
Data in Brief 57 (2024) 111159 

Contents lists available at ScienceDirect 

Data in Brief 

journal homepage: www.elsevier.com/locate/dib 

Data Article 

Dataset for gastrointestinal tract segmentation 

on serial MRIs for abdominal tumor 

radiotherapy 

Sangjune L. Lee 

a , 1 , ∗, Poonam Yadav 

b , 1 , Yin Li c , Jason J. Meudt d , 
Jessica Strang 

d , Dustin Hebel d , Alyx Alfson 

d , Stephanie J. Olson 

d , 
Tera R. Kruser d , Jennifer B. Smilowitz 

d , Kailee Borchert d , 
Brianne Loritz 

d , Laila Gharzai b , Shervin Karimpour b , 
John Bayouth 

d , Michael F. Bassetti d 

a Division of Radiation Oncology, Arthur Child Comprehensive Cancer Centre3395 Hospital Drive NW, Calgary, 

Alberta, T2N 5G2, Canada 
b Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of 

Medicine, 675 North Saint Clair Street 21st Floor, Chicago, IL 60611, USA 
c Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 

Walnut Street Madison, WI 53706, USA 
d Department of Human Oncology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, USA 

a r t i c l e i n f o 

Article history: 

Received 17 May 2024 

Revised 8 November 2024 

Accepted 14 November 2024 

Available online 26 November 2024 

Dataset link: UW Madison GI Tract Image 

Segmentation Dataset (Original data) 

Keywords: 

MR-Linac 

Automatic contouring 

Adaptive radiotherapy 

Oncology 

a b s t r a c t 

Purpose: Integrated MRI and linear accelerator systems (MR- 

Linacs) provide superior soft tissue contrast, and the ca- 

pability of adapting radiotherapy plans to changes in daily 

anatomy. In this dataset, serial MRIs of the abdomen of pa- 

tients undergoing radiotherapy were collected and the lumi- 

nal gastro-intestinal tract was segmented to support an on- 

line segmentation algorithm competition. This dataset may 

be further utilized by radiation oncologists, medical physi- 

cists, and data scientists to further improve auto segmenta- 

tion algorithms. 

Acquisition and validation of methods: Serial 0.35T MRIs from 

patients who were treated on an MR-Linac for tumors lo- 

cated in the abdomen were collected. The stomach, small in- 
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testine and large intestine were manually segmented on all 

MRIs by a team of annotators under the supervision of a 

board-certified radiation oncologist. Annotator segmentations 

were validated on 4 representative abdominal MRIs by com- 

paring to the radiation oncologist’s contours using 3D Haus- 

dorff distance and 3D Dice coefficient metrics. 

Data format and usage notes: The dataset includes 467 de- 

identified scans and their contours from 107 patients. Each 

patient underwent 1–5 MRI scans of the abdomen. Most of 

the scans consisted of 144 axial slices with a pixel resolu- 

tion of 1.5 × 1.5 × 3 mm, leading to 67,248 total slices in 

the dataset. Images in DICOM format were converted into 

Portable Graphics Format (PNG) files. Each Portable Graphics 

Format (PNG) image file stored a slice of the scan, with pixels 

recorded in 16 bits to cover the full range of intensity val- 

ues. DICOM-RT segmentations were converted into Comma- 

Separated Values (CSV) format. Data including images and 

the annotations is publicly available at https://www.kaggle. 

com/ds/3577354 . 

Potential applications: While manual segmentations are sub- 

ject to bias and inter-observer variability, the dataset has 

been used for the UW-Madison GI Tract Image Segmenta- 

tion Challenge hosted by Kaggle and may be used for ongo- 

ing segmentation algorithm development and potentially for 

dose accumulation algorithms. 

© 2024 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC license 

( http://creativecommons.org/licenses/by-nc/4.0/ ) 
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pecifications Table 

Subject Medical Imaging 

Specific subject area Serial MRIs of the abdomen of patients undergoing radiotherapy were collected 

and the luminal gastro-intestinal tract was segmented. 

Type of data Raw MRIs, organ segmentation 

Data collection Serial 0.35T MRIs from patients who were treated on an MR-Linac for tumors 

located in the abdomen were collected. The stomach, small intestine and large 

intestine were manually segmented on all MRIs by a team of annotators under 

the supervision of a board-certified radiation oncologist. Annotator 

segmentations were validated on 4 representative abdominal MRIs by 

comparing to the radiation oncologist’s contours using 3D Hausdorff distance 

and 3D Dice coefficient metrics. 

Data source location Department of Human Oncology, University of Wisconsin-Madison, 600 

Highland Ave, Madison, Wisconsin 53,792, USA. 

Data accessibility Repository name: Kaggle 

Data identification number: DOI: 10.34740/kaggle/ds/3577354 

Direct URL to data: https://www.kaggle.com/ds/3577354 

Related research article None 

. Value of the Data 

• To our knowledge, this is the only publicly available dataset of serial abdominal MRIs of

patients undergoing abdominal radiotherapy. 

• The manual segmentation of the gastrointestinal tract can be used in the development of

automatic segmentation algorithms and dose accumulation algorithms. 

https://www.kaggle.com/ds/3577354
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.34740/kaggle/ds/3577354
https://www.kaggle.com/ds/3577354
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• Automatic segmentation of the gastrointestinal tract can improve the efficiency of delivering

adaptive radiotherapy and thereby increase patient access to personalized radiotherapy with

an improved therapeutic ratio. 

• Automatic segmentation is the first step for artificial intelligence and radiomics analysis and

can be used to move radiology from one-dimensional measurements to volumetric measure-

ments. 

• The dataset has been used for the UW-Madison GI Tract Image Segmentation Challenge

hosted by Kaggle. 

2. Background 

Randomized controlled trials show that stereotactic ablative body radiotherapy (SABR) can

improve survival in patients with oligometastatic disease although at a possibly higher risk of

treatment-related toxicity and deaths [ 1 ]. The treatment of malignancies in the upper abdomen

with SABR is particularly challenging due to respiratory and bowel motion, poor visualization of

anatomy with cone-beam CT on most conventional linear accelerators, and the risk of complica-

tions to the gastrointestinal (GI) tract. 

The introduction of integrated MRI and linear accelerator systems, also known as MR-linacs,

enables the delivery of higher radiation doses to abdominal malignancies with SABR while lim-

iting treatment-related toxicity [ 2 ]. Due to the enhanced soft-tissue contrast, MR-linacs provides

the ability to adapt the treatment based on daily changes in shape, size and position of the tu-

mor and surrounding normal tissues to increase the accuracy of treatment delivery [ 2 ]. In combi-

nation with advanced online motion-compensation, SABR delivered on an MR-linac can improve

tumor targeting accuracy by allowing for smaller planning target volume margins. However, MR-

linac based adaptive radiotherapy treatments are much more labour-intensive [ 3 , 4 ]. 

3. Data Description 

Here we present the curation of the Serial Abdominal MRI Collection, a single-institution col-

lection of 107 patients treated with radiotherapy on a 0.35 T MRIdian MR-linac (ViewRay, Oak-

wood Village, OH) at the University of Wisconsin Carbone Cancer Center from 2015 to 2019. The

Serial Abdominal MRI Collection contains 1-5 de-identified serial volumetric abdominal MRIs of

each patient acquired on separate days during their radiotherapy treatment and manual seg-

mentations of the gastrointestinal tract. This data has been uploaded onto the online machine

learning community and competition platform, Kaggle, and was used in an online competition

to find the best machine learning algorithm to automatically segment the gastrointestinal tract.

The full dataset is available for open access for interinstitutional comparisons and ongoing eval-

uation of new segmentation algorithms. 

The final dataset contains 467 de-identified scans and their contours from 107 patients from

2015 to 2019. The dataset has been used for the UW-Madison GI Tract Image Segmentation

Challenge hosted by Kaggle ( https://www.kaggle.com/competitions/uw- madison- gi- tract- image- 

segmentation ), and is publicly available at https://www.kaggle.com/ds/3577354 [ 5 ]. Sample slices

from two scans along with their annotated contours are shown in Fig. 1 . 

Data from each patient are organized into folders named “caseX”, where X is a randomly

generated patient ID. Each folder might contain multiple scans from the same patient acquired

at different time intervals, with each scan saved in a separate sub-folder named “caseX_dayY”,

where X is the same patient ID and Y is the time relative to the first scan with day 0 indicating

the first scan, the simulation scan. For example, “case10_day12” means that the scan was from

patient ID 10 and captured 12 days after the simulation scan. Each sub-folder contains a set of

Portable Graphics Format (PNG) image files storing the slices in the scan with 16-bit pixel data.

The image file names follow “slice_[ID]_[slice width (in pixels)]_[slice height (in pixels)]_[spacing

https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation
https://www.kaggle.com/ds/3577354
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Fig. 1. Example images and their corresponding annotated contours from the dataset. Each row displays sample slices from a single scan, with contours color-coded according to the 

organ. 
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width (in mm)]_[spacing in height (in mm)]”, e.g., slice_0 0 01_276_276_1.63_1.63.png. SliceID in-

dexes the slices in their axial order, and the rest of the 4 numbers indicate slice height and

width (integers in pixels), and height and width pixel spacing (floating points in mm). The axial

spacing is 3 mm for all scans and thus is not encoded in the file name. 

All contours from the scan are stored in a single CSV file with 3 data fields (columns): (slice)

ID, class, and segmentation. “ID” follows “caseX_dayY_sliceID” (e.g., case123_day20_slice_0 0 01),

and points to one slice indexed by “sliceID” within a case indicated by “caseX_dayY”. “class”

records the type of organ and must be one of the following: large bowel, small bowel, and

stomach. “segmentation” is the run-length encoded mask [ 6 ] on the target slice of the particular

organ. If an organ is not presented at the slice, the “segmentation” field is kept empty. 

3.1. Usage notes 

The Serial Abdominal MRI Collection is provided as a collection of Portable Graphics Format

(PNG) files with accompanying CSV files. The dataset can be downloaded as a single compressed

file in ZIP format by clicking the “Download” button on the Kaggle webpage. This file can be

further decompressed into data folders. To facilitate access to the dataset, we have also pro-

vided sample code (sample_loader.py) as part of our dataset. Images and their annotations can

be accessed using existing tools. PNG files storing individual slices can be viewed using an image

viewer that supports 16-bit pixel values, such as ImageJ [ 7 ]. CSV files storing the annotations can

be viewed with a spreadsheet editor, such as Microsoft Excel. However, decoding the contours

stored in the CSV files requires a specialized program, which is included in the sample code. 

Use of this data set is open to all researchers in accordance with the Kaggle usage policies.

When citing this collection, both the DOI (10.34740/kaggle/ds/3577354) for this collection and

this dataset manuscript should be cited. 

3.2. Code availability 

Python code for reading the imaging data and visualizing the masks are provided to facilitate

the use of the data. The visualization code superimposes color-coded masks of organs on top

of an intensity image of a slice. We briefly summarize the code. The code is made available at

https://github.com/happyharrycn/UW- Madison- GI- Tract- Segmentation- Data- Tools . 

4. Experimental Design, Materials and Methods 

4.1. Patient selection 

To develop this dataset, the records of consecutive patients with malignancies located in

the upper abdomen treated on a single 0.35T MR-linac at the University of Wisconsin Car-

bone Cancer Center from 2015to 2019, were screened. After the exclusion of patients with prior

GI tract resection, tumors greater than 10 cm causing deformations of the GI tract, or large

image artifacts from metal or motion that overlaps with the GI tract, a total of 107 patients

were included. This study was approved by the institutional review board of the University of

Wisconsin-Madison. Clinical data were stored in and retrieved from EPIC (EPIC Systems, Verona,

WI), Viewray treatment planning system (Viewray, Oakwood Village, OH), and ARIA (Varian

Medical Systems, Palo Alto, CA). 

35 of 107 patients had the most common primary histology of pancreatic adenocarcinoma

( Table 1 ). 79 of the 107 patients had treatment to the primary site of disease while the remain-

ing 28 were treated to a metastatic lesion. The most common anatomic site of treatment was

the pancreas with 41 patients, followed by the liver with 38 patients. 

https://github.com/happyharrycn/UW-Madison-GI-Tract-Segmentation-Data-Tools
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Table 1 

Characteristics including primary histology, body site and whether the tumor was a metastatic site for patients in this 

data set. 

Characteristics N = 107 % 

Primary Cancer 

Adrenal 1 1% 

Anal 1 1 % 

Biliary Tree 12 11 % 

Breast 2 2 % 

Colorectal 7 7 % 

Esophagus 9 8 % 

HCC 9 8 % 

Hematologic 7 7 % 

Lung 9 8 % 

Pancreas 35 33 % 

Prostate 2 2 % 

Renal 3 3 % 

Skin 2 2 % 

Stomach 4 4 % 

Thyroid 1 1 % 

Uterine 3 3 % 

Body Site 

Adrenal 4 4 % 

Esophagus 7 7 % 

Kidney 5 5 % 

Liver 38 35 % 

Lymph Node 6 5 % 

Pancreas 41 37 % 

Stomach 6 7 % 

Primary versus Metastasis 

Metastasis 28 26 % 

Primary 79 74 % 
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Because patients with large tumors and those that underwent gastrointestinal surgery were

xcluded, these patients had relatively normal anatomy. The presence of small tumors increases

he variability in the anatomy compared to a dataset of healthy volunteers or patients with-

ut cancer. Therefore, this dataset with a representative sample of patients with cancer can be

sed for diverse research purposes on cancer patients. Table 1 : Characteristics including primary

istology, body site and whether the tumor was a metastatic site for patients in data set. 

.2. Image acquisition 

All images in this dataset were acquired at the University of Wisconsin Carbone Cancer Cen-

er. 0.35T abdomen MRIs were obtained at the time of radiotherapy simulation and daily during

adiation delivery on an integrated MR-linac system, which started about 2 weeks after the ra-

iotherapy simulation. The 0.35T MRI underwent regular imaging quality assurance. Weekly and

onthly imaging quality assurance was performed to test the geometric accuracy, high contrast,

patial resolution, slice thickness accuracy, slice position accuracy, image intensity uniformity,

nd distortion. There were no major variations in quality over time. Each daily radiotherapy frac-

ion was delivered at least 1 day apart. The abdominal MRI at simulation and up to 4 additional

RIs taken during radiotherapy scheduled daily or every other day were included in the dataset.

RIs were acquired prior to online adaptive replanning, approximately 10–20 min prior to the

elivery of radiotherapy. There were approximately 7–14 days between simulation scan and the

rst fraction. There were between approximately 7–14 days between the first and last fraction.

verall, the serial MRIs for each patient were taken over a period of approximately 3–4 weeks.

atients were positioned and immobilized in head-first supine position on a thin mattress, head
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rest, with both arms up using a wing board and a triangular knee support. Gadoxetate disodium

(Bayer, Leverkusen, Germany) was used for liver metastases cases, and 3–4 h of fasting prior

to simulation scans and radiation delivery was required for any patients with metastases near

gastrointestinal luminal organs. True fast imaging with a steady state precession (TrueFISP) was

used for the simulation and daily scans. The planning MRIs were captured with torso receiver

coils placed on patients. Most of the MRIs ( > 95 %) have a field of view of either 40 ×40 ×43 cm

(with pixel size 0.15 ×0.15 ×0.3 cm) or 54 ×47 ×43 cm (with pixel size 0.16 ×0.16 ×0.3 cm). Most

scans covered the diaphragm superiorly to the L3-4 vertebra inferiorly. MR scans were acquired

in the maximum inhale breathe hold phase. 

4.3. Dataset curation 

10 annotators manually contoured the abdominal MRIs. All annotators were actively involved

in the treatment of patients on a single Viewray system and included 4 radiation therapists, 4

radiation planners, and 2 radiation physicists (P.Y., J.M., J.S., D.H., A .A ., S.O., T.K., J.S., K.B., B.L.).

All contours were manually reviewed by a board-certified radiation oncologist specializing in GI

malignancies (S.L.L.). 467 abdominal MRIs from 107 patients were manually contoured. 

MIM (version 6.6.11, MIM Software Inc., Cleveland, OH) was used for contouring of the GI

tract, and Matlab (version R2021a, The MathWorks, Inc., Natick MA) was used for DICOM-to-PNG

conversion on clinical Mac desktop computers (Apple Inc., Cupertino, CA). No routine prepro-

cessing steps of the MRIs were required, although individual annotators were allowed to change

the window levels to improve the visualization of the GI tract. The 2D Brush tool was used for

manual contouring. In cases where there was sufficient contrast between the organ of interest

and surrounding adipose tissue, the use of the Dynamic Brush, an automatic thresholding tool,

was acceptable. The Smooth Tool, was used to smooth out the contours prior to interpolation. In-

terpolation of contours was allowed for every other slice but had to be checked for accuracy. The

GI tract from the gastro-esophageal junction to the large intestines (stomach, small intestines,

large intestines) were contoured de novo using standard contouring guidelines [ 8 , 9 ]. The orig-

inal contours used for the delivered radiotherapy plans were not included in this dataset due

to inconsistencies between physicians and incomplete contouring. For example, in many cases,

the radiation oncologist only contoured the GI tract in the transverse slices within 3 cm of the

PTV [ 10 ]. In order to contour the organs and landmarks consistently and completely, specific

instructions were followed by all annotators (see supplementary material). The transition from

the esophagus to the stomach was specified as the MRI slice where the left and right diaphrag-

matic crura surround the GI lumen by 180-degrees. The duodenum was included with the small

intestines due to the relative difficulty in finding a consistent border between the duodenum

and the jejunum [ 11 ]. To minimise any ambiguity between organs, annotators were instructed

to contour the stomach first, then the large bowel, then the small bowel, as the small bowel had

the least predictable position. The GI luminal organs were selected for contouring in this dataset

as high performing auto-contouring solutions exist for solid GI organs [ 11 , 12 ]. Annotators had

no time limit for completing the contours on each abdominal MRI. 

Annotators were given a list of patients to contour. Each MRI was contoured by a single an-

notator. A supervising radiation oncologist (S.L.L.) instructed that the annotators make correc-

tions where necessary until the contours were of sufficient accuracy. The radiation oncologist

reviewed all the contours and gave feedback for any necessary corrections iteratively before the

annotator moved onto the next patient on their respective lists ( Fig. 2 ). While no quantitative

criteria were used for quality control, the contours were required to be sufficiently accurate to

be used in a clinical radiotherapy planning scenario. 

The mean contouring time per MRI for all annotators was 31.5 min. The mean contouring

time per MRI was 23 minutes for the fastest annotator and 38 min for the slowest annotator.

On average each annotator contoured 46.7 MRIs, with a range of 19–91 MRIs. 

Overall, 47.5 % of the MRIs required revisions before they were approved by the radiation

oncologist. Reasons for revision included mislabelling pancreas and blood vessels as bowel, con-
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Fig. 2. Schema representation of image collection and manual segmentation of dataset. Day 0 is the MRI simulation and 

Days 6, 8 and 12 are the MRIs taken before the delivery of each fraction in this example. 
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Fig. 3. Comparison of each annotator’s contours to those of a radiation oncologist’s on a common set of 4 MRIs. (a) 

Hausdorff distance for each organ. (b) Dice coefficient for each organ. (c) Hausdorff distance of the stomach, large in- 

testine and small intestine in aggregate for each annotator. (d) Dice coefficient of the stomach, large intestine and small 

intestine in aggregate for each annotator. On each box, the central mark indicates the median, and the bottom and top 

edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data 

points not considered outliers, and the outliers are plotted individually using the ’ + ’ symbol. The whiskers correspond 

to approximately + /– 2.7 σ and 99.3 percent coverage if the data are normally distributed. 

 

 

 

 

 

 

 

 

 

 

 

 

fusing small bowel with large bowel, missing bowel loops, including fat as small bowel loops,

incorrectly drawing edges at the interface between gas and liquids, and not contouring the full

superior to inferior extent of the organs. 

The method of contouring used in this study can be applied to other imaging modalities

such as higher-field MRI and CT scans. However, the accuracy of the contouring would depend

on factors such as slice thickness, soft tissue contrast and the type of pulse sequence used. 

4.4. Data validation 

All annotators were asked to contour the same 4 representative abdominal MRIs to ensure

accuracy before moving onto their assigned patients. The contours on the 4 representative MRIs

were compared to the radiation oncologist’s contours using 3D Hausdorff distance and 3D Dice

coefficient metrics ( Fig. 3 ). The stomach had the lowest Hausdorff distance and highest Dice

coefficient while the small intestines had the highest Hausdorff distance and lowest Dice coeffi-

cient, reflecting the anatomic complexities of each organ ( Table 2 ). The inter-observer variability

was in line with that observed for CT based contours [ 13 ]. In general, a Dice coefficient above

0.9 and a Hausdorff distance of less than 10 mm could be considered as excellent. However, the
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Table 2 

Comparison of each non-radiation oncologist annotator’s contours for each organ to those of a radiation oncologist’s on 

a common set of 4 MRIs. 

Hausdorff distance mean ±
standard deviation (mm) 

Dice coefficient mean ±
standard deviation 

Large Intestines 32.3 ± 12.3 0.85 ± 0.03 

Small Intestines 35.5 ± 12.6 0.76 ± 0.04 

Stomach 18.0 ± 6.9 0.90 ± 0.02 

a  

F  

p  

c

4

 

t  

P  

m  

p  

i  

s  

u  

i  

T  

w  

D

 

o  

f  

r  

P

 

a  

w

4

 

m  

g  

s  

r  

t  

s  

l  

c  

s  

m

pplicability and acceptability of these quantitative metrics in radiotherapy is context specific.

or example, the Hausdorff distance may be important for ensuring no ablative radiation hot-

ots fall on the organ at risk, while the Dice coefficient may be more important for assessing

ontour adaptation time and time-saving [ 14 ]. 

.5. Data anonymization and transmission to Kaggle 

Custom code in Matlab (version R2021a, The MathWorks, Inc., Natick MA) was developed

o convert a DICOM scan [ 15 ] into a set of Portable Graphics Format (PNG) files. Conversion to

ortable Graphics Format (PNG) format ensured that all patient identifying information was re-

oved and that the public dataset would be more accessible to a wider audience including com-

uter scientists without a medical imaging background. Each Portable Graphics Format (PNG)

mage file stored a slice of the scan, with pixels recorded in 16 bits. The DICOM files are also

tored pixels in 16 bits. Therefore, the converted PNG files cover the full range of intensity val-

es. Information in the DICOM header was discarded during the conversion to de-identify the

maging data, with the exception of the 3D spacing, which was recorded in the image file names.

he same Matlab code also exported DICOM-RT contours into binary Matlab format (MAT) files,

here each contour was stored as a 3-dimensional binary mask. Similarly, information in the

ICOM-RT [ 16 ] header was removed. 

A custom Python (version 3.7, Python Software Foundation, DE) program was further devel-

ped to organize the Portable Graphics Format (PNG) and MAT files into the data format ready

or release. Portable Graphics Format (PNG) files of the same scan were grouped into a sepa-

ate folder. MAT files were also converted into Comma-Separated Values (CSV) format using the

ython code. Masks of one scan were stored in a single CSV file. 

Folders including all scans, together with CSV files of all contours, were packed into a zip file

nd released to Kaggle. The Kaggle team further repackaged the data to facilitate the integration

ith the platform. 

.6. Data reusability 

Segmentation is often the initial step in a biomedical imaging analysis pipeline. By auto-

atically segmenting organs of interest, researchers can then focus on applying artificial intelli-

ence algorithms on those organs or look at radiomic features. In radiation oncology, automatic

egmentation can help guide and evaluate deformable registration algorithms which are a pre-

equisite for any dose accumulation calculations. By tracking the position and shape of the GI

ract over time, one could calculate the optimal planning organ at risk (PRV) margins. Automatic

egmentation allows radiologists to make more objective anatomic measurements. Instead of re-

ying on one-dimensional measurements, more robust volumetric measurements can highlight

hanges in anatomy. For example, instead of measuring the diameter of the small bowel on one

lice of a volumetric image, determining the overall volume of the whole small bowel may be

ore sensitive in detecting bowel obstruction. 
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Limitations 

A limitation of this dataset is that manual segmentations are subject to bias and inter-

observer variability. Due to the time-consuming nature of manually contouring the GI tract, the

majority of the MRIs were only contoured by a single annotator and therefore inter-observer

variability of the segmentation on every MRI could not be determined. We acknowledge that

the inter-observer variability of any data set can limit the performance of the automatic seg-

mentation algorithms derived from that data. The images were contoured on the axial slices

and therefore segmentation algorithms based off this data set may perform better on individ-

ual axial slices compared to other orientations. Further refinements in the segmentations could

possibly be made to improve the dataset. The Hausdorff distance metric used in the validation

is sensitive to outliers but is appropriate as the maximum point dose can vary greatly due to

outlier contours with adaptive SABR. A Hausdorff distance > 10–30 mm for the small intestines

is in line with other studies on interobserver contouring variation [ 13 ]. Data was compiled from

a single institution in the US which could limit its generalizability to other populations. The eth-

nicities of the patient population included in this data set, while not specifically analysed, likely

represents the demographics of Madison, Wisconsin, with 69 % Caucasian, 9 % Asian, and 7 %

Black [ 17 ]. Despite these limitations, this is the first publicly available dataset of gastrointestinal

tract segmentations on MRIs to the authors’ knowledge. 
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