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SMOC2, OGN, FCN3, and
SERPINA3 could be biomarkers
for the evaluation of acute
decompensated heart failure
caused by venous congestion
Yiding Yu1, Huajing Yuan1, Quancheng Han1, Jingle Shi1,
Xiujuan Liu2, Yitao Xue2* and Yan Li2*
1Shandong University of Traditional Chinese Medicine, Jinan, China, 2Affiliated Hospital of Shandong
University of Traditional Chinese Medicine, Jinan, China
Background: Venous congestion (VC) sets in weeks before visible clinical
decompensation, progressively increasing cardiac strain and leading to acute
heart failure (HF) decompensation. Currently, the field lacks a universally
acknowledged gold standard and early detection methods for VC.
Methods: Using data from the GEO database, we identified VC’s impact on HF
through key genes using Limma and STRING databases. The potential
mechanisms of HF exacerbation were explored via GO and KEGG enrichment
analyses. Diagnostic genes for acute decompensated HF were discovered using
LASSO, RF, and SVM-REF machine learning algorithms, complemented by single-
gene GSEA analysis. A nomogram tool was developed for the diagnostic model’s
evaluation and application, with validation conducted on external datasets.
Results:Our findings reveal that VC influences 37 genes impacting HF via 8 genes,
primarily affecting oxygen transport, binding, and extracellular matrix stability. Four
diagnostic genes for HF’s pre-decompensation phase were identified: SMOC2,
OGN, FCN3, and SERPINA3. These genes showed high diagnostic potential,
with AUCs for each gene exceeding 0.9 and a genomic AUC of 0.942.
Conclusions: Our study identifies four critical diagnostic genes for HF’s pre-
decompensated phase using bioinformatics and machine learning, shedding
light on the molecular mechanisms through which VC worsens HF. It offers a
novel approach for clinical evaluation of acute decompensated HF patient
congestion status, presenting fresh insights into its pathogenesis, diagnosis,
and treatment.
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Introduction

Despite adherence to guideline-directed medical therapies, the prognosis for heart

failure (HF) patients remains suboptimal. Individuals in advanced stages of HF often

necessitate recurrent hospital admissions and enduring pharmacological intervention,

imposing significant demands on healthcare resources (1). The primary catalyst for

these hospitalizations is the clinical manifestations of venous congestion (VC). A

diminution in venous capacitance coupled with an augmented return of venous blood

to the heart escalates preload. This increase in preload, when juxtaposed with
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2024.1406662&domain=pdf&date_stamp=2020-03-12
mailto:xytsdzydfy@126.com
mailto:liyan88130@163.com
https://doi.org/10.3389/fcvm.2024.1406662
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1406662/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1406662/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1406662/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1406662/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1406662/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2024.1406662
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Yu et al. 10.3389/fcvm.2024.1406662
compromised cardiac functionality, precipitates a transition from

chronic HF to acute decompensated heart failure (ADHF) (2, 3).

HF precipitates fluid retention and VC, transitioning the body

from a low-pressure, healthy biological system to a high-pressure,

pathological state. This shift forces organs to operate under

significantly elevated venous and interstitial pressures,

challenging their physiological functions. Traditional views

attribute congestion primarily to deteriorating cardiovascular

function, with treatment strategies aimed at achieving euvolemic

status and congestion alleviation through diuretic therapy (4).

However, emerging evidence suggests that venous congestion

may initiate weeks prior to the clinical manifestations of

decompensation that necessitate medical intervention (5).

Biomechanical forces, such as increased venous pressure and

shear stress, can induce endothelial cells to undergo a phenotypic

transformation towards pro-oxidative, pro-inflammatory, and

vasoconstrictive states (6). Biomechanical stress triggers

endothelial cells to secrete cytokines, including TNF-α, IL-6, and

VCAM-1 (7, 8). Yet, the intricate linkage and precise

mechanisms underlying endothelial activation due to VC in the

context of HF require further investigation. A deeper

understanding of these mechanisms is critical for evaluating the

clinical efficacy and optimizing the application of diuretic

therapies. Concurrently, identifying pivotal biomarkers could

pave the way for early detection of VC—a domain where a

definitive diagnostic gold standard is currently absent. By

identifying and targeting these key markers, there is potential to

preemptively shift treatment modalities, thereby reinstating

endothelial cell stability and preventing the progression to a

decompensated state in heart failure patients.

This study analyzed the mRNA data sets of VC and HF in the

GEO database and identified differentially expressed genes (DEGs)

through the limma package. We performed immune infiltration

analysis on the VC dataset to assess whether venous pressure

affects immune cell composition. Subsequently, we obtained the

interaction relationship between VC and HF differential genes

through the STRING database and established a protein-protein

interaction network (PPI). Through PPI, we obtained the key genes

that HF is affected by VC. We performed enrichment analysis on

these genes to obtain the impact of VC on the biological processes

and functions of HF. Subsequently, we screened key genes through

three machine learning models including least absolute shrinkage

and selection operator (LASSO), random forest (RF), and support

vector machine recursive feature elimination (SVM-REF). We

established a diagnostic model for pre-decompensated heart failure

and completed nomogram evaluation and GSEA of individual

genes. We also validated the diagnostic model on external datasets.

Figure 1 depicts the study flowchart.
Materials and methods

Microarray data

We choose GSE38783 as the VC data set (9). The trial involved

12 healthy subjects and inflated a pressure cuff around the
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dominant arm to increase arm venous pressure to approximately

30 mmHg above baseline for 75 min. Endothelial cell samples

were procured both pre- and post-intervention through an

angiocatheter assisted by an intravascular guidewire. For the

exploration of heart failure, the GSE57338 dataset was chosen,

representing the most comprehensive dataset available in this

domain. It comprises left ventricular myocardial specimens from

95 patients diagnosed with ischemic heart failure, alongside 136

control samples from healthy individuals (10).To corroborate our

findings, the GSE16499 dataset served as the validation cohort,

encompassing left ventricular myocardial samples from 15

patients with ischemic heart failure and an equivalent number of

healthy controls (11).
Data processing and differentially expressed
gene screening

We used R software (R version 4.2.0) to complete data

preprocessing. We remove probes corresponding to multiple

molecules. For multiple probes corresponding to the same

molecule, only the probe with the largest signal value is retained.

Finally, we remove the batch effect of the data and convert the

probe ID into a gene symbol according to the annotation file of

the platform. We used the limma package for differential analysis

and selected genes with p-value <0.05 and |log2(FC)| ≥1 as

differential genes (12). We use the ggplot2 package to complete

the drawing of the picture.
Immune infiltration analysis

Endothelial cell activation will produce cytokines. Therefore,

we used the CIBERSORT package to evaluate whether venous

pressure has an impact on the endothelial immune environment

(13). Bar charts are used to visualize the proportion of each type

of immune cell in different samples. The differences in cell

distribution between VC and normal groups were compared by

t test, and the cutoff value was set at p < 0.05.
Protein–protein interaction network
construction

In order to understand the process of VC affecting HF and

discover the interactions between protein-coding genes, we

established a PPI network using the STRING database (14).

Parameter selection default settings. Subsequently, we imported

the results into Cytoscape3.6.1 to complete visualization and

subsequent analysis (15).
Functional enrichment analysis

Utilizing the Protein-Protein Interaction (PPI) network, we

identified crucial genes implicated in Heart Failure (HF) that are
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FIGURE 1

The study flowchart.
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influenced by Venous Congestion (VC). The “clusterProfiler”

package facilitated the execution of Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses, enabling the comprehensive visualization and

elucidation of these key genes’ roles and pathways (16–18). In

addition, we also performed Reactome pathway enrichment

analysis on key genes.
Machine learning

To refine the selection of diagnostic markers for the pre-

decompensation stage of heart failure, our study employs a triad
Frontiers in Cardiovascular Medicine 03
of machine learning algorithms: Least Absolute Shrinkage and

Selection Operator (LASSO), Random Forest (RF), and

Support Vector Machine-Recursive Feature Elimination (SVM-

RFE) (19–21). The LASSO algorithm was implemented using

the “glmnet” package, with ten-fold cross-validation employed

to identify the most significant genes. The “randomForest”

package was utilized to execute the RF algorithm, prioritizing

genes based on their importance scores. Similarly, the SVM-

RFE algorithm was conducted using the “e1071” package,

selecting genes that contribute to the highest classification

accuracy. After completing the calculation, we selected the

intersection of the three as the diagnostic gene for the pre-

decompensation stage of heart failure.
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Nomogram construction and validation of
diagnostic model

For the construction of a diagnostic nomogram for the

precompensation phase of heart failure, our analysis leveraged the

“rms” package, which facilitated the visualization of the contributory

weight of each candidate gene as individual points on the

nomogram, with “Total Points” reflecting the cumulative score

derived from all selected genes (22). Subsequently, boxplots were

generated to illustrate the expression profiles of these genes, and

Receiver Operating Characteristic (ROC) curves were plotted to

assess their diagnostic efficacy. The diagnostic utility was quantified

using the Area Under the Curve (AUC), with values exceeding 0.7

deemed indicative of substantial diagnostic merit. To validate our

findings, we conducted an analysis on both individual and combined

gene sets within the GSE16499 dataset. The discriminatory power of

our diagnostic model was further appraised through the ROC curve

analysis, ensuring a robust evaluation of its predictive capacity.
ssGSEA enrichment analysis

To elucidate the functional roles of genes identified in the pre-

decompensated stage of heart failure, our study employed the

“clusterProfiler” package to conduct single-gene Gene Set

Enrichment Analysis (GSEA) (23). This analysis was pivotal in

uncovering the biological processes and pathways through which

these genes may contribute to the transition from chronic to

acute decompensated heart failure.
Results

Identification of differentially expressed genes

Following a differential analysis, we discerned a total of 37

distinct genes within the VC dataset, comprising 36 up-regulated
FIGURE 2

Results of differentially expressed genes. (A) Volcano plot of VC. We set adju
plot of HF. (C) The intersection of VC and HF. We intersected the results to
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and a single down-regulated gene. In the HF dataset, we

ascertained a total of 49 distinct genes, inclusive of 28 up-

regulated and 21 down-regulated genes. Notably, there exists no

overlap between the differential genes identified in the two

datasets. The illustrative outcomes are depicted in Figure 2.
Immune cell infiltration analysis

We performed immune infiltration analysis on the VC data set

through the CIBERSORT algorithm. Figure 3 clearly shows the

different subpopulation contents within each sample. The results

showed that 75 min of venous hypertension did not have a

significant impact on the immune environment of endothelial cells.
PPI network construction and hub
gene selection

Owing to the lack of overlap between the differential genes of

VC and HF, we employed the STRING database to construct a

Protein-Protein Interaction (PPI) network, thereby elucidating

the interactions among the encoded proteins of VC and HF.

Through this PPI network, we pinpointed 45 nodes and 75

interactions. The analysis implied that 8 genes from VC might

interact with 37 genes from HF. The visualization results are

shown in Figure 4.
Functional enrichment analysis

To evaluate the effects of VC on the biological processes and

functions of HF, we performed GO analysis, KEGG enrichment

analysis, and Reactome pathway enrichment analysis on 37 HF

genes. Categories of GO analysis include biological processes

(BP), cellular components (CC), and molecular functions (MF).

The predominantly enriched BP terms encompassed those
st p-values < 0.05 and | log2(FC)| ≥1 as the difference genes. (B) Volcano
get 0 genes.
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FIGURE 3

Immune infiltration analysis before and after venous hypertension treatment. The proportion of 22 kinds of immune cells in different samples
visualized from the bar plot.

FIGURE 4

PPI network of VC and HF. The blue diamond-shaped node represents the VC gene, and the red oval-shaped node represents the HF gene.
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related to oxygen transport, gas transport, extracellular matrix

organization, extracellular structure organization, and the

organization of external encapsulating structures. The chiefly

enriched CC terms included the collagen-containing

extracellular matrix, the haptoglobin-hemoglobin complex, the

hemoglobin complex, blood microparticles, and the lumen of

endocytic vesicles. The MF terms that were most enriched

involved haptoglobin binding, oxygen binding, oxygen carrier

activity, collagen binding, and the extracellular matrix

structural constituent conferring compression resistance. In the

KEGG pathway enrichment analysis, these 37 genes were

primarily enriched in pathways associated with African

trypanosomiasis, Malaria, the Wnt signaling pathway, and the

Complement and coagulation cascades. Reactome pathway

enrichment analysis showed that these 37 HF genes were

mainly related to oxygen transport and exchange, oxidative

stress, and cell structure maintenance. The enrichment results

were shown in Figure 5.
Identification of Hub genes via machine
learning

We employed three machine learning algorithms—LASSO, RF,

and SVM-RFE—to identify diagnostic genes for the pre-

decompensation stage of heart failure. The LASSO algorithm

revealed 15 potential genes, while the RF algorithm prioritized

genes based on their calculated significance, selecting the top six

genes with the utmost importance as candidates. The SVM-RFE

algorithm indicated optimal accuracy with 29 genes; hence, we

adopted the initial 29 genes from the SVM-RFE output as

candidate genes. By intersecting the findings from all three

algorithms, we pinpointed four diagnostic genes for the pre-

decompensation stage of heart failure: SMOC2, OGN, FCN3, and

SERPINA3. These results are displayed in Figure 6.
FIGURE 5

Functional enrichment analysis of 37 HF genes. (A) GO enrichment analys
enrichment analysis results.

Frontiers in Cardiovascular Medicine 06
Diagnostic value assessment

We devised a nomogram anchored on four pivotal hub genes,

accompanied by the formulation of a Receiver Operating

Characteristic (ROC) curve, to meticulously gauge the diagnostic

specificity and sensitivity conferred by each gene and the

nomogram as a whole. Furthermore, we illustrated the expression

disparities of these hub genes within the heart failure (HF)

dataset via a box plot. Subsequent validation of the hub gene on

the external dataset GSE16499 demonstrated robust diagnostic

efficacy, with the Area Under the Curve (AUC) for each gene

surpassing 0.9 and the collective genomic AUC reaching 0.942,

underscoring significant diagnostic potential. The visual

representation of these findings was encapsulated in Figure 7.
Single-sample gene set enrichment analysis

We performed ssGSEA on SMOC2, OGN, FCN3, and

SERPINA3, respectively. The analysis revealed that these genes

contribute variably to the biosynthesis and metabolism of amino

acids, the production of steroid compounds, and the synthesis of

nucleotide sugars. Comprehensive results and their visual

representations are detailed in Figure 8.
Discussion

Venous congestion induces endothelial and neurohormonal

activation, signifying a decline in cardiac function. This

activation is not only a consequence but also a catalyst for

further hemodynamic decline in heart failure, often precipitating

the transition from chronic to acute decompensated heart failure.

Consequently, venous congestion emerges as a crucial

hemodynamic indicator for predicting rehospitalization and
is results. (B) KEGG enrichment analysis results. (C) Reactome pathway
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FIGURE 6

Machine learning in screening candidate diagnostic biomarkers for pre-decompensation stage of HF. (A) In the Lasso model for biomarker screening,
we plotted LASSO coefficient profiles of the selected genes, determining the optimal lambda at the point where the model’s error was minimal. Each
line in the left graph represents a gene, while the right graph’s vertical lines indicate the model’s error, pinpointing the best gene selection count at 15.
(B) In the RF model, we focused on the relative importance of the candidate genes, specifically highlighting the top six genes as determined by the
random forest’s importance calculation. (C) The SVM-RFE model’s screening involved utilizing the algorithm to identify the most accurate genes,
demonstrated by the plot where the number of genes selected is balanced against their predictive accuracy. Based on the highest accuracy and
lowest error obtained from the curves, we selected the top 29 genes as candidate genes. (D) A Venn diagram consolidates the outcomes,
indicating four genes consistently identified across the three analytical methods.

Yu et al. 10.3389/fcvm.2024.1406662
mortality post-discharge in patients with acute decompensated

heart failure (24). However, it’s pivotal to recognize that venous

congestion manifests in the initial phase of decompensation.

Deciphering its impact on cardiac function and identifying early

diagnostic markers are essential for timely modulation of

therapeutic strategies.

In this study, we first obtained the differential genes of VC and

HF through differential analysis. Regrettably, there was no overlap

between the differential genes for VC and HF, suggesting that the

pathogenesis of heart failure during stable periods devoid of

congestion might not be directly linked to VC. However, utilizing

the Protein-Protein Interaction (PPI) network, we discovered that

subsequent to the onset of VC, eight differential genes in the

vascular endothelium could potentially influence 37 genes

associated with HF. Therefore, VC may affect HF through signal

transduction between molecules. These 37 genes might be pivotal

in the transition of heart failure patients from a stable condition

to the acute decompensated stage.

We explored the biological functions and signaling pathways

involved in key genes through GO analysis, KEGG enrichment

analysis, and Reactome pathway enrichment analysis. The results

show that the mechanism by which VC causes acute

decompensation of heart failure may be related to oxygen
Frontiers in Cardiovascular Medicine 07
transport and oxygen binding. Heart failure is characterized by

exercise intolerance, which is closely related to structural and

functional abnormalities in oxygen transport (25). When heart

function decreases, the heart cannot pump blood effectively and

meet the body’s demand for oxygen (26). It can be seen from the

PPI network that after the occurrence of VC, VCAM1, CD36 and

NCOA1 of endothelial cells change, affecting the HAB1, HAB2,

and HABB genes of HF, which may further reduce oxygen

transport and oxygen binding and other functions. Hemoglobin

plays a key physiological role in transporting oxygen in the human

body. However, VC may increase levels of haptoglobin, an acute-

phase serum protein that binds very strongly and irreversibly to

hemoglobin and is endocytosed by macrophages (27). At the same

time, CD36 and VCAM1 may induce an increase in CD163 levels

after endothelial activation, degrade the hemoglobin-haptoglobin

complex, and produce an inflammatory response (28). The

enrichment analyses further suggest that VC may influence

collagen binding and the organization of the myocardial

extracellular matrix. This matrix serves as a sophisticated, evolving

scaffold that upholds tissue structure and function (29).

Remodeling of the extracellular matrix can hinder cardiac filling,

exacerbating heart failure through an inflammatory response (30).

Moreover, this remodeling process can alter the collagen content,
frontiersin.org
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FIGURE 7

Results of diagnostic value assessment. (A) The illustrative nomogram for diagnosing pre-decompensation stage of HF. (B) Differential expression of
hub genes in HF patients relative to normal controls in dataset GSE57338. (C) The ROC curve for individual candidate genes within the GSE57338
dataset. (D) The ROC curve for the nomogram highlighting their diagnostic value for pre-decompensation stage of HF. (E) The ROC curves for
each candidate gene within the GSE16499 dataset. (F) The ROC curve representing the diagnostic efficacy of the 4-gene model in dataset GSE16499.
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FIGURE 8

The results of ssGSEA.

Yu et al. 10.3389/fcvm.2024.1406662
impacting the heart chamber’s stiffness. Variations in the quantity

and quality of collagen can significantly affect myocardial stiffness.

Persistent elevation in wall stress, exceeding the heart’s adaptive

capacity, may result in a disproportionate reduction in ventricular

wall thickness relative to the ventricular volume, culminating in

diastolic and systolic dysfunction (31). It should be noted that in

this study, the VC data set we selected is a model of healthy

people simulating venous congestion through upper limb

compression. Compared with this model, the pathological process

of heart failure involves pulmonary circulation congestion, and

subsequent systemic circulation congestion and visceral congestion.
Frontiers in Cardiovascular Medicine 09
The pathological mechanism and consequences are more complex

than simple upper limb venous congestion (32). There are

significant differences in hemodynamics and neuroendocrine

hormones between patients with heart failure and healthy

individuals. Hemodynamically, in patients with heart failure, the

heart’s ability to pump blood is reduced, resulting in reduced

cardiac output, which can cause insufficient blood supply to

organs and tissues throughout the body. In heart failure, in order

to maintain adequate cardiac output, the heart will increase heart

rate, myocardial contractility, and blood vessels will constrict to

increase blood pressure. These changes may help maintain blood
frontiersin.org
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pressure and organ perfusion in the early stages, but in the long term

they will increase heart failure. burden, leading to further damage to

the heart and deterioration of function (33, 34). In terms of

neuroendocrine hormones, the renin-angiotensin-aldosterone

system (RAAS) and sympathetic nervous system are activated in

patients with heart failure. Activation of these systems leads to

vasoconstriction and water and sodium retention, which may help

increase cardiac output in the short term, but long-term activation

leads to increased cardiac load and myocardial remodeling,

thereby exacerbating the deterioration of cardiac function and

progression of heart failure. Serum levels of norepinephrine and

aldosterone are often significantly increased in patients with heart

failure and further increase as the disease progresses (35, 36). In

addition, medications taken by patients with heart failure and the

disease itself can have a dynamic impact on venous congestion.

Nevertheless, this model also has certain advantages, because

compared with the complex pathological mechanism of heart

failure, this model only involves the impact of elevated venous

pressure on endothelial cells, allowing us to better understand the

local changes caused by venous congestion.

The emergence of venous congestion typically precedes the

clinical signs of decompensation by weeks, often culminating in

overt clinical deterioration that necessitates medical intervention.

To address this, we employed a machine learning algorithm to

identify four diagnostic genes associated with ADHF triggered

by VC, namely SMOC2, OGN, FCN3, and SERPINA3. A

nomogram was developed to enhance the practical utility of the

diagnostic model. Potentially, clinicians might be able to detect

these four indicators of heart failure patients and evaluate the

stage of venous congestion through nomogram to adjust

treatment plans in a timely manner, especially the use of

diuretics. However, due to the lack of correction for indicators

such as age, the accuracy of the nomogram still needs more

clinical trials to verify and adjust. These four genes were

subsequently validated against the external dataset GSE16499,

where the AUC for each gene exceeded 0.9, and the composite

genomic AUC was 0.942, underscoring their significant

diagnostic potential. We completed the ssGSEA of these four

genes, hoping to provide new ideas for our understanding of the

molecular mechanism of ADHF after VC.

SPARC-related modular calcium-binding protein 2 (SMOC2),

part of the SPARC family of matricellular proteins, is known to

promote endothelial cell proliferation, migration, and angiogenesis

(37). Research indicates that SMOC2 expression escalates in rats

experiencing heart failure, and silencing SMOC2 can mitigate

heart failure symptoms by modulating autophagy via the TGF-β1/

Smad3 signaling pathway (38). Additionally, mouse studies have

demonstrated that SMOC2 knockdown can ameliorate cardiac

function impairment and cardiac fibrosis, potentially through the

inhibition of the ILK/p38 signaling pathway (39). Furthermore, the

overexpression of SMOC2 has been observed to enhance vascular

smooth muscle cell proliferation, migration, and extracellular

matrix breakdown, pointing to its significant role in cardiovascular

pathophysiology (40).

Osteoglycin (OGN), a constituent of the small leucine-rich

repeat proteoglycan (SLRP) family, plays a critical role in
Frontiers in Cardiovascular Medicine 10
modulating inflammation and cardiac fibrosis (41). Research has

revealed that OGN attenuation can suppress cardiac fibroblast

proliferation and the epithelial/endothelial-mesenchymal

transition, pivotal processes in cardiac remodeling. Moreover,

OGN is known to facilitate apoptosis in cardiac fibroblasts,

mediated through the regulation of the Wnt signaling pathway

(42). Variations in OGN levels offer distinct insights into

myocardial remodeling dynamics (43). Notably, an upsurge in

OGN expression within infarct scars contributes to the proper

maturation of collagen, thereby preventing cardiac rupture and

counteracting adverse remodeling post-myocardial infarction

(MI). Consequently, OGN holds promise as a valuable biomarker

for ischemic heart failure (44).

Ficolins constitute a family of proteins characterized by their

collagen-like and fibrinogen-like domains, playing a crucial role

in triggering the complement lectin pathway (45). Ficolin-3

(FCN3), a principal molecule in this pathway, is pivotal for the

activation of complement component 3 and has been linked to

hypertension risk (46). Emerging evidence from studies on

patients with acute congestive heart failure suggests an

association with complement activation, positioning FCN3 could

as a potential biomarker for this condition (47). However, the

results of two clinical studies indicate that complement activation

products have no prognostic value in acute heart failure (48, 49).

Furthermore, the activation of the complement system and

the consequent production of reactive oxygen species in the

myocardium post-infarction are known to stimulate the

upregulation of cytokines and chemokines. This cascade can

precipitate adverse outcomes, such as left ventricular dilatation

and contractility impairments (50).

Serpin Family A Member 3 (SERPINA3), also known as

α-1-antichymotrypsin (AACT or ACT), is part of the serpin

superfamily, which primarily functions to inhibit serine

proteases. This protein’s elevated levels are observed in

conditions such as heart failure and various neurological

disorders, including Alzheimer’s disease and Creutzfeldt-Jakob

disease (51). Research indicates that SERPINA3 acts as an

endogenous gene responsive to the mineralocorticoid receptor

and can be upregulated by aldosterone (52). Following VC,

alterations in fluid retention and mineralocorticoid levels might

disrupt SERPINA3 balance. Clinical evidence suggests that

heightened SERPINA3 levels in individuals with new-onset or

exacerbating heart failure correlate with increased mortality

rates or unplanned cardiac readmissions, underscoring its

prognostic value for heart failure (53). Furthermore, SERPINA3

has been proposed as a biomarker for assessing right

ventricular myocardial function, particularly in the context of

systemic congestion leading to right ventricular failure (54).

Beyond its myocardial expression, elevated circulating levels of

SERPINA3 have been linked to an increased cancer risk in

heart failure patients, highlighting the necessity for more in-

depth exploration of its clinical implications and molecular

functions (55).

There is currently no gold standard for detecting congestion in

established acute decompensated heart failure. This is usually

assessed by signs and symptoms of heart failure, as well as
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objective evidence of congestion (e.g., elevated BNP, pulmonary

edema on chest x-ray, or pulmonary rales on auscultation) (56).

There is also no uniform or readily available method for

determining when effective dehydration occurs or when a patient

has reached optimal volume status (57). Perhaps it would be an

interesting direction to determine the congestion state of heart

failure patients by detecting these protein markers, but clinical

trials are still needed to further determine the sensitivity,

effectiveness and specific thresholds.

The novel contributions of our investigation are manifold.

Primarily, this study pioneers the bioinformatics exploration of the

interplay between venous congestion and heart failure, dissecting

the intricate mechanisms through which venous congestion may

precipitate the transition from chronic to acute decompensated

heart failure. Secondly, we have pinpointed four diagnostic genes

—SMOC2, OGN, FCN3, and SERPINA3—associated with acute

decompensated heart failure, employing three distinct machine

learning techniques for their identification. Validation of these

genes confirmed that their collective diagnostic model possesses

substantial value, offering a new avenue to assess patient

congestion status effectively. Furthermore, our analysis extends

into the biological processes influenced by venous congestion in

heart failure, providing fresh insights into its potential

mechanisms and refining our understanding of the therapeutic

implications of diuretics. In summary, our study provides a

method to assess venous congestion in patients with heart failure

who do not yet have physical signs of venous congestion (such as

pulmonary rales). Theoretically, by monitoring these indicators, it

can help clinicians to adjust the treatment plan of heart failure

patients in a timely manner at an early stage to avoid the patient’s

transition from chronic stable heart failure to acute

decompensated heart failure.

Despite its contributions, our study acknowledges certain

limitations. Initially, the causal link between the observed

elevation in mRNA levels and a corresponding increase in

protein expression remains undetermined. Additionally, the

possibility that endothelial activation post-venous congestion

might trigger the secretion of other molecules influencing heart

failure, such as exosomes, has not been fully explored. In

addition, our study was based on the GEO dataset, and the

sample size and selection bias of the GEO dataset may limit the

applicability of our results. Of note, the venous congestion

dataset used a venous congestion model based on healthy

individuals (via arm compression) rather than actual HF patients,

which may not accurately reflect the physiological status of HF

patients. While we have developed a nomogram to facilitate the

implementation of the diagnostic model, the precise values and

their clinical relevance require validation through subsequent

clinical trials.
Conclusion

We performed bioinformatics analysis of the GEO dataset to

explore the potential molecular mechanisms by which venous

congestion affects heart failure. Through three machine learning
Frontiers in Cardiovascular Medicine 11
algorithms, LASSO, RF and SVM-RFE, we identified SMOC2,

OGN, FCN3, and SERPINA3 as potential biomarkers for the

evaluation of acute decompensated heart failure caused by

venous congestion. More importantly, diagnostic models and

nomogram tools based on these 4 genes were developed to help

clinically assess the hyperemic status of patients with acute

decompensated heart failure, which may become an interesting

target for future in-depth research.
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