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The prevalence of type 2 diabetes (T2D) varies among
populations of different races/ethnicities. The influence
of genetically proxied LDL cholesterol lowering through
proprotein convertase subtilisin/kexin 9 (PCSK9) and
HMG-CoA reductase (HMGCR) on T2D in non-European
populations is not well established. A drug target
Mendelian randomization approach was used to assess
the effects of PCSK9 and HMGCR inhibition on T2D risk
and glycemic traits in five populations: East Asian (EAS),
South Asian (SAS), Hispanic (HISP), African (AFR), and
Europe (EUR). Our study did not find relationships be-
tween genetically proxied PCSK9 inhibition and T2D
risk in the EAS (odds ratio [OR] 1.02; 95% CI 0.95–1.10),
SAS (1.05; 0.97–1.14), HISP (1.03; 0.94–1.12), or EUR popu-
lation (1.04; 0.98–1.11). However, in the AFR population,
primary analyses suggested an increased risk of T2D
resulting from PCSK9 inhibition (OR 1.53; 95% CI
1.058–2.22; P = 0.024), although this was not supported in
sensitivity analyses. Genetically proxiedHMGCR inhibition
was associated with an increased risk of T2D in SAS (OR
1.44; 95% CI 1.30–1.61; P = 9.8 × 10212), EAS (1.36;
1.22–1.51; P = 4.2 × 10210), and EUR populations (1.52;
1.21–1.90; P = 3.3 × 1024). These results were consistent
across various sensitivity analyses, including colocalization,
indicating a robust finding. The findings indicate a neutral
impact of long-term PCSK9 inhibition on T2D and glycemic
markers in most non-EUR populations, with a potential in-
creased risk in AFR cohorts. By contrast, HMGCR inhibition
increased the risk of T2D in SAS, EAS, and EUR cohorts,

underscoring the need to consider diversity in genetic re-
search onmetabolic diseases.

Type 2 diabetes (T2D) affects �410 million people world-
wide (1), with prevalence differing significantly by region
and race and ethnicity (2). For example, in the U.S., T2D
prevalence in the Hispanic (HISP) population is nearly
double that in the European (EUR) population (2). These
differences highlight the need for a deeper understanding
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of T2D risk factors, molecular mechanisms, and treat-
ment strategies across diverse populations (3).

T2D often coexists with cardiovascular disease (CVD),
the leading cause of death in patients with T2D (4). Pre-
venting CVD through lipid-lowering therapies, such as sta-
tins and proprotein convertase subtilisin/kexin 9 (PCSK9)
inhibitors, is crucial in T2D management (5). Although sta-
tins have been linked to a modestly increased T2D risk
in recent meta-analyses (6–8), the relationship between
PCSK9 inhibition and T2D is less clear. Randomized con-
trolled trial (RCT) data failed to find evidence of an adverse
impact on T2D risk (9), and long-term efficacy and safety
data are currently not available. Early drug target Mendel-
ian randomization (MR) studies suggested that PCSK9 var-
iants lower LDL cholesterol (LDL-C) but increase T2D risk
(7), although more recent MR studies have not confirmed
this (7). Most studies have focused on the EUR population,
leaving the long-term effects of statin and PCSK9 inhibi-
tion on T2D in non-EUR populations unknown.

To address long-term safety concerns in non-EUR popu-
lations, we used summary-level genome-wide association
study (GWAS) data from East Asian (EAS), South Asian
(SAS), African (AFR), HISP, and EUR populations, per-
forming drug target MR analyses to assess the impact of
LDL-C lowering via PCSK9 variants on T2D risk and glyce-
mic traits. We compared these estimates with those for
LDL-C lowering by the statin target HMG-CoA reductase
(HMGCR) (8). A multiomic approach was applied, using
PCSK9 instruments based on LDL-C levels (10), circulating
PCSK9 protein levels (10), and liver PCSK9 expression
data (11) to model the effects of anti-PCSK9 monoclonal
antibodies and inclisiran (12). Given preclinical findings
suggesting pancreatic PCSK9 may influence b-cell LDLR
expression and insulin secretion (13), we also analyzed the
glycemic impact of pancreatic PCSK9 expression. These re-
sults will enhance our understanding of the long-term
safety of PCSK9 and HMGCR inhibition in diverse popula-
tions and their efficacy for CVD management in the con-
text of T2D, addressing health disparities caused by the
underrepresentation of non-EUR populations in studies
(14).

RESEARCH DESIGN AND METHODS

Figure 1 provides an overview of the study, which follows
the STROBE guideline (STROBE checklist).

Data Sources
This study used only preexisting deidentified publicly ac-
cessible summary-level GWAS data. Details regarding sex,
age, and other demographic groupings for these data sets
are provided in the respective GWAS publications referenced
in the manuscript (with links provided in Supplementary
Table 1). Sex was not considered a factor in the statistical
analysis. Furthermore, all contributing GWAS studies re-
ceived institutional review board approval and informed

consent from participants, in line with the Declaration of
Helsinki.

For our exposure LDL-C data, we used GWASs of
LDL-C levels from the 2021 Global Lipid Genetics Consor-
tium (GLGC) LDL-C population-specific meta-analyses of
AFR (n # 94,623), EAS (n # 82,587), SAS (n # 40,472),
HISP (n # 46,039), and EUR populations (n # 1,320,016)
(15). For T2D in EAS, SAS, and EUR populations, we used
the Diabetes Meta-Analysis of Trans-Ethnic association
studies (DIAMANTE) population-specific meta-analyses
(EAS n = 433,540; SAS n = 49,492; EUR n = 898,132)
(16). HISP and AFR data were not available in the DIA-
MANTE cohorts, and we used HISP T2D data (n = 10,106)
from the Population Architecture using Genomics and Epi-
demiology study (17). Because a recent MR study evaluated
the impact of lipids and lipid-lowering drug targets on
T2D in the AFR population using results from the Million
Veteran Program cohort (18), we used another indepen-
dent AFR GWAS of T2D (N = 4,347) (19). We used GWAS
data from the Meta-Analyses of Glucose and Insulin-
Related Traits (MAGIC) Consortium (20) to evaluate
the glycemic impact of lipid-lowering targets on HbA1c,
fasting glucose, fasting insulin, and 2-h glucose levels
across five populations (2-h glucose data were unavailable
for the SAS population). We also assessed the impact on
insulin-stimulated glucose uptake in the EUR cohort using
GWASs of the modified Stumvoll insulin sensitivity index
(ISI) and insulin fold change (IFC) (21).

Instrumentation
To construct the PCSK9 and HMGCR instruments, we se-
lected genetic variants within 100 kb on either side of
gene boundaries that were associated with LDL-C levels
(genome-wide significance P < 5 × 10�8) to proxy the pri-
mary physiologic response to pharmacologic inhibition of
these targets (9). We clumped the PCSK9 and HMGCR
variants at linkage disequilibrium (LD) r2 # 0.2 using a
250-kb window and the respective population-specific 1000
Genomes Project (1000G) reference panels (22). That is, for
each population-specific analysis, we applied the corre-
sponding reference panels from the 1000G: the EAS panel
for EAS analyses, the SAS panel for SAS analyses, the AFR
panel for AFR analyses, the HISP panel for HISP analyses,
and the EUR panel for EUR analyses. For PCSK9, we also
created instruments composed only of functional variants
(the gain-of-function R46L [rs505151] and the loss-of-
function E670G [rs11591147] (23)). Both E670G and
R46L data were available for analysis in SAS, AFR, HISP,
and EUR populations, whereas only R46L data were avail-
able in the EAS population because E670G information
was not present in the EAS LDL-C GWAS data. Detailed
information for each drug target instrument is shown in
Supplementary Tables 2 and 3.

To further explore the impact of PCSK9 inhibition on
T2D and glycemic traits, we conducted drug target MR
analyses using expression quantitative trait loci (eQTL)
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Figure 1—Study overview. Presented are details outlining instrument selection, data sources, and analysis plan. Top panel describes
populations included in the study and the countries of origin for each data set (stars reflect the approximate geographic locations of the
data sets included in the publicly available GWAS data). We constructed genetic instruments for PCSK9 and HMGCR extracting variants
at the gene target locus (±100 kb) from population-specific summary-level GWAS data of circulating LDL-C levels (2021 GLGC meta-
analysis GWAS for EAS, SAS, AFR, HISP, and EUR populations). For PCSK9, we also constructed alternative instruments composed of
previously identified functional variants (R46L, E670G). Similarly, we constructed polygenic LDL-C instruments using conventionally
genome-wide statistically significant (P< 5 × 10�8) variants across the genome that were conditionally independent at LD r2 < 0.001. We ob-
tained GWAS summary statistics for T2D and glycemic markers from each population and harmonized the exposure and outcome before
performing MR. Additional information regarding GWAS data sources is presented in Supplementary Table 1. For the drug target MR geneti-
cally proxying LDL-C lowering via the PCSK9 and HMGCR loci, we used the IVW random effects method accounting for the correlation be-
tween the genetic variants, for 21 SNP instruments, and for single SNP instruments, the Wald ratio, as main methods. We performed
colocalization under the single- and multiple-variant models for exposure-outcome pairs that had MR estimates with P values<0.05.
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from GTEx (version 8) and protein QTL (pQTL) from de-
CODE (N = 35,559) (10). We created tissue-specific PCSK9
expression instruments using liver eQTL (n = 178) and
pancreatic eQTLs (n = 243) (11). cis-PCSK9 variants were
selected and clumped using the same criteria as for LDL-C
data-derived PCSK9 instruments. PCSK9 protein levels
were measured in normalized units (10), and eQTL data
were in transcripts per million (11). Because pQTL and eQTL
data for non-EUR cohorts were unavailable, these analyses
were limited to EUR T2D data and glycemic markers.

Change in LDL-C levels is the primary biomarker mea-
sured to assess the physiologic response to PCSK9 inhibi-
tion and statin therapy (24,25), and dyslipidemia has also
been associated with T2D risk (20). Therefore, we investi-
gated the relationships of circulating LDL-C and both
T2D and glycemic traits in the five populations using
polygenic LDL-C instruments. For the polygenic LDL-C in-
struments, we identified variants associated in respective
population-specific 2021 GLGC GWASs of LDL-C levels at
conventional genome-wide significance (P < 5 × 10�8) lo-
cated throughout the genome. We clumped the variants
at LD r2 # 0.001 (10,000-kb window) using the appropri-
ate 1000G reference panel (22). Information for polygenic
LDL-C instruments is provided in Supplementary Table 2.

Statistical Analyses
The assumptions of MR also apply to drug target MR.
These assumptions (Supplementary Fig. 1) include 1) rele-
vance (MR instruments must be associated with the expo-
sure) 2) exchangeability (MR instruments should not
influence outcomes through pathways other than the expo-
sure of interest), and 3) exclusion restriction (instruments
should not affect the outcome via an exposure-independent
mechanism or influence another trait that could affect the
outcome [no horizontal pleiotropy]) (26). To assess the rele-
vance assumption, we calculated F statistics and R2 for each
population-specific variant, retaining only strong instru-
ments (F statistic >10) (26). Complementary MR meth-
ods and alternative instruments were used to assess
adherence to the exchangeability and exclusion restriction
assumptions (26). For single-variant instruments, we
used the Wald ratio. For instruments with two or more
variants, we applied inverse-variance weighting (IVW)
MR, MR Egger, and maximum likelihood methods, incor-
porating correlation matrices from the 1000G to account
for LD between variants (27). These methods assessed the
relationship of PCSK9 and HMGCR with outcomes and
checked for potential MR assumption violations (26,27).
Consistency across methods indicates unbiased estimates
(26). For polygenic LDL-C and PCSK9 instruments (R46L
and E670G variants), IVW was the main method for multi–
single nucleotide polymorphism (SNP) instruments, with
Wald ratio for single-SNP instruments. Complementary
methods (MR Egger, weighted median, and weighted mode)
were used as sensitivity analyses to ensure robustness
and evaluate MR assumption violations, such as horizontal

pleiotropy (26,27). We also conducted the MR Egger inter-
cept test, Cochran Q test for heterogeneity, and MR
Steiger test to check the causal direction (27). The MR
LASSO method was used to remove outliers in polygenic
LDL-C analyses.

Sensitivity Analyses: Multivariable MRWith BMI
The MAGIC GWAS glycemic trait data were adjusted for
BMI, which can introduce bias into the SNP associations
and MR effect estimates (28). Multivariable MR (MVMR),
which estimates the direct effect of multiple exposures on
an outcome, can reduce this bias by incorporating the her-
itable covariate (BMI) used in the GWAS (29). To assess
the robustness of glycemic trait analyses, we performed
MVMR incorporating BMI genetics into the PCSK9, HMGCR,
and polygenic LDL-C models using GWAS BMI data available
for all populations (30–33). MVMR instruments were con-
structed using the same instrumentation strategies as out-
lined for the drug target and single-variable MR methods
described above. We could not construct an MVMR instru-
ment for PCSK9 in the SAS population to confirm the HbA1c
finding because the PCSK9 SAS instrument contained only a
single SNP, making it impossible to perform these analyses.

Interpretation of MR Results
We report MR 95% CIs as odds ratios (ORs) for T2D risk
and effect estimates for continuous glycemic traits, align-
ing estimates with the physiologic effects of PCSK9 inhib-
itors and statins by converting MR estimates to an SD
lowering in LDL-C. Although we advise caution in relying
solely on P values (34), we used a Bonferroni-corrected
threshold of 0.005 (0.05/5 outcomes × two targets) to de-
fine strong evidence for a genetics-based relationship.
Findings with P values between 0.005 and 0.05 were con-
sidered weak evidence. For MVMR sensitivity analyses,
we used P = 0.05 and assessed consistency through over-
lapping CIs across MR methods.

Colocalization Analyses
For drug target estimates with P < 0.05, we performed co-
localization analyses to assess shared causal variants be-
tween exposure and outcome in the PCSK9 or HMGCR
locus, evaluating the exclusion restriction MR assumption
(35). The primary method involved testing for single or
multiple causal variants using the coloc.abf function in the
coloc R package. This function estimates posterior probabil-
ities for five configurations of association between two
traits, assuming one causal variant per trait: 1) H0 (no as-
sociation for either trait), 2) H1 (association for trait 1), 3)
H2 (association for trait 2), 4) H3 (both traits are associ-
ated with different variants) and 5) H4 (both traits share a
causal variant) (35). We included variants within ±100 kb
of the loci and used default coloc priors (p1, p2 = 1 × 10�4

and p12 = 1 × 10�5). Low H3 and H4 probabilities with
high H1 indicated underpowered analyses, possibly because
of weak genetic signals (35). An alternative H4 was calcu-
lated by dividing H4 by the sum of H3 and H4, as used in
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other drug target MR studies (35). If H3 >0.6 suggested
multiple causal variants, we used SuSiE regression colocali-
zation to confirm multiple shared variants (36). Colocaliza-
tion evidence was defined by H4 or alternate H4 >0.60.

Data and Resource Availability
This study was conducted using publicly available data and
codes that are accessible in public databases and open for
public access. Links to GWAS sources and the lipid-lowering
drug targets and polygenic lipid instruments are available in
Supplementary Table 1. All analyses were completed with ex-
isting software packages. This study uses the TwoSample-
MR (https://mrcieu.github.io/TwoSampleMR/), Mendelian-
Randomization (https://cran.r-project.org/web/packages/
MendelianRandomization/index.html) (37,38), and coloc
R (https://github.com/chr1swallace/coloc) packages, with R
software (version 4.0.3). BioRender.com was used to assist
with figure generation. Inquiries can be directed to the cor-
responding author.

RESULTS

Instrument Strength
F statistics for PCSK9 and HMGCR drug target instru-
ments in each population were strong (Supplementary
Table 2). The average F statistics for LDL-C lowering
ranged from 40.13 (SAS) to 279 (EUR) for PCSK9 variants

and from 55.3 (AFR) to 241.3 (EUR) for HMGCR variants.
Alternate PCSK9 instruments (Supplementary Tables 3
and 4) were similarly robust, suggesting minimal weak in-
strument bias (39) (Supplementary Table 5). PCSK9 in-
struments explained an average of 1.5% of LDL-C variance
(3.9% in EAS and 0.5% in SAS), whereas HMGCR instru-
ments explained 0.36% on average (0.12% in AFR and
0.62% in EAS). Polygenic LDL-C instruments were also
strong (Supplementary Table 2).

Impact of LDL-C Lowering by PCSK9 and HMGCR on
T2D
Estimates of genetically proxied PCSK9 inhibition and T2D
risk in SAS, EAS, HISP, and EUR populations included the
null (Fig. 2 and Supplementary Table 6), aligning with re-
sults using functional variants (R46L and E670G in SAS,
HISP, and EUR and R46L in EAS) (Supplementary Table 7).
In the AFR population, there was weak evidence that
LDL-C lowering via PCSK9 variants increased T2D risk (OR
1.53; 95% CI 1.058–2.22; P = 0.024), but this was inconsis-
tent across instruments. In contrast, strong evidence in
EAS and EUR populations indicated HMGCR inhibition in-
creased T2D risk, with SAS showing weak evidence (OR
1.698; 95% CI 1.051–2.743; P = 0.031) (Fig. 2). HMGCR
estimates were generally consistent across MR methods,
with no evidence of pleiotropy from MR Egger intercept es-
timates. Regarding colocalization of the T2D results with
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Figure 2—MR results of the impact of PCSK9 (A) and HMGCR (B) inhibition on T2D risk. Results report the IVW estimates from MR analy-
ses that incorporated correlation between SNPs. Because there were only two SNPs in the AFR and HISP HMGCR instruments, the MR
Egger method was not performed (requires 31 SNPs). Results for T2D are reported as OR change (with 95% CI) in T2D risk per SD de-
crease in LDL-C levels via variants within the PCSK9 and HMGCR genomic loci. IVW MR estimates surpassing correction for multiple
comparisons (P< 0.005 [0.05/10 tests performed per population]) are indicated with an asterisk. Number of SNPs is the number of genetic
variants used in the drug target MR analysis.
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P values <0.05, we observed evidence of a shared causal
variant between LDL-C and T2D in the EAS, EUR, and SAS
populations (Supplementary Table 8). The PCSK9 T2D
finding in the AFR population did not colocalize (H4
0.033). However, we observed evidence of a single shared
causal variant between LDL-C and T2D in HMGCR for
both EAS and SAS populations (EAS H4 0.682; SAS H4
0.813), whereas SuSiE colocalization confirmed evidence of
shared multiple causal variants between LDL-C and T2D in
the HMGCR locus in the EUR population (SuSiE H4 0.76)
(Supplementary Table 8).

Impact of LDL-C Lowering by PCSK9 and HMGCR on
Glycemic Markers
IVW and Wald ratio results from the primary drug target
MR analyses on LDL-C lowering via PCSK9 and HMGCR
loci and glycemic markers are presented in Fig. 3. Although
no PCSK9 estimates surpassed the multiple comparisons
threshold, we found weak evidence for reduced HbA1c in
the SAS population and increased fasting insulin in the
EAS population (Fig. 3 and Supplementary Table 6), with
the latter being robust and directionally consistent in
MVMR adjusting for BMI (Supplementary Tables 9–13).
The PCSK9 HbA1c finding in the SAS population was sup-
ported by colocalization (H4 0.835) (Supplementary Table 8),
whereas the EAS population showed some evidence for coloc-
alization (H4 0.537), although below the study threshold.

Estimates using PCSK9 functional variants (R46L and
E670G) spanned the null (Supplementary Table 7).

For HMGCR, we found strong evidence that genetically
proxied inhibition increased HbA1c in the HISP population
(b = 0.167; 95% CI 0.059–0.275; P = 0.002), supported by
colocalization (H4 0.813) (Supplementary Table 8) and ro-
bust after BMI adjustment (Supplementary Table 12),
with weaker evidence in the EUR population (b = 0.040;
0.001–0.0979; P = 0.043), although not robust in MVMR
(Supplementary Table 13). No colocalization was observed
for other glycemic traits in the HMGCR locus with MR
estimate P values <0.05. Estimates for insulin resistance
measures in the EUR population indicated weak evidence
that a 1-SD reduction in LDL-C via PCSK9 variants in-
creased IFC (b = 0.14; 95% CI 0.03–0.34; P = 0.009) but
not ISI (b = �0.07; �0.16 to 0.012; P = 0.092), whereas
HMGCR variants showed weak evidence for reduced ISI
(b = �0.16; �0.28 to �0.03; P = 0.013) (Table 14). These
MR estimates were consistent with results using PCSK9
functional variants across populations (Supplementary
Tables 3 and 7).

Impact of Circulating PCSK9 Protein and Tissue
Expression
Given the mechanisms of approved PCSK9 inhibitors
(anti-PCSK9 antibodies lowering circulating PCSK9 pro-
tein and inclisiran inhibiting hepatic PCSK9 expression)
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Figure 3—MR results of PCSK9 (A) and HMGCR (B) inhibition on glycemic markers. Presented are MR results of the impact of PCSK9 and
HMGCR inhibition on glycemic traits; results are reported with the IVW or Wald ratio estimates from MR analyses; 2-h glucose levels were
not available for SAS. Results for the glycemic markers are reported as the regression coefficient (b; with 95% CI) in the respective glyce-
mic marker per SD decrease in the LDL-C levels via variants within the PCSK9 and HMGCR genomic loci. MR estimates surpassing cor-
rection for multiple comparisons (P < 0.005 [0.05/10 tests performed per population]) are indicated with an asterisk. Number of SNPs is
the number of genetic variants used in the drug target MR analysis.
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(10,40), we investigated the impact of genetically lowered
circulating, hepatic, and pancreatic PCSK9 on T2D and
glycemic markers. Results aligned with LDL-C lowering
via PCSK9 variants (Figs. 4 and 5 and Supplementary
Table 15). We found weak evidence linking genetically
lowered circulating PCSK9 protein with reduced HbA1c
and 2-h glucose, but no associations with other glycemic
markers, and the HbA1c finding was not replicated with
hepatic/pancreatic PCSK9 instruments. In IFC and ISI
analyses, PCSK9 pQTL instruments showed weak evi-
dence of increased IFC (b = 0.04; 95% CI 0.009–0.078;
P = 0.013) (Supplementary Table 15).

Polygenic LDL-C Results
Full results of the polygenic lipid instrument are pre-
sented in Supplementary Table 10. Before interpretation,
we aligned each polygenic LDL-C estimate to correspond
to the expected physiologic response to pharmacologic lip-
id-lowering therapy (i.e., a change in T2D risk or glycemic
marker level per unit SD lowering in LDL-C). In line with
the results observed using HMGCR variants, we observed
strong evidence that lower LDL-C levels increased risk
of T2D in SAS (OR 1.34; 95% CI 1.166–1.529; P = 2.81 ×
10�5) and EUR populations (1.056; 1.013–1.101; P =
0.001). Polygenic LDL-C estimates in the other popula-
tions included the null.

DISCUSSION

We used drug target MR to compare the relationships of
genetic LDL-C lowering via PCSK9 and HMGCR inhibition
with T2D and glycemic markers using data from five pop-
ulations. We found a neutral safety profile for PCSK9 in-
hibition on T2D in SAS, EAS, HISP, and EUR populations,
adding to the growing body of genetics-based literature

finding generally safe adverse effect profiles of long-term
PCSK9 lowering (41–44). Sensitivity analyses using func-
tional PCSK9 variant R46L, PCSK9 protein levels, and
both hepatic and pancreatic PCSK9 gene expression simi-
larly yielded null results. Our assessment of the genetic
PCSK9 T2D relationships across cohorts representing five
populations using complementary MR methods, sensitiv-
ity analyses based upon functional PCSK9 variants, and
analyses using multiomic PCSK9 instruments, along with
other lines of evidence failing to find an adverse increase
in T2D risk by PCSK9 inhibition (18), further strengthens
our inference of the neutral adverse effect profile and
should be reassuring for any concerns regarding T2D dia-
betes risk from pharmacologic PCSK9 inhibition. Impor-
tantly, although global T2D prevalence is high, it varies
widely across geographic regions and by race and ethnicity
(2), and epidemiologic data suggest that certain popula-
tions may have higher or lower risk of developing T2D
(2). Nevertheless, despite the need for more diversity in
all clinical trials and genetics-based studies (14), apart
from a recent study investigating the relationships of lip-
ids, lipid-lowering targets, and T2D risk among African
Americans (18), the existing PCSK9 T2D literature is
based primarily on analysis of individuals in the EUR pop-
ulation, highlighting the need for population-specific
work to inform our understanding of PCSK9 inhibition
and the risk of T2D. Finally, our polygenic LDL-C findings
aligned with previous observational and genetics-based
work finding that lower levels of circulating LDL-C are
linked with higher T2D risk (Supplementary Discussion).

We found weak evidence (P < 0.05) indicating PCSK9
inhibition was associated with increased T2D risk in the
AFR population; however, the result was not robust to
our sensitivity analyses using functional PCSK9 variants
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as instruments. In addition, we did not find a relationship
between HMGCR and T2D risk in the AFR data. Our AFR
T2D results were based on cohorts from continental Af-
rica, and neither the PCSK9 nor the HMGCR finding
aligned with the recent MR study by Soremekun et al.
(18) assessing the impact of LDL-C lowering by PCSK9
and HMGCR inhibition on T2D risk among African Amer-
icans in the Million Veteran Program. Soremekun et al.
(18) found that HMGCR inhibition increased T2D risk,
but PCKS9 inhibition did not. These discrepancies may
also reflect the impact of genetic admixture, the mixing of
different ancestral populations (45), which can influence

genetic associations by introducing variability in allele fre-
quencies and genetic backgrounds across populations (45).
In the context of genetic studies, admixture can lead to
confounding effects, where associations identified in one
population may not hold true in another because of differ-
ences in genetic architecture (45). This variability can ob-
scure or inflate the true effects of genetic variants on traits
such as T2D risk. For example, in populations with a high
degree of admixture, such as the African American popula-
tion (46), the presence of alleles from different ancestral
backgrounds may alter the expression and impact of genes
targeted by therapies such as HMGCR inhibitors or PCSK9
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Figure 5—MR results of additional PCSK9 instruments (functional variants and QTL) on glycemic traits. Presented are MR results (either
IVW or Wald ratio depending on number of cis-variants in the instrument) of the impact of the additional PCSK9 instruments (functional
variants lowering LDL-C, tissue-specific PCSK9 expression, and circulating PCSK9 protein levels) for glycemic traits. Glycemic traits re-
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scripts per million in pancreas and liver PCSK9 expression. Note that 2-h glucose levels were not available for SAS. Number of SNPs is
the number of genetic variants used in the drug target MR analysis.
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inhibitors. Therefore, the observed genetic associations in a
more genetically homogenous population may differ when
studied in an admixed population, leading to discrepancies
in the findings. Moreover, Africans possess more genetic
and linguistic diversity, with >3,000 indigenous languages,
largely shaped by geography. However, >90% of these eth-
nolinguistic groups lack genetic data (14). Focusing on the
African diaspora overlooks Africa’s genetic diversity, perpet-
uating imbalances and health disparities (14), underscoring
the importance of future investigation and replication with
these populations.

For HMGCR inhibition, our results replicate and ex-
tend reports of increased T2D risk from RCTs evaluating
statin use and MR analyses using variants in the HMGCR
region as proxies for long-term HMGCR inhibition (6–8),
by also finding adverse relationships between HMGCR
and T2D risk in EAS (having strong genetic evidence with
drug target MR estimates surpassing correction for multi-
ple comparisons and also demonstrating evidence of co-
localization) and SAS populations (weak evidence with a
less precise MR estimate, but evidence of colocalization).
They also extend recent population genetic work in di-
verse populations that applied a clustering-based method
to a GWAS of T2D along with other cardiometabolic dis-
eases and glycemic markers to develop genetic signatures
underlying subtypes of T2D using GWAS data from EUR
and non-EUR cohorts (47). We did not find corresponding
evidence for adverse effects of HMGCR inhibition on gly-
cemic traits in either the EAS or SAS population (in fact,
HMGCR inhibition reduced fasting glucose in the EAS pop-
ulation, and this result was robust in MVMR to correct bias
for the BMI adjustment in the fasting glucose GWAS data,
suggesting some potential glycemic benefits); it is possible
that the adverse impact on T2D may be via potential path-
ways that have been previously reported (e.g., statin-related
weight gain) (48).

Because the heterogenous HMGCR findings suggested
adverse relationships in three of five study populations,
suggesting potential population specificity and biologic
mechanisms, it is possible that the observed differences
in the estimates reflect differing allele frequencies of the
HMGCR variants across the populations; however, the
R2 values for HMGCR instruments were generally compa-
rable across populations, and the variants used for popu-
lation-specific instruments were largely distinct, likely
capturing the genetic architecture of the HMGCR locus
specific to each population. Furthermore, MR studies may
be biased by population differences, which include differ-
ences in allele frequencies, between the exposure and out-
come data (49). Although we matched populations between
the exposure and outcome pairs, we cannot eliminate the
possibility that there is remaining population stratification
present between the GLGC LDL-C, DIAMANTE T2D, and
MAGIC glycemic trait cohorts that may influence HMGCR
T2D and other findings in our study. Therefore, future
studies are necessary with additional data sources to

replicate and confirm the suggested population-level differ-
ences in lifelong HMGCR inhibition. We emphasize, as pre-
vious studies have, that the modest increase in T2D risk
with statin therapy does not outweigh its significant cardio-
vascular benefits (7). Although the drug target MR design
cannot explore mechanisms, it has been suggested that sta-
tins may increase T2D risk by impairing pancreatic insulin
secretion and reducing insulin sensitivity in adipose tissue
(50). The genetic risk of long-term HMGCR inhibition may
not match that of shorter statin therapy. Exploratory analy-
ses showed no link between HMGCR inhibition and fasting
insulin or postprandial insulin resistance (21), indicating
the T2D risk is not due to increased insulin resistance. In
contrast, PCSK9 inhibition was associated with reduced in-
sulin resistance, because lower PCSK9 was linked to in-
creased IFC. These findings were consistent across several
PCSK9 instruments, suggesting a potential beneficial effect
of PCSK9 inhibition on insulin secretion, warranting fur-
ther study.

There are study limitations. First, although participants
from five populations across 34 countries and four conti-
nents improve our understanding of lipid-lowering therapies
and T2D risk, the results may not apply to unrepresented
populations or geographically distinct groups within included
populations. We were unable to evaluate country-specific
heterogeneity or ethnolinguistic differences within popula-
tions. Causal inference requires triangulating study designs
(51), and although increased diversity in genetic studies is
important, long-term RCTs across diverse populations are
needed to further understand lipid-lowering therapy and
T2D relationships. Some population-based estimates showed
heterogeneity, possibly reflecting differences in health care
access and glycemic control. For example, in the HISP co-
hort, HMGCR inhibition was linked with increased HbA1c,
whereas PCSK9 inhibition was not, potentially because of
health care challenges in this population (52). Recent work
found that HISP patients who preferred Spanish had poorer
HbA1c control than those who preferred English (53),
highlighting the need for programs to address organiza-
tional barriers to glycemic control in the HISP population
(53). Other limitations of the drug target MR framework in-
clude the inability to assess off-target effects of PCSK9 and
HMGCR inhibition beyond their lipid-lowering mechanisms.
Future non-EUR MR studies will be essential as more data
becomes available. Although cis-instruments reduce MR as-
sumption violations compared with polygenic MR, con-
founding or pleiotropy bias cannot be fully ruled out (26).
The Supplementary Discussion lists study strengths.

In conclusion, our study finds no adverse impact of ge-
netically proxied LDL-C lowering by PCSK9 variants on
T2D or glycemic markers in EAS, SAS, HISP, and EUR co-
horts. We observed an adverse relationship in the AFR
population, but this was not robust in sensitivity analyses
and conflicts with recent findings from African American
data using U.S.-based data, highlighting the need for fur-
ther research. For HMGCR, we confirm a slight increase
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in T2D risk, although this is likely outweighed by the car-
diovascular benefits of statin therapy. These findings
should guide clinicians and patients concerned about T2D
risk when considering lipid-lowering therapies.
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