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Introduction: Necroptosis has emerged as a promising biomarker for predicting

immunotherapy responses across various cancer types. Its role in modulating

immune activation and therapeutic outcomes offers potential for

precision oncology.

Methods: A comprehensive pan-cancer analysis was performed using bulk RNA

sequencing data to develop a necroptosis-related gene signature, termed

Necroptosis.Sig. Multi-omics approaches were employed to identify critical

pathways and key regulators of necroptosis, including HMGB1. Functional

validation experiments were conducted in A549 lung cancer cells to evaluate

the effects of HMGB1 knockdown on tumor proliferation and malignancy.

Results: The Necroptosis.Sig gene signature effectively predicted responses to

immune checkpoint inhibitors (ICIs). Multi-omics analyses highlighted HMGB1 as

a key modulator of necroptosis, with potential to enhance immune activation

and therapeutic efficacy. Functional experiments demonstrated that HMGB1

knockdown significantly suppressed tumor proliferation and malignancy,

reinforcing the therapeutic potential of targeting necroptosis.

Discussion: These findings underscore the utility of necroptosis as a biomarker to

guide personalized immunotherapy strategies. By advancing precision oncology,

necroptosis provides a novel avenue for improving cancer treatment outcomes.
KEYWORDS

necroptosis,machine learning, pan-cancer analysis, immunemicroenvironment, immunotherapy
Introduction

Immunotherapy has now become a cornerstone of modern oncology, fundamentally

transforming the treatment of various malignancies (1, 2). Unlike traditional cancer

treatments such as chemotherapy and radiation, immunotherapy harnesses the patient’s

own immune system to fight tumors, making it not only more precise but also significantly
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less toxic (3, 4). In recent years, the rapid advancement of

immunotherapy has not only provided substantial extensions in

survival for many cancer patients but has also greatly improved

their quality of life by reducing the side effects associated with

conventional therapies (5, 6). Innovative forms of immunotherapy,

including immune checkpoint inhibitors, CAR T-cell therapy, and

cancer vaccines, have demonstrated groundbreaking results in

clinical settings, particularly in some treatment-resistant cancers

(7–9).

However, despite the impressive benefits of immunotherapy,

the reality is that not all patients derive the same level of benefit (10,

11). In fact, only a subset of patients showing significant responses

to these treatments, while many others exhibit limited or no

response. The wide variability in patient responses to

immunotherapy highlights the complexity and challenges of

cancer treatment. This heterogeneity is influenced by various

factors, such as genetic differences and variations in the immune

microenvironment between individuals (12). Therefore, the

identification and exploration of relevant biomarkers to accurately

predict which patients are most likely to benefit from

immunotherapy has emerged as a crucial area of ongoing

research (13–16). By gaining deeper insights into these

biomarkers, physicians can better tailor treatment plans to

individual patients, ultimately improving the efficacy of

immunotherapy and addressing issues such as immune resistance

(17). Through this approach, the future of immunotherapy

promises to be more precise, more effective, and capable of

benefiting an even greater number of cancer patients (18).

Necroptosis is a form of programmed cell death similar to

necrosis. When a cell fails to undergo apoptosis properly due to

inflammation, oxidative stress, or ischemic stress, necroptosis is

activated as an “alternative” to apoptosis (19). Unlike apoptosis,

necroptosis does not rely on caspase activity but requires MLKL

phosphorylat ion, regulated by RIPK3 (20, 21) . This

phosphorylation event causes MLKL to form pore complexes on

the plasma membrane, leading to the release of DAMPs (damage-

associated molecular patterns), cell swelling, and membrane rupture

(22, 23). Most studies on the molecular mechanisms of necroptosis

involve the tumor necrosis factor (TNF) signaling pathway.

Typically, TNF induces an inflammatory response by activating

pro-inflammatory genes through NF-kB signaling (24). Necroptosis

is also triggered by death receptors on the cell membrane (such as

TNFR1, DR4/5, and FAS receptors) and can be initiated by pattern-

recognition receptors (PRRs). Downstream, necroptosis is regulated

by three key molecules: MLKL (mixed lineage kinase domain-like

pseudokinase), RIPK1 (receptor-interacting serine/threonine kinase

1), and RIPK3. These molecules can serve as potential

biomarkers (21).

Necroptosis, unlike apoptosis, generates secondary messengers

that interact with immune cells in the tumor microenvironment,

signaling potential danger (25). This lytic form of cell death

enhances the delivery of antigens and adjuvants to immune cells,

potentially improving cancer therapies by integrating mechanisms

of programmed cell death and immune activation. The findings

indicate that necroptosis and its associated features may serve as

valuable predictive biomarkers, with possible implications for other
Frontiers in Immunology 02
cancer types. Building on this discovery, we initiated a

comprehensive project that integrates pan-cancer sample cohorts

and bulk RNA sequencing datasets to explore, for the first time, the

role of necroptosis in personalized cancer therapies, driven by its

distinct molecular markers. By leveraging these two robust data

sources, we aim to evaluate the clinical relevance of necroptosis

across diverse cancers and gain deeper insights into its molecular

pathways through multi-omics analyses. This integrated strategy

seeks to establish a solid foundation for more precise, personalized

cancer treatments, ultimately contributing to a refined framework

for individualized cancer care. Finally, we validated through both in

vitro and in vivo experiments that knocking down the HMGB1

gene, one of the modeling genes of Necroptosis.Sig, in the A549

lung cancer cell line can suppress the malignant biological behavior

of tumor cells. This further supports the critical role of HMGB1 as a

key Necroptosis.Sig modeling gene in the development of

malignant tumors.
Result

Pan-cancer analysis of the association
between necroptosis-related gene
abundance and immune resistance

In this study, we investigated the association between

necroptosis-related gene abundance and immune resistance, aiming

to uncover novel insights into their role in cancer immunotherapy.

Using GSVA, we computed necroptosis scores across the TCGA pan-

cancer cohort, revealing a significant positive correlation between

necroptosis scores and immune-related gene expression across 30

distinct cancer types (Figure 1A). These findings suggest a broad

impact of necroptosis on immune modulation within the tumor

microenvironment (TME).To further understand this impact, we

examined immune cell infiltration in tumors with high necroptosis

scores, observing a notable increase in immune cell presence,

underscoring a link between necroptosis and immune activation.

Importantly, our analysis also revealed positive correlations between

necroptosis scores and both intratumor heterogeneity (ITH) and

tumor mutational burden (TMB) (Figures 1D, E), suggesting that

necroptosis influences anti-tumor immune responses by modulating

immune cell activity and regulating tumor heterogeneity. These

results provide new evidence that tumors with elevated necroptosis

scores display enhanced anti-tumor immune responses, positioning

necroptosis as a potential predictive biomarker for cancer

immunotherapy efficacy. Our findings thus contribute to the

understanding of necroptosis as a mechanism influencing immune

resistance, with implications for identifying patients who may benefit

most from immunotherapeutic interventions.
Predicting immunotherapy outcomes using
necroptosis gene signature

Acknowledging the critical role of necroptosis in orchestrating

anti-tumor immune responses, we developed a predictive model
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FIGURE 1

Comprehensive analysis of necroptosis associations with immune infiltration and tumor traits across cancers in the TCGA cohort. (A) The Circos plot
illustrates the relationship between necroptosis pathway activity (measured by GSVA scores) and immune gene expression across multiple cancer
types. The color gradient reflects Spearman correlation values, ranging from -1 to 1. Gene functions are categorized as antigen presentation, HLA,
stimulatory, inhibitory, and other immune-related functions. (B) This heatmap shows how necroptosis pathway activity correlates with immune cell
infiltration (e.g., T cells, B cells, macrophages) in different cancers. Dot size indicates statistical significance (-log10(q value)), while color represents
the Spearman correlation coefficient. (C) A bubble heatmap demonstrates the association between necroptosis pathway activity and key immune-
related pathways, such as interferon gamma response, IL6 JAK STAT3 signaling, and inflammatory response, across cancer types. Dot size reflects
statistical significance (-log10(q value)), and color represents the correlation strength (Spearman R). (D) Scatter plot depicting the correlation
between median necroptosis pathway activity scores and median tumor mutational burden (TMB) across cancer types. Each point corresponds to a
different cancer type, with the shaded area representing the confidence interval of the regression line. (E) Scatter plot showing the association
between median necroptosis pathway activity scores and median intratumor heterogeneity (ITH) for various cancers. Similar to panel D, the
Spearman correlation coefficient (R) and p-values are indicated in both plots.
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based on necroptosis marker genes to optimize immunotherapy

strategies. RNA-Seq data and clinical records from ten immune

checkpoint inhibitor (ICI) cohorts were collected. Using the ABESS

algorithm, five key necroptosis marker genes (ANKRD28,

CREB3L2, ISG20, SLAMF7, MEI1) were identified. The workflow

for model development is depicted in Figure 2A, where six different

machine learning algorithms were employed, utilizing 10-fold
Frontiers in Immunology 04
cross-validation and grid search for parameter optimization to

generate prediction models. Among these models, the Random

Forest (RF) model exhibited the best performance, with an AUC of

0.713 (Figure 2B). Subsequently, the model was validated on the

validation and independent testing sets, yielding AUCs of 0.71 and

0.74, respectively (Figure 2C). To further assess the model’s

predictive capacity for overall survival (OS), ICI-treated patients
FIGURE 2

Development and evaluation of a machine learning model for predicting the necroptosis signature. (A)Diagram outlining the machine learning
process used to create and validate the necroptosis signature model. The data was divided into 80% for training and 20% for validation. Parameter
tuning was done using 10-fold cross-validation and grid search across various models (e.g., “nb”, “svm”, “rf”, “knn”, “adaboost”, “XGBoost”). The final
model selected was Random Forest (rf), with optimized parameters, and was tested on independent datasets from studies like Braun 2020 RCC and
Kim 2018 GC. (B) ROC curves displaying the performance of different machine learning models on the training set, with AUC values for models such
as XGBoost, SVM, RF, KNN, and AdaBoost. Random Forest achieved the highest AUC of 0.736. (C) ROC curves showing the final Random Forest
model’s performance in the validation set (AUC = 0.762, 95% CI: 0.665–0.858) and test set (AUC = 0.745, 95% CI: 0.664–0.826). Kaplan-Meier
survival curves indicate differences in overall survival (OS) between high-risk and low-risk groups in both validation and test sets, with significant p-
values from log-rank tests (p = 0.0015 and p = 0.0014, respectively).
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were stratified into high-risk and low-risk groups. Kaplan-Meier

survival analysis demonstrated that the low-risk group exhibited

significantly prolonged OS in both the validation and testing sets (P

< 0.01) (Figure 2C, right).
Comparison of necroptosis gene signature
with other predictive gene signatures

We evaluated the predictive power of the necroptosis gene

signature (Necroptosis.Sig) against other immune checkpoint

inhibitor (ICI)-related gene signatures. In a direct comparison with
Frontiers in Immunology 05
a spectrum of pan-cancer signatures, including INFG.Sig (26),

T.cell.inflamed.Sig (26), PDL1.Sig (27), LRRC15.CAF.Sig (28),

NLRP3.Sig (29), and Cytotoxic.Sig (30), Necroptosis.Sig emerged as

the most effective predictor in the testing set, achieving an AUC of

0.74, with INFG.Sig trailing closely behind at an AUC of 0.66

(Figure 3A). Necroptosis.Sig demonstrated superior performance

across all evaluated cohorts, spanning three distinct cancer types:

melanoma (SKCM), glioblastoma (GBM), and gastric cancer (GC),

underscoring its versatility as a predictive model for ICI

responsiveness across various malignancies (Figure 3B). When

compared with signatures specifically tailored for melanoma

(CRMA.Sig, IMPRES.Sig, IPRES.Sig, TcellExc.Sig, ImmunCells.Sig,
FIGURE 3

Performance of necroptosis signature across cancer cohorts. (A) Circos plot displaying the Area Under the Curve (AUC) values for multiple immune-
related signatures, including Necroptosis.Sig and Cytotoxic.Sig, across various testing cohorts such as Snyder 2017 UC, Van 2015 SKCM, Kim 2018
GC, and Zhao 2019 GBM. The radial arrangement highlights the predictive performance of each signature in different cohorts. (B) Heatmap showing
the AUC values of combined and individual necroptosis-related signatures across different datasets. The color scale ranges from 0.5 to 0.8, with
warmer tones indicating higher predictive accuracy. (C) Bar plot comparing AUC values for various immune and necroptosis-related signatures, such
as IMPRES.Sig, CRMA.Sig, and Necroptosis.Sig, highlighting their predictive strength. Higher bars reflect better performance.
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IMS.Sig, and TRS.Sig), Necroptosis.Sig remained a leading predictor,

achieving an AUC of 0.72 in predicting ICI response in melanoma

patients. However, IMPRES.Sig and CRMA.Sig outperformed

Necroptosis.Sig in this subset, registering slightly higher AUCs of

0.81 and 0.77, respectively (Figure 3C).
Functional analysis of necroptosis gene
signature in tumor
immune microenvironment

Necroptosis, a unique form of programmed cell death distinct from

classical apoptosis, is driven by the activation of key molecular pathways

involving RIPK1, RIPK3, and MLKL. Unlike apoptosis, necroptosis

causes cell membrane rupture, releasing various immune-stimulating

factors that trigger an inflammatory response. This distinct role of

necroptosis in the TME has drawn considerable attention in recent

cancer research. To further elucidate the impact of the Necroptosis Gene

Signature on tumor immune evasion and anti-tumor immune

responses, we conducted an in-depth analysis. Our findings, visualized

in a heatmap (Figure 4A), highlight the association between necroptosis-

related gene sets and necroptosis risk across diverse cancer types. These

insights underscore the potential of necroptosis as a regulatory

mechanism within the TME, advancing our understanding of how

necroptosis may influence immune resistance and support novel

strategies for enhancing cancer immunotherapy.

The gene modules are classified into different functional groups

(C1 to C8), and patients are divided into high-risk and low-risk

groups based on necroptosis risk scores. Notably, these gene sets are

primarily involved in key biological pathways such as cell cycle

regulation, chromosome segregation, and metabolic processes,

indicating a close relationship between necroptosis and cellular

proliferation and metabolism. Next, t-SNE analysis (Figure 4B)

further demonstrates the distribution of necroptosis risk scores

across various cancer types, including acute myeloid leukemia,

renal cell carcinoma, and antigen processing pathways. Necroptosis

enhances the immune system’s ability to recognize tumor cells by

promoting antigen presentation, thereby influencing anti-tumor

immune responses. Through color coding (ranging from low to

high risk), the relationship between necroptosis and key biological

functions, such as protein modification, immune response, and

cellular stress adaptation, is clearly displayed. Additionally, the

network diagram (Figure 4C) highlights the complex interactions

between genemodules involved in cell cycle control and chromosome

segregation, suggesting that necroptosis not only affects cell death but

may also regulate cancer progression by altering cellular proliferation

and differentiation. At the same time, GO enrichment analysis

(Figure 4D) reveals a strong association between necroptosis genes

and immune responses, particularly in terms of leukocyte activation,

cytokine signaling, and inflammation regulation. This further

demonstrates the critical role of necroptosis in triggering anti-

tumor immune activity. Finally, the GSEA bar graph (Figure 4E)

shows the enrichment of necroptosis-related pathways, including

cytokine-cytokine receptor interaction, neutrophil extracellular trap
Frontiers in Immunology 06
formation, and Th1/Th2/Th17 cell differentiation, all of which are

immune-related processes. These results collectively emphasize the

central role of necroptosis in immune cell activation, differentiation,

and tumor immunity, further validating its potential as a therapeutic

target in cancer immunotherapy.
The relationship between necroptosis-
related gene signatures and immune
infiltration across various cancer types

The relationship between necroptosis-related gene signatures

and immune infiltration across various cancer types is analyzed to

highlight novel findings and their implications in cancer

immunotherapy. We explored how Necroptosis.Sig correlates

with immune infiltration across diverse cancer types, aiming to

understand its impact on the immune microenvironment.

Figure 5A presents a bar graph illustrating the distribution of

high-risk and low-risk groups based on Necroptosis.Sig across

multiple cancer types. This analysis reveals that certain cancers,

such as uveal melanoma and uterine carcinosarcoma, exhibit a

higher proportion of high-risk patients, whereas others, like low-

grade glioma, predominantly feature low-risk patients, suggesting

necroptosis plays distinct roles across different cancers. In

Figure 5B, violin plots compare immune-related metrics between

high-risk and low-risk groups, showing significantly elevated scores

in the low-risk group for leukocyte fraction, lymphocyte fraction,

tumor-infiltrating lymphocyte (TIL) fractions, and CD8+ T cell

infiltration. These findings indicate a more active immune system in

the low-risk group. Figure 5C expands on this with boxplots

showing that high-risk groups display markedly lower immune

signature scores across multiple immune cell types, particularly

antigen-presenting cells (APCs), B cells, and CD8+ T cells, implying

a weaker immune response in the high-risk group. Further

validation through Danaher et al.’s scoring analysis in Figure 5D

reinforces these results, as the low-risk group shows significantly

higher immune activity in cell populations such as B cells, dendritic

cells, macrophages, and CD8+ T cells, emphasizing a robust

immune presence. Additionally, the heatmap in Figure 5E clusters

immune cells by risk group, revealing strong associations between

the low-risk group and immune cell activity, particularly in Th1

cells, dendritic cells, and NK cells, thus supporting the view that the

low-risk group has a more active immune microenvironment.

Finally, Figure 5F summarizes immune infiltration differences

between the two groups, illustrating that 59.66% of high-risk

patients have low immune infiltration, while 65.2% of low-risk

patients demonstrate high immune infiltration. This comprehensive

analysis highlights that Necroptosis.Sig is inversely related to

immune infiltration, with higher necroptosis risk correlating with

reduced immune presence and potentially influencing tumor

immune evasion and patient prognosis. This reorganization

underscores our key finding that Necroptosis.Sig’s relationship

with immune infiltration varies by cancer type and risk group,

contributing novel insights to the field of cancer immunotherapy.
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FIGURE 4

Functional and Pathway Analysis of Necroptosis Gene Signature in Cancer. (A) Heatmap illustrating associations between gene sets and necroptosis
risk across various cancer cohorts. Gene modules are classified into functional groups (C1 to C8), with risk categories annotated as high or low
based on necroptosis risk scores. The gene sets highlighted include those related to cell cycle, metabolic processes, and immune regulation. (B) t-
SNE plots showing the distribution of necroptosis risk scores in different cancer types, including acute myeloid leukemia, renal cell carcinoma, and
antigen processing pathways. The risk scores are color-coded from low (green) to high (red), indicating the association between necroptosis and key
biological pathways such as protein modification and stress response. (C) Network diagram depicting interactions between gene modules involved
in cell cycle regulation and chromosome segregation. These gene modules highlight the complex interactions between pathways associated with
tumor progression and necroptosis. (D) Bar graph showing the top enriched Gene Ontology (GO) terms related to immune response, cell activation,
and inflammatory processes. The length of the bars corresponds to the significance level of enrichment (-log10(P)) for each GO term. (E) Gene Set
Enrichment Analysis (GSEA) plots for key enriched pathways, including cytokine-cytokine receptor interaction, neutrophil extracellular trap
formation, and Th1/Th2/Th17 cell differentiation. The plots show enrichment scores and p-values, emphasizing the involvement of necroptosis in
immune cell activation and differentiation pathways.
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FIGURE 5

The association between necroptosis signature and immune infiltration across different cancer types. (A) Percentage distribution of risk levels (High
vs Low) based on necroptosis signature across different cancer types from the TCGA cohort. (B) Violin plots showing the relationship between
necroptosis signature (high and low risk) and different immune-related metrics, including leukocyte fraction (DNA methylation estimate), lymphocyte
fraction (CIBERSORT estimate), tumor-infiltrating lymphocyte (TIL) regional fraction (H&E images estimate), TIL fraction (molecular estimate), and
CD8 T cells (CIBERSORT estimate). (C) Boxplot of immune signature scores across various immune cell populations, comparing high-risk and low-
risk groups based on the necroptosis signature. (D) Scores from Danaher et al. indicating the association between necroptosis signature and specific
immune cell populations in high-risk and low-risk groups. (E) Heatmap showing the clustering of different immune cell types based on their
association with necroptosis signature risk groups. (F) Bar plot representing the proportion of high and low immune infiltration in high-risk and low-
risk necroptosis signature groups.
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Necroptosis.Sig influence various genomic
and immunological features of pan-
cancer patient

Next, this study delves into the relationship between high-risk and

low-risk groups, as defined by Necroptosis.Sig, in terms of genomic
Frontiers in Immunology 09
and immunological characteristics. Figure 6A compares the mutation

rate, neoantigen burden, T-cell receptor (TCR) and B-cell receptor

(BCR) diversity, aneuploidy score, and intratumor heterogeneity

between the two groups. The results show that the low-risk group

has higher TCR and BCR diversity, indicating a more diverse immune

repertoire, while the high-risk group exhibits greater genomic
FIGURE 6

Analysis of mutation rates, immune signatures, and pathway activities in high- and low-risk groups. (A) Box plots comparing mutation rates, immune
receptor richness (BCR, TCR), and tumor-related features (e.g., aneuploidy score, intratumor heterogeneity) between high- and low-risk groups.
Significance is indicated as *p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant. (B) Heatmap showing expression differences in MHC class I/II
genes, other MHC molecules, and immune checkpoint inhibitors between high- and low-risk groups, with p-values denoting significance. (C)
Mutation signature plots showing cosine similarity for various mutation signatures (SBS10b, SBS6, SBS7a, SBS3) between risk groups, linked to
different etiologies such as UV exposure and DNA repair defects. (D) Box plots comparing the contribution of mutation signatures (SBS10b, SBS7a,
SBS6, SBS3) between high- and low-risk groups. (E) Violin plots showing pathway activity scores (e.g., cell cycle, HIPPO, MYC, NOTCH, NRF2)
between high- and low-risk groups. (F) Violin plots comparing additional pathway activities (e.g., PI3K, RTK-RAS, TGF-beta, TP53, WNT) between
high- and low-risk groups. Significance is indicated as in (A).
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instability, with higher aneuploidy scores and intratumor

heterogeneity. Figure 6B presents a heatmap of the differential

expression of MHC-I and MHC-II molecules, as well as immune

checkpoint inhibitors, with the low-risk group showing higher MHC

expression, and the high-risk group displaying increased immune

checkpoint expression, suggesting potential immune evasion

mechanisms in the high-risk cohort. Figure 6C illustrates mutation

signatures related to DNA repair defects, which are more pronounced

in the high-risk group. Figure 6D confirms these findings by showing

that mutation signatures associated with polymerase epsilon

mutations, UV exposure, DNA mismatch repair defects, and

homologous recombination defects are significantly higher in the

high-risk group. Figures 6E, F compare the activity of several

oncogenic pathways, such as Cell Cycle, MYC, HIPPO, TGF-beta,

and WNT, with the high-risk group showing higher activity in these

pathways, suggesting more aggressive tumor behavior and potential

therapeutic vulnerabilities. Overall, this figure indicates that high-risk

patients with elevated Necroptosis.Sig exhibit greater genomic

instability, more active oncogenic pathways, and increased

expression of immune checkpoint molecules, contributing to a more

aggressive and immunosuppressive tumor microenvironment.
HMGB1 knockdown suppresses A549 lung
cancer cell proliferation and tumor growth

To further investigate the role of HMGB1, one of the modeling

genes of Necroptosis.Sig, in A549 lung cancer cells and animal

experiments, we conducted a series of analyses. The results showed

that knocking down HMGB1 significantly reduced its relative

expression levels (Figure 7A) and inhibited cell proliferation. In the

CCK-8 assay, cells with HMGB1 knockdown exhibited a significantly

slower proliferation rate at different time points (Figures 7B, C). The

EdU staining assay further demonstrated that the percentage of EdU-

positive cells was significantly reduced in the HMGB1 knockdown

group (Figures 7D, E), confirming the suppression of cell

proliferation. Meanwhile, flow cytometry analysis indicated that the

apoptosis rate was significantly increased in HMGB1 knockdown

cells (Figures 7F, G). In the mouse xenograft model, tumors in the

HMGB1 knockdown group were noticeably smaller, and tumor

growth was significantly slower (Figures 7H, I). Furthermore,

Kaplan-Meier survival curves showed that mice in the HMGB1

knockdown group had significantly improved survival rates

(Figure 7J). Overall, these results suggest that HMGB1 plays a

critical role in tumor cell proliferation, apoptosis, and tumor

growth, further supporting its importance as a Necroptosis.Sig

modeling gene in tumor development and immune evasion.
Materials and methods

Pan-cancer transcriptomic and ICI RNA-
Seq data

We retrieved multi-omics datasets from the TCGA Pan-cancer

collection via UCSC Xena (https://xenabrowser.net/datapages/) to
Frontiers in Immunology 10
explore the relationship between Necroptosis .Sig and

immunosuppression across cancers. DLBC, LAML, and THYM

were excluded due to their high immune cell content, which

could introduce bias. The necroptosis gene sets were obtained

from the GSEA database (https://www.gsea-msigdb.org/gsea/

index.jsp). To address the potential batch effects arising from

different tumor cohorts within the TCGA dataset, we applied the

ComBat algorithm from the sva package (31), which effectively

adjusts for batch effects while preserving biological variation across

cancer types.

To validate the predictive capability of Necroptosis.Sig, we

systematically collected transcriptomic data and clinical information

from 10 pretreated ICI RNA-Seq cohorts. These cohorts include 5

melanoma (SKCM) cohorts (32–36), 2 urothelial carcinoma (UC)

cohorts (37, 38), 1 glioblastoma multiforme (GBM) cohort (39), 1

gastric cancer (GC) cohort (40), and 1 renal cell carcinoma (RCC)

cohort (41). Anti-PD-1, anti-PD-L1, anti-CTLA-4, and anti-PD-(L)1 +

anti-CTLA-4 combination therapies were applied to 6, 2, 1, and 1

cohort, respectively. The Hugo 2016 cohort contains 27 pretreated

tumor samples from 26 patients (32), while the Zhao 2019 cohort

includes 34 pretreated tumor samples from 17 patients (39).
Pan-cancer analysis of the association
between different immune functions and
tumor characteristics

Spearman correlation analysis was used to evaluate the relationship

between immune checkpoint gene expression and different immune

functions. GSVA (Gene Set Variation Analysis) (42) was employed to

assess the activity of immune-related signaling pathways (e.g.,

interferon gamma response, IL6-JAK-STAT3 signaling) across

various cancer types. Additionally, the relationship between the

median necroptosis GSVA score and tumor mutation burden

(TMB), as well as intratumor heterogeneity (ITH), was analyzed, and

linear regression trend lines were plotted on scatter plots.
ICI RNA-Seq cohorts

We compiled RNA-Seq and clinical data from 10 Immune

Checkpoint Inhibitor (ICI) RNA-Seq datasets, covering five

cutaneous melanoma datasets, two urothelial carcinoma datasets,

one glioblastoma dataset, one gastric cancer dataset, and one renal

cell carcinoma dataset. Different immunotherapies targeting PD-1,

CTLA-4, and PD-L1 were administered across cohorts. To address

batch effects, we used the ComBat-seq method.
Clinical outcomes

The primary outcomes were Objective Response Rate (ORR)

and Overall Survival (OS), with ORR evaluated using RECIST v1.1

for most cohorts, except one, which used irRECIST guidelines.

Patients were categorized as responders (Complete/Partial

Response) or non-responders (Stable/Progressive Disease).
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Development and validation of a predictive
signature for the ICI dataset

We developed a predictive signature for the ICI dataset by

creating a combined cohort of 772 samples from five ICI RNA-Seq
Frontiers in Immunology 11
datasets. This cohort was split into a training set (80%, n=618) and a

validation set (20%, n=154), with the remaining datasets (n=149)

used as an independent test set. After training various

models, the top-performing one was selected from the training

set and subsequently tested on both the validation and
FIGURE 7

The knockdown of HMGB1 inhibits A549 lung cancer cell proliferation and promotes apoptosis in vitro and in vivo. (A) Relative expression levels of
HMGB1 in shNC, sh#1, and sh#2 A549 lung cancer cells, as measured by qRT-PCR. (B, C) Cell viability analysis using CCK-8 assay in shNC and sh#1
or sh#2 A549 lung cancer cells at different time points. (D) EdU incorporation assay to measure cell proliferation in shNC, sh#1, and sh#2 A549 lung
cancer cells. (E) Quantification of EdU-positive A549 lung cancer cells in shNC, sh#1, and sh#2 groups. (F) Flow cytometry analysis of apoptosis in
shNC, sh#1, and sh#2 A549 lung cancer cells. (G) Quantification of apoptosis rates in shNC, sh#1, and sh#2 A549 lung cancer groups. (H) Tumor
images from xenograft models showing the tumor sizes from shNC and sh#1 groups. (I) Tumor volume measurements over time in shNC and sh#1
groups. (J) Kaplan-Meier survival curves comparing the survival of mice in the shNC and sh#1 groups. Statistical significance: p < 0.05, p < 0.01, p <
0.001, ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1510079
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2024.1510079
independent datasets to evaluate its predictive performance. The

Necroptosis.Sig signature was then compared to six pan-cancer and

seven melanoma-specific signatures for its accuracy in

predicting ICI response within the test set. Additionally,

melanoma-specific signatures were further assessed using two

separate melanoma cohorts.
Training and hyperparameter adjustment

Using the abess algorithm, we identified key necroptosis marker

genes. Six machine learning models (SVM, Naive Bayes, Random

Forest, KNN, AdaBoost, XGBoost) were built with 10-fold cross-

validation and grid search for tuning (43).
Functional and immune analysis

We performed gene set enrichment analysis (GSEA) and

ssGSEA using MSigDB, GSVA, and clusterprofiler R packages to

analyze functional and immune characteristics (44, 45). To assess

immune infiltration, CIBERSORT was used to estimate the

abundance of 22 immune cel l subsets in the tumor

microenvironment from normalized transcriptomic data (46).

Tumor-infiltrating lymphocytes (TILs) were evaluated using both

genomic and histopathological data, while lymphocyte fractions

were estimated based on CIBERSORT results and DNA

methylation profiles. Immune infiltration scores for 14 immune

cell types were calculated using a 60-marker gene signature and

validated through immunohistochemistry and flow cytometry. We

also assessed 29 immune signatures, quantifying enrichment levels

across individual samples with the ssGSEA method. Additionally,

immunogenomic indicators such as intratumor heterogeneity

(ITH), TCR, and BCR diversity were derived from previous

studies, utilizing the ABSOLUTE algorithm for copy number

aberrations and Shannon entropy for receptor diversity.
Cell culture

Protocol for A549 lung cancer mouse cell culture: Begin by

preparing necessary materials and sterilizing the clean bench. For

cell revival, quickly thaw the cryogenic tube, mix it with preheated

medium, centrifuge, and replace with fresh medium. Cultivate the

cells in a CO2 incubator. When cell density reaches 80%-90%, digest

with trypsin, centrifuge, resuspend the cells, and passage them at a

1:2 ratio, continuing cultivation in the CO2 incubator. For

cryopreservation, wash and digest the cells, centrifuge, add

cryopreservation solution, and gradually freeze before storage.
ShRNA stable cell line construction

Using a transfection reagent, the constructed plasmid is

introduced into the target cell line. The cells are then cultivated in

medium containing puromycin to select for and eliminate non-
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transfected cells. The resulting cells, which stably express the

specific shRNA, constitute the stable cell line. Lastly, these cells

are expanded and characterized to confirm the gene silencing effect.

The target sequences for HMGB1 were as follows: sh#1,

CCGTTATGAAAGAGAAATGAA; and sh#2, CCCAGATGCT

TCAGTCAACTT.
Real-time quantitative PCR

Total RNA was successfully extracted using TRIzol reagent from

Sigma-Aldrich. Following this, cDNA was synthesized utilizing the

TOYOBO reverse transcription kit. In the qRT-PCR procedure, we

employed SYBR Green reagent from Applied Biosystems and selected

GAPDH as the internal reference gene. The relative expression of genes

was calculated using the 2-DDCt method. All specific primers are listed in

detail in the supplementary table, ensuring the reproducibility of the

experiment. The primer sequences used are as follows: GAPDH:

Forward Sequence 5’-GTCTCCTCTGACTTCAACAGCG-3’, Reverse

Sequence 5’-ACCACCCTGTTGCTGTAGCCAA-3’. HMGB1:

Forward Sequence 5’-GCGAAGAAACTGGGAGAGATGTG-3’,

Reverse Sequence 5’-GCATCAGGCTTTCCTTTAGCTCG-3’.
Flow cytometry for detection of
cell apoptosis

Collect cell samples, perform appropriate treatment, stain with

fluorescently labeled apoptosis detection reagents (Annexin V

combined with PI), incubate in the dark for 25 minutes, and then

analyze the fluorescent signals of the cell population using flow

cytometry to distinguish between live cells, early apoptotic cells, late

apoptotic/necrotic cells, thereby quantitatively assessing the level

of apoptosis.
Construction of a mouse subcutaneous
tumor model

The 6-8 weeks-old female Balb/c-nu mice were purchased from

Beijing Vital River Laboratory Animal Technology Co., Ltd. After

digestion, the cells are resuspended in sterile saline and adjusted to

an appropriate concentration. Subsequently, subcutaneous

injections are administered at the lateral side of the mouse’s back

at a dose of 5x105 cells per mouse, ensuring the cells are accurately

injected into the subcutaneous tissue. Following injection, the mice

are observed regularly for their growth status and tumor

development, with attention also paid to their daily care. Upon

reaching the observation endpoint, the mice are euthanized by

cervical dislocation.
Statistical analysis

Data analysis was conducted in R 4.3.1, using the Wilcoxon

rank-sum test for continuous variables and Spearman correlation
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for relationships. ROC curves and Kaplan-Meier survival analyses

were performed using the pROC and survival packages, with p <

0.05 considered statistically significant.
Conclusion

In this study, we constructed a necroptosis-related Sig that

offers tremendous potential for personalized treatment in patients

with pan-cancer. This necroptosis-related Sig represents a

significant advancement in the field of oncology, as it offers a

novel perspective on cancer biology and paves the way for

innovative strategies in clinical decision-making and patient

management. Furthermore, our research has deepened the

understanding of the molecular mechanisms related to the tumor

microenvironment (TME) influenced by the necroptosis-related Sig

through a multi-omics approach.
Ethical statement

All mice were kept in a specific pathogen-free environment and

supplied with sterilized drinking water. All animal procedures were

conducted in accordance with the ARRIVE guidelines and were

approved by the Animal Ethics Committee of the Affiliated Huai’an

Hospital of Xuzhou Medical University.
Discussion

Necrotic apoptosis, a form of programmed cell death, contrasts

with cytotoxic T cells that must directly interact with tumor cells (47,

48). Necrotic apoptosis represents a cellular death pathway distinct

from apoptosis, often occurring when cells are subjected to extreme

stress, leading to cell rupture and the release of cellular contents, which

can promote inflammation and immune response (49, 50). Existing

research suggests necrotic apoptosis can help eliminate tumor cells by

attracting immune cells, such as macrophages and neutrophils, to the

tumor microenvironment (51, 52). Moreover, interactions between

necrotic cells and other immune components are pivotal in tumor

immunity. Research indicates that the balance between necrotic cell

death and apoptosis influences cancer progression and immune system

activation (53–55). Studies have shown that the immune system’s

response to necrotic cell death can either enhance or suppress tumor

growth depending on the tumor’s microenvironment and the types of

immune cells involved (56–58). Our study extends current

understanding by exploring necrotic apoptosis’s potential role in

enhancing immune checkpoint inhibitor (ICI) therapy efficacy across

multiple cancer types. This investigation represents the first

comprehensive analysis of necroptosis-related signatures in the

context of pan-cancer ICI response (59). Additionally, our research

sought to deepen understanding of the molecular mechanisms

underpinning necrotic apoptosis through a multi-omics approach

(60). This approach integrates transcriptomic, proteomic, and

metabolomic data to reveal novel insights into the pathways that

regulate necrotic cell death and its interplay with tumor immunity.
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To the best of our knowledge, this is the first study to explore

the relationship between necrotic apoptosis and the outcomes of

ICIs therapy in pan-cancer (61). We developed a novel necrotic

apoptosis signature, NecroticApop.Sig, through an integrative

RNA-Seq analysis across multiple cancer types. This signature

serves as a predictive biomarker for ICI response, addressing a

critical need for robust predictors in immunotherapy. Our pan-

cancer approach, utilizing TCGA and multiple ICI transcriptional

cohorts , provides broad validation and demonstrates

NecroticApop.Sig’s superior predictive performance, with an

AUC exceeding 0.7 in multiple testing sets. This finding suggests

that NecroticApop.Sig could enhance ICI treatment strategies by

stratifying patients with higher accuracy than previously

established biomarkers.

A key innovation in this study is the investigation of the

immune landscapes within the tumor microenvironment. Our

multi-omics analysis in the TCGA highlights significant immune

cell infiltration differences between high- and low-risk groups,

suggesting that NecroticApop.Sig not only predicts ICI response

but also provides insight into tumor-immune dynamics.

Specifically, low-risk groups exhibited greater immune cell

activity, including higher CD8+ T cell and immunostimulatory

cell levels, supporting NecroticApop.Sig’s predictive robustness

across multiple cancers and emphasizing its value in tailoring

immunotherapy strategies.

This research utilized six machine learning models to establish a

stable and reliable signature, known as NecroticApop.Sig.

NecroticApop.Sig was an innovative biomarker proficient in predicting

responses to ICIs and effectively stratifying patients likely to experience

survival benefits. Additionally, comparisons of NecroticApop.Sig with

leading-edge signatures, including six pan-cancer and seven melanoma-

specific markers, were conducted. NecroticApop.Sig demonstrated

superior generalization capabilities over pan-cancer signatures and

maintained robust performance across diverse cohorts.

While NecroticApop.Sig demonstrated promising results across 30

cancer types, comprehensive validation in a pan-cancer setting will

require prospective clinical trials involving ICIs. Additionally, limited

clinical annotations in certain RNA-Seq datasets, such as sex, age,

tumor stage, tumor mutational burden (TMB), and intratumoral

heterogeneity (ITH), restricts our ability to perform in-depth

multivariate regression analyses. Addressing these limitations in

future studies could enhance the biomarker’s predictive robustness.

Finally, while NecroticApop.Sig offers a powerful predictive tool,

the exact roles of specific genes within the signature in regulating

necroptosis remain unclear. Additional in vitro and in vivo studies are

necessary to define these genes’ functions in necrotic cell death

modulation and their potential implications for tumor immunity,

further advancing the field of cancer immunotherapy.
Outlook and limitations

This study highlights the potential role of necroptosis in predicting

immune checkpoint inhibitor (ICI) responses, opening new avenues for

further research. Future directions will involve comprehensive in vitro and

in vivo experiments to validate the regulatory roles of NecroticApop.Sig
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genes in necroptosis and tumor immunity, particularly within diverse

tumor microenvironments. However, several limitations warrant

consideration. Firstly, our findings are primarily based on bioinformatics

analyses, lacking in-depth experimental validation, which may limit the

biological insights derived from the study. Extensive experimental research

is necessary to confirm the accuracy and applicability of NecroticApop.Sig

in different tumor contexts. Secondly, although NecroticApop.Sig shows

promising predictive accuracy, it has not yet been validated with

independent cohorts, and current findings may be constrained by

sample representativeness and dataset diversity. To ensure the model’s

robustness and broader applicability, larger and more diverse independent

datasets are needed for further validation. Additionally, due to the

complexity of tumor immunity and necroptosis, the clinical operability

and predictive power of NecroticApop.Sig may be limited by individual

patient variations and tumor heterogeneity. To enhance its clinical

applicability and generalizability, we plan to collect broader independent

datasets, conduct prospective studies, and perform refined analyses across

various tumor types and patient subgroups. These efforts will contribute to

strengthening the practical utility of NecroticApop.Sig in clinical settings.
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