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A B S T R A C T

Antibiotics are indispensable in modern healthcare, playing a critical role in mitigating bacterial infections. 
Azithromycin is used to fight upper respiratory tract infections, however has potential toxic effects that remain 
inadequately understood. In our present study, azithromycin exposure to Caenorhabditis elegans led to significant 
physiological and behavioral change, with pronounced effects observed at the studied concentration. The study 
employs an N2 wild-type strain to examine key physiological and behavioral parameters within the worm. C. 
elegans were exposed to two concentrations of azithromycin (0.0038 and 0.00038 mg/ml) from the embryonic 
stage to the L4 stage for 48 hours. The study assessed key endpoints including body length, thrashing behavior, 
brood size, embryonic viability, lipid accumulation via Nile red staining, pharyngeal pumping rate, and response 
to 1-Nonanol (which assesses neurotransmitter function). Results showed that at 0.0038 mg/ml, azithromycin 
significantly reduced body length, increased progeny production, altered lipid deposition, delayed response to 1- 
Nonanol, and decreased feeding rates. Even at the lowest concentration (0.00038 mg/ml), changes in body 
length and lipid accumulation were observed. These findings suggest that the toxicity of azithromycin in C. 
elegans is dose-dependent and varies with exposure duration and developmental stage. Further research is needed 
to elucidate the molecular mechanisms underlying these toxic effects, particularly at environmentally relevant 
concentrations of azithromycin.

1. Introduction

Ecotoxicologists worldwide are working hard to evaluate the toxi-
cological risk of pharmaceuticals on aquatic organisms and humans. It is 
projected that antibiotic consumption in 2030 maybe 200 % more than 
the 42 billion specified daily doses that were projected in 2015 [61]. 
Antibiotics often undergo incomplete metabolism after administration, 
with a substantial amount of portion being excreted in their original 
form in a stool or urine, which eventually enters into the sewage systems 
and gets integrated into the aquatic ecosystem [18]. Moreover, several 
antibiotics still lack adequate ecotoxicological evidence [87] including 
azithromycin, measured at comparatively high concentrations in 
aquatic environments. Azithromycin is a broad-spectrum antibiotic used 
heavily in veterinary and human medicine and is renowned for its 
antimicrobial prowess. However, mounting concern surrounds its 

potential adverse effects, and toxicity profiles, including 
organismal-level toxicity which remain insufficiently elucidated (M.-Q. 
[97]). The rapid emergence of antimicrobial resistance poses a sub-
stantial global health threat, necessitating continuous scrutiny of anti-
biotic efficacy and safety, particularly regarding their toxicity to 
untargeted organisms [20].

Azithromycin (AZM) has significant implications in both clinical and 
environmental contexts especially for vulnerable populations like dia-
betic patients and untargeted organisms. In diabetic patients, azi-
thromycin (AZM) can induce prolonged QT intervals and result in fatal 
arrhythmias [70]. Forensically, in suicide missions, azithromycin (AZM) 
when combined with other drugs like insulin results in severe hypo-
glycemia and organ failure hence leading to death [57]. The persistence 
of azithromycin in the environment matrices can pose neurotoxic effects 
risk to non-target organisms, potentially disrupting their nervous system 
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[59]. Untargeted or non-targeted organisms like fish, invertebrates and 
plants that are unintentionally exposed to pollutants such as antibiotics, 
chemicals, or pesticides in the environment and suffer unintended ef-
fects due to this exposure [32]. Potential environmental toxicities of 
antibacterial agents, such as sulfonamides, macrolides, and fluo-
roquinolones, hampered snails, water fleas, duckweed, cyanobacteria, 
and photo bacteria from growing, moving, and surviving ([41]; N. S. 
[81]). Antibiotics cause deformity and change in immunological re-
sponses and impede development in Walleye and Carp [26,91]. Different 
studies have demonstrated the ecotoxicity of different pharmaceuticals 
including antibiotics exhibit pseudo-persistence in the aquatic envi-
ronment due to their slow degradation and long half-life ([33]; L. [49]).

Antibiotic concentrations in surface water are not strictly regulated 
by environmental agencies globally, but instead, their ecological risk 
assessment data suggest its limits based on ecotoxicity data [5,90]. A 
study conducted in Ukraine reported 0.03 mg/ml of azithromycin in 
surface water [92]. We have conducted monitoring studies in Sabarmati 
River, Gujarat, India, and identified a maximum concentration of 
0.00038 mg/ml of azithromycin (Unpublished study). Another study 
conducted by [72] on wastewater going to the rivers in Portugal around 
1.5773 µg/l of azithromycin was detected. In another study, macrolides 
were detected at 1.931 µg/l [59] in surface water, and 25 µg/l of azi-
thromycin was detected in a wastewater treatment plant [76]. In some 
regions, concentrations of antibiotics have been observed in the (0.1 – 1) 
µg/L range, with no or minimum risk to aquatic organisms, particularly 
to primary producers like algae and other organisms in the high trophic 
levels in the ecosystem [52,77]. Researchers have explored the pre-
dicted no-effect concentration of azithromycin was 0.09 µg/l in fish, 
120 µg/l in Daphnia magna, and 0.019 µg/l in algae [6,86]. Using 
immobilization assay, it was found that 48 hours of exposure to azi-
thromycin in invertebrates including crustaceans, and Daphnia magna 
displayed the EC50 of 120,000 µg/l for acute toxicity [12,27]. Chronic 
toxicity for 7-day exposure showed 4.4 µg/l had no observed effects on 
invertebrate reproduction and other physiological patterns [66].

Azithromycin is extensively used to treat respiratory infections, but 
its potentially toxic effects in the environment on living organisms are 
insufficiently studied and reported. The study aims to address this gap 
by understanding azithromycin’s potentially toxic effects on non- 
targeted organisms as its environmental presence grows. Using the C. 
elegans model, this research examines how azithromycin impacts phys-
iology and behavior of the animal across environmentally relevant 
concentrations. In the current study, C.elegans was subjected to azi-
thromycin at concentrations relevant to environmental conditions. The 
study explored the potential impacts of azithromycin on feeding & 
locomotion habits, body morphology, reproductive processes, lipids 
deposition, and response towards the 1-Nononal compound. Several 
benefits have led to widespread usage of C.elegans as a model organism, 
including its short life cycle, ease of maintenance, suitability for use in a 
laboratory setting, and a well-characterized genome [88]. Utilizing C. 
elegans for toxicity screening provides high-throughput capabilities, 
facilitating sophisticated assessment of behavioral toxicity and insights 
into antibiotic neurotoxic, reproductive, and genotoxic effects, along 
with the underlying mechanisms driving these changes.

2. Materials and methods

2.1. Chemicals and reagents

Azithromycin (AZM, (CAS:21187–98–4) was purchased from Sigma 
Aldrich, USA. The antibiotics were dissolved in pure dimethyl sulfoxide 
(DMSO) (Merck Millipore, Mumbai India) followed by dilution with a 
specified solvent, 1 % DMSO was used in the total solution as previously 
described (S. [50]). Sodium chloride, magnesium sulfate, cholesterol, 
peptone, agar, potassium dihydrogen phosphate, uracil, dextrose, so-
dium hydroxide, sodium hypochlorite solution, sodium azide, and so-
dium hydrogen phosphate, were procured from SRL Pvt. Ltd. Merck 

Millipore, Mumbai India and all of the chemicals were of analytical 
grade with 99 % purity. The stock concentration of azithromycin was 
0.38 mg/ml and was maintained in the dark at 4◦C before usage.

2.2. C. elegans and E.coli culture

The nematode strains were sourced from the Caenorhabditis elegans 
Genetics Center at the University of Minnesota, USA. N2 strains of 
C. elegans were grown on nematode growth media, with E. coli OP50 
serving as the nematode’s food source, and incubated at 22◦C. Adult 
gravid worms were subjected to sodium hypochlorite treatment to ac-
quire age-synchronized embryos, which were then cultured on a new 
NGM plate seeded with OP50. To make 100 ml of E.coli 100 ml MEM was 
inoculated with 1 ml of E.coli stock culture and incubated overnight at 
37◦C at 180 rpm. After incubation, the OP50 culture was kept at 4◦C in 
50 ml falcon tubes as described by [36].

2.3. Exposure conditions to azithromycin

The final working concentration used was 0.0038 mg/ml and 
0.00038 mg/ml of azithromycin. The subsequent antibiotic was mixed 
with OP50 and seeded with the Nematode Growth Media (NGM) plates. 
With continuous exposure, the embryos were suspended on the 
antibiotic-seeded plates and exposed for 48 hours up to the L-4 stage.

2.4. Body morphology alteration

The NGM plates were seeded with OP50 bacteria and varying con-
centrations of azithromycin to investigate the dose response of these 
antibiotics in C. elegans. The plates were then incubated at 22◦C for 
12 hours. The following day, each group was inoculated with 200 µL of 
embryos, covered with parafilm, and kept at 22◦C for 48 hours. Subse-
quently, L4 stage worms were collected and thoroughly washed with M- 
9 buffer to eliminate bacteria and debris. To immobilize the worms, 
20 µL of sodium azide was added to each group. Then, 20 µL of nema-
todes were transferred onto slides and covered with a cover slip. Using a 
fluorescence microscope at 10x magnification, 15 images of worms from 
each group were captured.The body length of these 15 nematodes in 
each group was then analyzed using Image J software with freehand line 
tools (Z. [95]).

2.5. Thrashing assay

The embryos were placed on NGM plates seeded with azithromycin 
OP50 and DMSO, and incubated for 48 hours. After collecting L-4 stage 
worms and thoroughly cleaning them with M-9 buffer, 20 µl of the 
worms which included between (20− 30) worms were added to the NGM 
plates without any food and given a brief period to move freely and 
acclimatize to their new environment. Next, we took a 30-second video 
using Leica software with the aid of a stereo zoom microscope (Leica 
EZ4D) for each group, during which we counted the number of thrashes 
in 10 seconds and examined at least 20 worms per group as explained 
elsewhere by [23].

2.6. Body bending behavior

The embryos were placed on NGM plates seeded with azithromycin, 
OP50, and DMSO, and incubated for 48 hours. After collecting L-4 stage 
worms and thoroughly cleaning them with M-9 buffer, 5 µl of them 
containing (5− 11) worms were added to the freshly unseeded NGM 
plates and given enough time to acclimatize with their new environ-
ment. We took a 30-second video using Leica software with the aid of a 
stereo zoom microscope (Leica EZ4D) for each group, during which we 
counted the number of body bending in 10 seconds and examined at 
least 20 worms per group as explained by [60].
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2.7. 1-Nonanol assay

The effects of azithromycin and a control group on NGM plates were 
examined for evidence of antibiotic-induced neurotransmitter impair-
ment. 1-Nnonal is used to test dopamine signaling in C.elegans by trig-
gering avoidance behavior, changes in this response indicate a potential 
neurotoxic effect. In this investigation, we soaked the worm picker in 
200 µl of 1-Nonanol. The worm picker was then positioned close to the 
snout of a moving active worm under a stereo microscope, and we timed 
how long it took the worm to get away from the 1-Nonanol chemical, at 
least 20 worms were used from each group as detailed by [80].

2.8. Pharyngeal pumping

Pharyngeal pumping serves as a method for measuring the food 
intake by worms and was performed as explained by [42]. Briefly L-4 
stage worms, after being rinsed with M-9 buffer, were placed into 
microcentrifuge tubes. 20 µl of nematode solution was added to freshly 
seeded plates. Nematodes were allowed 30 minutes to adjust to their 
new environment, during which they moved freely and began feeding. 
Pharyngeal pumping activity was recorded for 10 seconds at an 8x 
magnification using a stereo zoom microscope. The feeding behavior of 
a minimum of 20 worms in each group was recorded.

2.9. Lipid content estimation

Nile red staining was employed to assess the lipid levels in N2 wild- 
type worms subjected to treatment with azithromycin. To prepare the 
Nile red solution, 0.5 mg of the dye was dissolved in 1 ml of acetone and 
stored at − 20◦C in darkness. The working solution was created by 
mixing 3 µL of the dye with 750 µL of OP50 for control samples and then 
adjusting the final volume with compounds. The next day embryos were 
seeded in the plates, after 48 hours, L4 worms from each group were 
collected, thoroughly washed to remove bacteria, and treated with 20 µl 
of sodium azide. Subsequently, 20 µl of the worms were placed on a slide 
and covered with a coverslip. Nematode images were captured using 
fluorescence microscopy with a rhodamine filter at 20x magnification. 
Image J software was utilized to analyze at least 15 images per group, 
enabling quantification of lipid content in C.elegans based on the fluo-
rescence intensity of Nile red as explained elsewhere by [83].

2.10. Brood size & reproductive age

Ten L4-stage age-synchronized worms were moved to freshly pre-
pared plates from each experimental group. After 24 hours, the number 
of embryos and L1-stage progenies was counted following the careful 
transfer of worms to newly prepared plates, ensuring no embryos or L-1 
worms were transferred. Worms were transferred every 24 hours until 
they ceased producing embryos, and an average brood size was calcu-
lated. To assess the reproductive age in C.elegans treated with azi-
thromycin, the group’s average time for the worms to cease producing 
eggs was recorded as described by [43].

2.11. Embryonic viability

Following the transfer of L-4 stage worms to newly seeded plates, the 
progenies counting was conducted the following day. These plates were 
then left undisturbed for 24 hours to ensure sufficient time for all em-
bryos on the plate to hatch. The number of unhatched embryos and live 
progenies was noted, and the experiment proceeded similarly for all 
groups until no embryos were laid by the worms. Subsequently, the 
embryonic viability in each group was calculated according to [44].

2.12. Statistical analysis

The statistical significance of the obtained data was assessed using a 

Student t-test through GraphPad Prism 5, with a significance level set at 
(P<0.05), (P<0.005), P<0.0001), and (P<0.0005). The non-parametric 
independent student t-test was implemented and the P-values adjust-
ment was adopted for post-multiple comparisons. All experiments 
included a minimum of two separate experimental trials, the result data 
were represented graphically with error bars indicating the minimum 
standard error of the mean.

3. Results

3.1. Body morphology alteration

The impact of azithromycin on the development and growth of C. 
elegans is displayed in Fig. 1(a-b). It was found that at the highest con-
centration of azithromycin, the body length of C.elegans was reduced 
and the nematode could not reach its full body length at the L-4 stage 
when compared to the control groups. In another case, there was a delay 
of a nematode to transform from one stage to another at the highest 
concentration of azithromycin as seen in Fig. 1c.

3.2. Thrashing & body bending behavior influenced by azithromycin in 
C. elegans

At the highest concentration of 0.0038 mg/ml, azithromycin signif-
icantly slowed down the head thrashing and body bending capability of 
C.elegans as seen in Fig. 2a and refer to video-1. C.elegans exhibited a 
significant decrease in head thrashing body and bending frequencies at 
the highest concentration when compared to the control group, while 
there was no significant difference in body bending frequencies at the 
lowest concentration. This suggests that the azithromycin impact on 
locomotion behavior in C.elegans is dose-dependent.

Supplementary material related to this article can be found online at 
doi:10.1016/j.toxrep.2024.101832.

3.3. 1-Nonanol response influenced by azithromycin in C. elegans

The scenario depicted in Fig. 3 above demonstrates a notable impact 
on C.elegans chemoreceptors and neurotransmission. Upon exposure to 
the chemical 1-Nonanol, the nematodes exhibited a delayed response in 
moving away from the chemical stimuli.

3.4. Feeding behavior of C. elegans when treated with azithromycin

The pharyngeal pumping was significantly decreased in nematodes 
at both the highest and lowest concentration of azithromycin as depicted 
in Fig. 4 and by referring to supplementary video-2. This might have 
been characterized by nematode-reduced capacity for food intake and 
may have resulted from azithromycin-induced neuromuscular distur-
bance and mitochondrial dysfunction.

3.5. The impact of azithromycin on lipid deposition in C. elegans

As depicted in Fig. 5(a-b) above, it was found that azithromycin 
influenced the increase in lipid content at both the highest and lowest 
concentrations respectively (0.0038–0.00038) mg/ml.

3.6. The impact of azithromycin on reproductive health in C. elegans

It is apparent that at a concentration of 0.0038 mg/ml, azithromycin 
stimulated the reproductive potential in C.elegans as seen in the number 
of progenies is higher compared to the lowest concentration. As dis-
played in Fig. 6(a-b) the reproductive days increased in the treatment 
group at the highest concentration but declined at the lowest concen-
tration of azithromycin. In another case, azithromycin significantly 
stimulated the embryonic viability in C. elegans at the highest concen-
tration but was non-significant at the lowest concentration of 
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0.00038 mg/ml as portrayed in Fig. 6c.

4. Discussion

Azithromycin, a broad-spectrum macrolide, is one of the most 

frequently prescribed antibiotics due to its high stability in acidic con-
ditions, longer serum half-life, and its ability to achieve higher con-
centrations in animal tissues compared to erythromycin, to which it is 
structurally related. These properties contribute to its environmental 
persistence, making it a significant environmental risk [2]. 

Fig. 1. (a-b) shows the highest concentration of azithromycin shortened the body length of C.elegans and (Fig. 1c) shows how the maximal dose of azithromycin 
impacted the growth and developmental progression in C. elegans as quantified by non-parametric independent t-test. Error bars indicate the standard error of the 
mean, ( ****p<0.0005) and ns-non significant.

Fig. 2. (a-b) shows that azithromycin affected the head thrashing and body bending behavior of C. elegans as quantified by a non-parametric independent t-test. Error 
bars indicate the standard error of the mean), (***p<0.0005), (****p<0.0001), and ns-non significant.
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Azithromycin gained significant attention during the COVID-19 
pandemic and is often used in combination with drugs like hydroxy-
chloroquine [24]. Its widespread during the pandemic led to increased 
environmental discharge and subsequent risk to the aquatic system [9, 
40]. Despite the absence of specific regulations on surface water levels 
for antibiotics, azithromycin is included in the European Water Frame-
work Directive’s "watch list" due to its toxicity, persistence, and 
bio-accumulative potential [17].

In the current study, the resulting reduction of pharyngeal pumping 
in C.elegans by azithromycin might be due to the disruption of gut 
microbiota and energy depletion causing mitochondrial dysfunction and 
induction of neuromuscular toxicity [8]. However with other antibiotics 
like sulfamethoxazole, (S. [51]) have discovered that C.elegans showed a 
rise in pharyngeal pumping, which was not the case when C.elegans were 
subjected to azithromycin. Furthermore, [10] obtained similar results 
when Zebrafish were subjected to azithromycin leading to a reduced 
food intake and vascular irregularities. These findings may provide an 
early indication of the potential adverse effects of azithromycin in 
humans, especially its impact on gastrointestinal motility [11] and 

neuromuscular functioning. Azithromycin may have adverse effects in 
humans such as gastrointestinal symptoms including nausea, vomiting, 
abdominal pain, and diarrhea [45]. These symptoms are directly related 
to azithromycin’s influence on the enteric nervous system and smooth 
muscle functioning. Ruszkiewicz et al., [73]. Moreover neuromuscular 
disorders like myasthenia gravis [78], muscle weakness and fatigue are 
insinuated by azithromycin through neuromuscular exacerbation has 
been reported [67].

Furthermore, due to poor food intake, the body morphology and 
overall growth of C.elegans were affected and led to the retardation of 
growth. It is reported that azithromycin severely impairs mitochondrial 
DNA and enzymes like DNA gyrase and topoisomerase IV which are 
crucial for DNA replication and compromise the process of cell division 
and cellular processes that are essential for growth and development 
[71]. Erythromycin has been shown in earlier studies to affect body 
width and length, with a modest inhibition of body length observed at 
1.0 μg/L (Z. [47]). In other studies, azithromycin exposed to anuran 
amphibian larvae resulted in a declined body size and shape due to the 
loss of the ability to feed the animals becoming weak, and thin and 
inducing liver toxicity in Zebrafish [13,63]. Azithromycin may block the 
cellular processes in humans particularly actively dividing cells, which 
are crucial for growth and development in children, pregnant women, 
and patients with healing tissues (Z. [39]). Furthermore, azithromycin 
impairs protein synthesis and slows down growth and development [28, 
53], especially in growing children. It has been reported that the impact 
on gastrointestinal function leads to poor nutrient absorption, which 
relates to poor growth, and weight loss which triggers inflammations in 
the gastrointestinal and results in conditions like colitis [62]. This may 
further impairment of nutrient absorption and tissue repair [84]. During 
pregnancy, the risk of developmental toxicity from azithromycin may 
lead to congenital anomalies like low birth weight or even miscarriage 
[4].

Body bending is the crawling behavior of worms in which c.elegans 
bends its head region across the central line of the body and forms an 
alternate longitudinal crest behind the pharynx followed by a longitu-
dinal trough which completes 1 body bend [65]. C.elegans has 302 
neurons, 6393 synapses, and several neurotransmitters like acetylcho-
line, dopamine, serotonin, GABA, tyramine, and octopamine [30]. Out 
of these neurotransmitters, acetylcholine helps in muscle contraction 
and helps in locomotion [74]. The highest concentrations of azi-
thromycin might have induced acetylcholinesterase inhibitory activity 
thus leading to low body bending frequencies in C.elegans. The observed 
decrease in response to 1-nonanol compound, head thrashing and body 
bending behavior frequencies in C.elegans at the highest concentrations 
of azithromycin. This may suggest a neurotoxic or motor impairment, 
which can be loosely related to how certain drugs impact human motor 
functioning.

Moreover, the thrashing activity and response towards chemical 
stimuli in C.elegans were altered probably due to the reduction in food 
intake the animals became weak and thin. Locomotion activities slowed 
down and their response toward the 1-Nononal compound was pro-
longed [64,79]. Due to hampering the functionality of ATP-dependent 
channels and pumps led to compromised muscle contraction. Azi-
thromycin causes damage to the G-protein coupled receptors, membrane 
proteins, and ion channels disrupting cyclic AMP (cAMP) and calcium 
signaling pathways, crucial for the execution of sensory perception and 
avoidance behavior [89]. Pharmaceutical compound screening by using 
C.elegans [22,68], pointed out that antibiotics affected the locomotion 
behavior and impaired chemosensory receptors. Chicks and Quills were 
treated with 7305 mg/kg and 11.169 mg/kg respectively of azi-
thromycin and there was a notable decrease in their movement due to 
the effects of their neurobehavior and motor measure [1]. Azithromycin 
has the potential to cause muscle toxicity like rhabdomyolysis [21]
which relates to serious muscle pain, weakness, and kidney failure [35]. 
Neurological side effects like dizziness, confusion, and impaired motor 
function have been observed in elderly patients [56]. Compromised 

Fig. 3. above shows the response of C.elegans towards the 1-Nonanol com-
pound as quantified by a non-parametric independent t-test. Error bars indicate 
the standard error of the mean), (*p<0.05), and ns-non significant.

Fig. 4. above shows that at both high and low doses, azithromycin inhibited 
the feeding behavior of C. elegans as quantified by a non-parametric indepen-
dent t-test. Error bars indicate the standard error of the mean, ***p<0.0001, 
****p<0.0005, and ns-non significant.
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reflexes and coordination can block daily functioning and accelerate 
accident risks to vulnerable populations [25]. A pediatric patient 
administered 500 mg/d of azithromycin developed agitation and chor-
eoathetosis movements on the third day of administration [19]. Che-
mosensory side effects of antibiotics result from disruption of 
transduction pathways, biochemical targets, and enzymes [75]. Adverse 
effects like anorexia have been observed during azithromycin adminis-
tration which induces taste and smell disorders [34].

Along with the behavioral changes, lipid metabolism was altered 

when C.elegans were exposed to azithromycin. Stresses from reactive 
oxygen species thus activated mitogen-activated kinase pathways may 
contribute to the upregulation of fatty acid synthase and acetyl-CoA 
carboxylase genes which are involved in lipogenesis [7]. Reduced 
β-Oxidation of fatty acids by antibiotics promoted fatty storage in C. 
elegans [3]. Furthermore, the impairment of the Electron Transport 
Chain (ETC) and decrease in ATP production compromised the avail-
ability of NADH and FADH2 hence poor fatty acid oxidation and led to 
the suppression of anabolic processes [58]. Antibiotics were found to 

Fig. 5. (a-b) shows that azithromycin influenced the increase of lipid deposition in N2 C. elegans at both low and high dosages as quantified by a non-parametric 
independent t-test. Error bars indicate the standard error of the mean, (***p<0.0001), (****p<0.0005), and ns-non significant.

Fig. 6. (a) shows that azithromycin stimulated the increase of brood size in C. elegans at its highest concentration, Fig. 6(b) shows that reproductive age was 
shortened at the lowest concentration, and Fig. 6c above shows that there was no significant difference in embryonic viability at the lowest concentration of azi-
thromycin in C.elegans as quantified by non-parametric independent t-test. Error bars indicate the standard error of the mean and ns-non significant.
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encourage obesity in C.elegans (Z. [94]). Moreover, sulfonamides in 
Daphnia magna revealed inhibition of lipase and acetylcholinesterase 
enzyme activities crucial in lipid metabolism (Y. [98]), this led to the 
accumulation of fats, increased body size, and elevated levels of tri-
glycerides in the organism (Z. [48]). Azithromycin can disrupt lipid 
metabolism in humans which can result in dyslipidemia ((L. [38])). 
Characterized by abnormal blood lipid levels that can increase the risk of 
cardiac failure [85]. Furthermore, it could elevate cholesterol and fat 
accumulation, leading to obesity (J. [93]). Disruption in lipid meta-
bolism can alter energy balance leading to weight gain and obesity and 
increasing the risk of atherosclerosis [29]. Impaired lipid signaling and 
insulin sensitivity can contribute to metabolic syndrome, hypertension, 
and type 2 diabetes [96].

Perhaps balanced lipid metabolism is essential for reproductive 
health in C.elegans by providing essential energy for oocyte development 
and embryogenesis. Excessive lipid accumulation may disrupt insulin/ 
Insulin-like Growth factor (IGF-1) signaling and activated protein ki-
nase (AMPK) leading to accelerated reproductive aging and impaired 
oocyte quality [69]. Antibiotics decreased the brood size, number of 
fertilized eggs in the uterus, and reduced the number of total germline 
cells, and ovulation rate in C. elegans [99]. Macrolides registered high 
toxicity by causing progressive impairment in reproduction and induced 
a high mortality rate in Daphnia magna and microalgae over multiple 
generations [14,55]. Contrary erythromycin significantly inhibited 
reproduction across multiple generations and consistently suppressed 
fatty acid synthase, and the same effects were observed in D.mela-
nogaster (Z. [48,54]). In humans, azithromycin could interfere with the 
hormonal system and potentially lead to fertility issues, menstrual ir-
regularities, and pregnancy complications (Y. [46]). Hormonal imbal-
ances may cause conditions like polycystic ovary syndrome, affecting 
hormone levels and fertility ([31]; S. [82]). This can lead to develop-
mental issues in embryos and increase the risk of birth defects [16]. 
Clinically, azithromycin’s effects on reproductive organs may lead to 
conditions such as testicular and ovarian dysfunction and reduced sperm 
quality (F. Y. S. [37]). Azithromycin should be administered with pre-
caution during pregnancy because azithromycin can result in terato-
genic effects on a developing fetus [15].

5. Conclusion

This study reveals that azithromycin exhibits dose-dependent, 
exposure duration, and developmental stage to induce toxicological ef-
fects on C.elegans by affecting feeding, growth, locomotion, lipid meta-
bolism, and reproduction. This toxicity underscores the forensic 
significance of azithromycin whereby clinical toxicologists, ecotoxicol-
ogists, and environmental protection pioneers may use this data to 
assess ecological contamination, investigate cases of human poisoning, 
influence regulation and legal actions related to public health and 
environmental safety by establishing standardized protocols limiting 
antibiotic levels in the environment. Additional research into the genetic 
and proteomic toxicological impacts of antibiotics at their relevant 
environmental concentration is highly recommended. Also, there is a 
critical need for studies that assess the toxicity of antibiotics in combi-
nation with other aquatic pollutants like heavy metals along with the 
wise and safe use of this drug.
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