOFA 0.759 (0.716–0.802) P < 0.001 0.728 (0.692–0.764) P < 0.001

APSIII 0.796 (0.753–0.839) P < 0.001 0.766 (0.732–0.801) P < 0.001

SIRS 0.654 (0.607–0.702) P = 0.923 0.624 (0.585–0.662) P = 0.698

SAPSII 0.775 (0.732–0.818) P < 0.001 0.774 (0.742–0.805) P < 0.001

OASIS 0.621 (0.581–0.670) P = 0.043 0.605 (0.545–0.659) P = 0.039

GCS 0.476 (0.423–0.530) P < 0.001 0.459 (0.418–0.500) P < 0.001

TABLE 4 The correlation between the CKMI index and length of hospital
stay (LOS).

Characteristic β 95% CI p-value

LOS Hospital
Model A −24.05 −32.01, −16.10 <0.001

Model B −25.99 −34.05, −17.93 <0.001

Model C −9.40 −17.95, −0.85 0.031

LOS ICU
Model A −14.51 −18.62, −10.40 <0.001

Model B −14.69 −18.83, −10.56 <0.001

Model C −7.83 −12.32, −3.34 <0.001

CI, confidence interval; CKMI, cardiovascular-kidney-metabolic index; ICU, intensive care

unit; BMI, body mass index; CHD, coronary heart disease; CHF, congestive heart failure;
WBC, white blood cell; RBC, red blood cell; HbA1c, hemoglobin A1c; ALT, alanine

aminotransferase. Model A: unadjusted covariates. Model B: adjusted by age and BMI.

Model C: adjusted by age, BMI, CHD, CHF, hypertension, diabetes, stroke, sepsis, WBC,

RBC, hemoglobin, albumin, HbA1c, and ALT.

Qu et al. 10.3389/fcvm.2024.1513212
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was detected when comparing diabetic vs. non-diabetic patients,

patients with BMI <28 vs. ≥28, hypertensive vs. non-

hypertensive patients, and those with CHF compared to those

without (Figure 6).

Among subgroups of individuals aged ≥60 years [HR, 0.04 (95%

CI 0.01–0.27), P = 0.001], females [HR, 0.12 (95% CI 0.01–0.92),

P = 0.042], white ethnicity [HR, 0.36 (95% CI 0.09–0.76), P = 0.043],

those with a BMI ≥28 [HR, 0.17 (95% CI 0.03–0.99), P = 0.048],

hypertensive patients [HR, 0.07 (95% CI 0.02–0.94), P = 0.045],

diabetic patients [HR, 0.05 (95% CI 0.01–0.16), P = 0.001], and

patients with CHF [HR, 0.14 (95% CI 0.03–0.70), P = 0.016], a

significant inverse correlation was observed between the CKMI

index and hospital mortality. However, it is important to note that

no association between the CKMI index and hospital mortality was

found when comparing patients with and without CHD (Figure 6).
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FIGURE 6

Subgroup analysis for the correlation between the CKMI index and the risk of ICU (a) and in-hospital (b) mortality in critically ill patients.
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Additionally, our study has revealed significant interactions

between the CKMI index and other variables. Specifically, in terms

of influencing hospital mortality, the CKMI index demonstrated

noteworthy interactions with age (P for interaction = 0.025) and

diabetes (P for interaction = 0.031). Similarly, when investigating

factors impacting ICU mortality, a substantial interaction between

the CKMI index and age (P for interaction = 0.004) was also

observed (Figure 6).

In summary, this study provides robust evidence for

comprehending the relationship between the CKMI index, diverse

patient characteristics, and their clinical outcomes through

meticulous subgroup analysis and exploration of interactions.
The assessment of model value

We utilized stepwise regression analysis and cross-validation

to assess the model, yielding a coefficient of determination

(R-squared) of 0.9157, indicating that the model can account for

91.57% of the variability in the data. This outcome holds great

significance, suggesting a robust fit and effective explanation of

CKMI variations by the model. The mean squared error

(MSE) was determined to be 0.0012, signifying minimal

deviation between predicted values and actual values, thereby

demonstrating high predictive accuracy. The stepwise regression

analysis identified eGFR, TyG, and LVEF as pivotal variables

within the model with statistically significant effects on CKMI

(p-value < 0.05). Further cross-validation analysis revealed that
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among all tested models, the combination of three variables—

LVEF + eGFR + TyG—achieved an exceptional R-squared score of

0.9038, indicating superior predictive performance compared to

single parameter prediction models (LVEF, eGFR, TyG) or

simple combination prediction models (LVEF + eGFR, LVEF +

Tyg, eGFR + TyG). Moreover, it was observed that eGFR and

TyG made substantial contributions towards predicting CKMI

while LVEF played a relatively smaller role.
Discussion

In this study, we introduced the CKMI as a novel functional

indicator and validated its predictive validity for in-hospital

and ICU all-cause mortality in critically ill patients using the

extensive clinical database MIMIC-IV. CKMI, encompassing

LVEF, eGFR, and metabolic index TyG, aims to comprehensively

reflect the status of heart, kidney, and metabolic functions.

The findings demonstrated a significant inverse correlation

between CKMI and both in-hospital and ICU mortality,

highlighting its potential as an important prognostic marker

for predicting the risk of in-hospital mortality among critically

ill patients.

As a crucial component of the CKMI index, LVEF serves as a

pivotal indicator for assessing cardiac systolic function. Its decline

typically heralds CHF or cardiac dysfunction, which are significant

contributors to heightened in-hospital mortality (18). Numerous

studies have demonstrated a strong association between reduced
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LVEF and the risk of cardiovascular events such as heart failure

and myocardial infarction (7, 19). In critically ill patients,

impaired cardiac function often results in inadequate circulating

blood volume, subsequently compromising organ perfusion

throughout the body and escalating the likelihood of death

(20–22). Consequently, evaluating cardiac function through LVEF

can indirectly reflect circulatory status and mortality risk among

critically ill patients. A higher CKMI index signifies that

individuals with superior cardiac function can endure greater

physiological stress levels, thereby reducing hospitalization-

related mortality.

As another crucial component of the CKMI index, eGFR is

considered the gold standard for evaluating renal filtration

function, and its decline often indicates renal function

impairment (23). The kidney not only plays a pivotal role in

waste excretion and fluid balance regulation but also actively

participates in various physiological activities, including hormone

secretion and blood pressure regulation (24–26). In critically ill

patients, AKI is a common complication closely associated with

mortality. AKI not only leads to the accumulation of metabolic

waste and toxins in the body but also gives rise to significant

issues such as electrolyte imbalances and acid-base disturbances,

further exacerbating the patient’s condition (27–29). Therefore,

utilizing the CKMI index to assess renal function through eGFR

can effectively predict the risk of death resulting from impaired

renal function in critically ill patients.

The TyG index is a novel metabolic indicator that integrates

levels of TG and FPG to assess insulin resistance and the risk of

metabolic syndrome (30). In critically ill patients, metabolic

dysfunction is a prevalent pathophysiological state closely

associated with mechanisms such as inflammatory response and

oxidative stress (31, 32). The TyG index serves as a valuable tool

for evaluating metabolic status, with recent studies demonstrating

its significant association with cardiovascular diseases (33),

strokes (34), kidney diseases (35), and other pathological

conditions (36–38). Moreover, emerging evidence suggests that

the TyG index holds promise in predicting overall mortality and

cardiovascular disease-specific mortality among the general

population and critically ill patients (14, 39–41). A high CKMI

index indicates a relatively favorable metabolic condition in

patients, thereby reducing the likelihood of complications arising

from metabolic abnormalities and consequently lowering in-

hospital mortality.

The CKMI index is a comprehensive physiological health

evaluation system that assesses cardiac function, renal function,

and metabolic status in a holistic manner. In critically ill

patients, these three aspects of functional status are intricately

interconnected and mutually influential, collectively determining

the prognosis of patients (4–6). CHF can result in circulatory

disorders, which subsequently impact renal perfusion and

metabolite clearance (42). Renal insufficiency may lead to toxin

accumulation in the body, thereby increasing the burden on the

heart and causing metabolic disturbances (43). Metabolic

abnormalities can accelerate the progression of cardiovascular

and renal diseases (44). Therefore, by simultaneously considering

the key systems of the heart, kidney, and metabolism, the CKMI
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index achieves a comprehensive assessment of overall bodily

function. In critically ill patients specifically, interdependencies

among these three systems often exist and jointly determine

patient outcomes. Consequently, utilizing the CKMI index

enables a more comprehensive reflection of a patient’s

physiological state while enhancing prediction accuracy.

Currently, the prediction of in-hospital mortality for critically

ill patients primarily relies on various models such as APACHE

II score, SAPS II score, and SOFA score (45–47). However, these

models predominantly rely on physiological parameters and

medical history information for prediction. For instance, the

APACHE II score focuses on assessing acute physiological status

and chronic health conditions (45), while SOFA specifically

evaluates sequential organ failure but often overlooks a

comprehensive assessment of cardiac, renal, and metabolic states

(47). CKMI offers a more comprehensive perspective by

integrating indicators of cardiac, renal, and metabolic health to

evaluate the physiological stress and multi-organ functional

status of ICU patients. It may possess unique advantages in

predicting ICU and in-hospital mortality rates. Metabolic

status is a crucial indicator that reflects the body’s energy

metabolism and substance metabolism, which is closely

associated with the development of various diseases. Previous

studies have demonstrated that metabolic abnormalities, such as

hyperglycemia and hypoalbuminemia, play a significant role in

predicting adverse outcomes among ICU and hospitalized

patients (48, 49). Therefore, incorporating metabolic status into

scoring models aids in accurately assessing overall patient health

and predicting unfavorable results. By comparing and analyzing

different approaches, CKMI stands out for its uniqueness and

innovation in integrating biological indicators like metabolic

status. Traditional models often overlook these essential

metabolic markers; however, they hold great significance when

considering overall patient health and forecasting adverse

outcomes. CKMI can more precisely reflect the comprehensive

metabolic status of patients by including these metabolic

indicators, thereby greatly contributing to clinical treatment

guidance and patient prognosis assessment. In comparison to

traditional scoring systems, CKMI provides a more

comprehensive framework that assists clinicians in early

identification of high-risk patients while developing personalized

treatment plans. Moreover, the multidimensional comprehensive

evaluation offered by CKMI may contribute to enhancing risk

stratification and management strategies within complex ICU

environments encompassing multiple variables.

Additionally, our study revealed a significant inverse

correlation between CKMI levels and LOS in both the ICU and

general wards, suggesting that patients with lower CKMI levels

may necessitate prolonged hospitalization. The significant

association between CKMI and LOS provides valuable insights

into the utilization of ICU or hospital resources. Initially,

patients exhibiting reduced levels of CKMI might require

extended hospitalization and continuous monitoring, which

could consequently increase the utilization of ICU or hospital

resources. Consequently, by monitoring CKMI levels, we can

promptly identify individuals who may require additional
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resources to ensure timely and effective treatment interventions.

Secondly, the correlation between CKMI and LOS also implies

that optimizing treatment strategies could potentially mitigate the

adverse impact of CKMI on LOS, thus reducing patients’ length

of stay in hospitals and minimizing resource utilization.

Finally, we observed overlapping Kaplan-Meier curves between

Q2 and Q3, as well as between Q3 and Q4. After a thorough

examination of the data and analysis process, we posit that the

overlap of the curves may be attributed to several key factors:

firstly, due to limited research resources in the database study,

there might not be an adequate sample size to fully demonstrate

significant differences in survival rates among different CKMI

quartiles (Q1-Q4), despite efforts made to include a sufficient

number of patients. The small sample size could result in less

distinct differences between survival curves leading to

overlapping phenomena. Secondly, heterogeneity exists within the

patient population studied in terms of age, gender, underlying

diseases, etc., which may cause variations in response to CKMI

index among different patients and partially mask its predictive

effect on survival rates for specific patient subgroups.

Furthermore, the duration of follow-up can also impact the

degree of separation between survival curves. If the follow-up

time is insufficiently long enough, it may fail to capture

significant differences in patient survival rates particularly at

early stages. It should be emphasized that despite this

phenomenon of overlap occurring; however,the CKMI index

still retains certain predictive value especially for specific

patient populations.

Moreover, in the subgroup analysis, a significant inverse

association between CKMI and mortality risk was observed

among female patients., while this correlation was not evident in

male patients. Although the specific mechanisms are not fully

understood, it is speculated that they may be attributed to several

factors. Firstly, fluctuations in levels of sex hormones such as

estrogen in women may exert profound effects on metabolic

processes (50). estrogen exhibits anti-inflammatory, antioxidant,

and cardiovascular protective effects which could potentially

influence the relationship between CKMI and mortality risk

among women (51). Secondly, females typically possess higher

metabolism rates and distinct patterns of fat distribution which

might contribute to more rapid elimination of metabolic waste

and toxins from the body thereby alleviating metabolic stress;

consequently impacting the association between CKMI and

mortality risk (52). Additionally,females exhibit different

biological characteristics and prognosis disparities compared to

males when it comes to certain severe illnesses; these differences

might result in a higher predictive value for CKMI among

women (53, 54). In summary, an elevated CKMI during early

stages reflects compensatory capacity of the body; whereas an

elevation during later stages primarily indicates degree of organ

failure. This variation could lead to gender-specific differences

regarding predictive value of CKMI.Additionally, In order to

investigate the disparities in metabolic capacity and predictive

ability across different racial groups, we conducted a subgroup

analysis based on the racial composition of the population. The

findings revealed that CKMI exhibited a significant prognostic
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capability for mortality risk among Caucasians, while its efficacy

was not observed in other ethnicities. Several potential factors

may account for this discrepancy: firstly, substantial genetic and

biological variations exist among diverse races, which could

influence the association between CKMI and mortality risk (55);

secondly, disparities in environmental factors and lifestyles might

also impact the predictive performance of CKMI (56);

additionally, critically ill patients from different racial

backgrounds may exhibit distinct disease characteristics and

patterns of complications, thereby affecting the applicability of

CKMI as a prognostic indicator (57). It is important to note that

due to relatively small sample sizes within other ethnic groups,

statistical power is limited. Consequently, it is possible that

statistically significant associations may go undetected even if

they do indeed exist.

The CKMI index holds significant clinical application value,

providing crucial prognostic information for patients in the early

stages of ICU admission. For individuals with a low CKMI

index, doctors can promptly implement intervention measures

such as adjusting treatment plans and enhancing monitoring to

mitigate the risk of mortality. Moreover, the CKMI index

effectively reflects patient-specific differences and serves as a

foundation for formulating personalized treatment strategies.

Additionally, it allows dynamic adjustments based on changes in

a patient’s condition, offering an ongoing evaluation framework

for physicians. Regular monitoring of the CKMI index enables

timely modifications to treatment plans, ensuring optimal

therapeutic outcomes for patients.
Limitations

Despite the positive findings obtained in this study, several

limitations should be acknowledged. Firstly, it is important to

note that this study employed a retrospective analysis approach,

which may introduce potential selection bias and information

bias. Secondly, the accuracy of indicators such as LVEF, eGFR,

and TyG upon which the calculation of CKMI index relies can

be influenced by various factors. Moreover, it is worth

mentioning that this study did not account for the impact of

underlying diseases and treatment interventions on both CKMI

index and in-hospital mortality.

Based on previous literature, we excluded patients aged ≥80
years due to potential physiological changes and differences in

drug metabolism that may impact the interpretation of CKMI in

elderly patients. Additionally, patients with ICU stays of less than

24 h were also excluded to mitigate the risk of missing data or

inaccurate measurement of CKMI associated with shorter ICU

stays. However, it is acknowledged that these exclusion criteria

may limit the generalizability of our findings. Future studies are

planned to investigate the performance of CKMI across different

age groups and in patients experiencing rapid deterioration or

early death within 24 h of ICU admission, aiming to enhance its

applicability in diverse ICU patient populations.

Furthermore,we acknowledge the significance of dissecting the

constituents of CKMI-related mortality rates to augment the
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efficacy of this study. This not only facilitates deeper insights but also

fosters a comprehensive comprehension of the correlation between

CKMI and mortality rates. Nevertheless, a major constraint of this

study lies in our inability to procure specific cause-of-death

information from the MIMIC database. This limitation curtails our

capacity to conduct meticulous analyses on mortality rates

associated with distinct components of CKMI (cardiovascular-

related deaths, renal failure-related deaths, metabolic disease-related

deaths). In prospective clinical studies, we intend to incorporate

more participants who can furnish detailed records regarding

causes of death so as to further investigate the relationship between

CKMI and various causes of death.

To further validate the predictive efficacy of the CKMI index,

future research should consider adopting a prospective design,

increasing sample size, and incorporating additional influencing

factors. Moreover, it is worth exploring the predictive value of

the CKMI index in various disease types and age groups of

patients, as well as investigating its potential synergistic effects

when combined with other prediction models. Furthermore,

studying the role of the CKMI index in informing treatment

decision-making for critically ill patients can optimize clinical

management plans.
Conclusion

In summary, this study utilized the MIMIC-IV database to

comprehensively investigate the efficacy of the CKMI index in

predicting overall mortality during hospitalization for critically ill

patients. The findings demonstrate a significant inverse

association between the CKMI index and all-cause mortality

within both hospitalization and ICU settings, suggesting its

potential as a robust tool for prognosticating in-hospital death

risk among critically ill patients. By integrating comprehensive

assessments of cardiac function, renal function, and metabolic

status, the CKMI index establishes a holistic physiological health

evaluation system that offers clinicians more precise predictive

evidence and personalized treatment guidance. However, further

prospective studies with larger sample sizes are warranted to

validate its predictive efficacy and clinical applicability.
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