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Editorial on the Research Topic
Genetic and cellular heterogeneity in tumors

Tumorigenesis is a heterogenous process, promoted not only by genetic mutations
within cells, but also by the outer tissue space feeding the mutated cells - tumor
microenvironment (TME). Different genetic mutations can drive tumorigenesis by
perturbing distinct pathways that enable tumor occurrence (Ostroverkhova et al., 2023).
TME consists of tumor cells interacting with diverse non-tumorigenic components,
including immune cells, stromal cells, and other cell types, as well as extracellular
matrix (Anderson and Simon, 2020). These components form a supportive niche that
facilitate tumor cell survival, proliferation and metastasis (de Visser and Joyce, 2023; Li
et al., 2024). The intermix of genetic diversity and TME variability leads substantial
challenges for tumor treatment, as tumor cells can evade therapeutic interventions by
exploiting alternative signaling pathways or adopting protective states within the TME
(Vinay et al., 2015; Sun, 2016; Baghban et al., 2020; Yip and Papa, 2021). Thus,
understanding tumor heterogeneity is essential for developing effective, personalized
tumor treatment.

To address these challenges, numerous technologies have been developed, such as
microarray, next-generation sequencing, single-cell sequencing, spatial omics, mass
spectrometry, 3D cell culture systems, and advanced imaging technologies. Large-scale
national projects like The Cancer Genome Atlas Program (TCGA) (Cancer Genome Atlas
Research Network et al., 2013), Clinical Proteomic Tumor Analysis Consortium (CPTAC)
(Ellis et al., 2013), and Human Tumor Atlas Network (HTAN) (Rozenblatt-Rosen et al.,
2020) have leveraged these technologies to characterize the molecular and cellular landscape
of various tumors. As the cost of these technologies decrease, more researchers conduct in-
depth studies, accumulating unprecedented datasets that enhance our understanding of
tumor heterogeneity and facilitate the development of personalized treatments.

The Research Topic entitled “Genetic and Cellular Heterogeneity in Tumors” focuses on
characterizing the genetic mechanism or TME variations that contribute to tumor
heterogeneity complicating treatments, and new techniques/methods of exploring such.
Here, we gathered four articles of breast cancer or acute myeloid leukemia (AML)
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examining genetic alterations or cell communications within TME,
and their implications with tumor invasion, metastasis, and prognosis.

Breast cancer is one of the most prevalent tumors, significantly
contributing morbidity or mortality and becoming an urgent health
concern (Sung et al., 2021). Triple negative breast cancer (TNBC),
occupying 10%–20% of invasive breast cancer cases, is the subtype
with the worst prognosis caused by the absence of targeted
therapeutic options (Kumar and Aggarwal, 2016). Bone
morphogenetic protein (BMP) signaling has been implicated in
the progression and metastasis of breast cancer, wherein high
expression BMP8A revealed to be correlated with poor survival
(Katsuta et al., 2019). Sui et al. investigated the role of BMP8A in the
progression of TNBC, emphasizing its involvement in bone
metastasis. An elevated expression of BMP8A was observed in
TNBC cohort from TCGA, corroborated by the
immunohistochemical staining experiment, and expression of
BMP8A was associated with patient’s reduced survival. In vitro
cellular function tests conducted in TNBC cell lines, MDA-MB-
231 and BT549, demonstrated that BMP8A overexpression was
accompanied with cell invasion and migration. Additionally,
BMP8A expression was positively correlated with markers from
Epithelial-Mesenchymal Transition (EMT), a key processes
facilitating tumor cell motility (Dongre and Weinberg, 2019), and
Matrix Metalloproteinases (MMPs), which are thought to affect cell
behaviors including tumor spread (Stamenkovic, 2003), suggesting
that BMP8A may enhance invasiveness of TNBC cells by regulating
EMT and MMPs. The study observed a high correlation between
BMP8A expression and key biomarkers associated with bone
metastases, especially the osteolytic factors of RANKL, a key
component in the RANK-RANKL-OPG system that are
associated with bone metabolism and mammary epithelial cell
development. Taken together, Sui et al. revealed relevance of
BMP8A overexpression with tumor invasiveness and bone
metastasis, indicating its therapeutic potential in TNBC.

Metastatic breast cancer accounts for more than 10% of patients,
which is the leading cause of death in this population (Scully et al.,
2012; Esposito et al., 2021). Similar to TNBC, the reason of such high
death is partly attributed to lacking targetable genetic vulnerability
of metastasis. While it is believed that only a subset of genetically
predisposed tumor cells metastasize, deeper insights into genetic
heterogeneity benefits personalized treatment of metastatic breast
cancer (Basho and Chase, 2023). Lake et al. achieve this at certain
degree by combing an organoid-based breast cancer metastatic mice
model with digital droplet polymerase chain reaction (ddPCR) to
investigate genes whose copy number amplifications (CNA)
identified to be associated with breast cancer metastasis. Their
methods focused on CNA invasiveness potential of FGFR1, the
most clinically mature targets identified in their analysis. They found
that invasive organoids display statistically significant copy number
amplification, demonstrating that higher CNA of FGFR1 correlates
with organoid invasion. The organoid-ddPCR model in this study
provides a robust method to capture tumor heterogeneity and
evaluate therapeutic response, with significant implications on
clinical practice and cancer biology.

In addition to genetic heterogeneity, variations in TME also
influence breast cancer progression and treatment outcomes (Desai
et al., 2024). Characterizing the interactions between distinct cells in
TMEmay reveal the critical breast cancer vulnerabilities and provide

novel diagnostic and therapeutic perspectives (Li et al., 2021). Han
et al. reviewed the interplay between myeloid-derived suppressor
cells (MDSCs) and platelets, as well as their effects on the breast
cancer TME of immune, metabolism, and angiogenesis. MDSCs,
known for one of the most effective immunosuppressive cell types,
play critical roles in tumor progression and therapeutic strategy (Li
et al., 2023). Tumor-associated platelets (TAPs) contribute to
immune evasion and tumor spread (Chen et al., 2023). They also
summarize existing preclinical and clinical studies, traditional
Chinese medicine therapeutic approaches, and emerging
technologies related to targeting and preventing the interaction of
MDSCs with TAPs in TME, and discussed the potential mechanisms
and perspective for future. Further investigation into the complexity
and heterogeneity of MDSCs and side effects of antiplatelet agent is
still required for effective strategy development.

Given the large impact of distinct cell types in TME onto tumor
treatment, Han et al. proposed a score system called leukemic stem
cells score (LSCA) to predict the prognosis of acute myeloid
leukemia (AML) patient in terms of the expression-deconvoluted
abundance of cells in TME. AML is the most common type of acute
leukemia in adults and characterized by the immature
differentiation of myeloid cells (De Kouchkovsky and Abdul-Hay,
2016). Leukemic stem cells (LSCs) are believed to be a major
contributor to leukemia progression and drug resistance (Vetrie
et al., 2020; Zhai and Jiang, 2022), but the influence of LSCs within
TME on patient survival remains inadequately investigated.
Currently single cell analysis in large scale hematologic
malignancy is limited, and expression-based model to predict
prognosis is prevalent. Thus, expression-based cellular
deconvolution may be informative in forecasting AML prognosis.
Han et al. applied an expression-based method, CIBERSORT
(Newman et al., 2015), to hundreds of AML samples and
inferred 9 cell-type fractions, subjected to further feature
selection. Five cell types exhibiting significance of estimate
coefficients, including granulocyte-monocyte progenitors (GMPs),
common myeloid progenitors (CMPs), CD45RA + cells (RApos),
megakaryocyte-erythrocyte progenitors (MEPs), and multipotent
progenitors (MPPs), were selected to calculate the LSC activity
(LSCA) score of predicting prognosis. LSCA successfully stratifies
patients with distinct survival across cohorts, where patients with
lower LSCA scores showed favorable clinical outcomes. The area
under the curves (AUCs) analysis indicated the performance of
LSCA score system was comparable to existing prognostic models,
LSC17 (Ng et al., 2016), APS (Docking et al., 2021), and CTC score
(Dai et al., 2021), suggesting its utility as a prognostic tool for tumor.

This Research Topic provides valuable insights into genetic-
driven and TME-driven tumor heterogeneity that influence
progression and therapeutic strategy in tumor. Studies on
BMP8A’s role in TNBC invasiveness, FGFR1 genetic
amplification in metastatic breast cancer, MDSC-platelet
interactions in breast cancer TME, and the development of the
TME-cell-abundance-based LSCA score for AML prognosis all
underscore the importance of tumor heterogeneity in tumor
research. These discoveries result from advanced development of
different technologies. The rapidly evolving technologies will gain
deeper insights into genetic/TME heterogeneity at a finer resolution
and pave a smooth way for the next-generation of personalized
effective treatment in tumor.
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