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ABSTRACT
There is a growing interest in the implementation of platform trials, which provide the flexibility to incorporate new treatment
arms during the trial and the ability to halt treatments early based on lack of benefit or observed superiority. In such trials, it can
be important to ensure that error rates are controlled. This paper introduces a multi-stage design that enables the addition of new
treatment arms, at any point, in a preplanned manner within a platform trial, while still maintaining control over the family-wise
error rate. This paper focuses on finding the required sample size to achieve a desired level of statistical power when treatments
are continued to be tested even after a superior treatment has already been found. This may be of interest if there are treatments
from different sponsors which are also superior to the current control ormultiple doses being tested. The calculations to determine
the expected sample size is given. Amotivating trial is presented in which the sample size of different configurations is studied. In
addition, the approach is compared to running multiple separate trials and it is shown that in many scenarios if family-wise error
rate control is needed there may not be benefit in using a platform trial when comparing the sample size of the trial.

1 Introduction

Platform trials are a type of trial design which can aim to reduce
the amount of time and cost of clinical trials, and in recent
years, there has been an increase in the utilization of such
trials, including during the COVID-19 pandemic (Lee et al. 2021;
Stallard et al. 2020). Clinical trials take many years to run and
can cost billions of dollars (Mullard 2018). During this time, it
is not uncommon for new promising treatments to emerge and
become ready to join the current phase later (Choodari-Oskooei
et al. 2020). Therefore, it may be advantageous to include these

treatments into an ongoing trial. This can havemultiple potential
benefits including: shared trial infrastructure; the possibility to
use a shared control group; less administrative and logistical
effort than setting up separate trials and enhance the recruitment
(Burnett, König, and Jaki 2024; Meurer, Lewis, and Berry 2012).
This results in useful therapies potentially being identified faster
while reducing cost and time (Cohen et al. 2015).

There is an ongoing discussion about how to add new treatments
to clinical trials (Cohen et al. 2015; Lee et al. 2021) in both a
preplanned and in an unplannedmanor (Burnett, König, and Jaki
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2024; Greenstreet et al. 2024). In both Bennett andMander (2020),
Choodari-Oskooei et al. (2020) approaches are proposed which
extend the Dunnett test (Dunnett 1955) to allow for unplanned
additional arms to be included in multi-arm trials while still
controlling the family-wise error rate (FWER). This methodology
does not incorporate the possibility of interim analyses.

FWER is often considered to be one of the strongest types of
type I error control in a multi-arm trial (Wason et al. 2016).
There are other approaches one may wish to consider such as
pairwise error rate (PWER) and the false discovery rate (FDR)
(Bratton et al. 2016; Choodari-Oskooei et al. 2020; Cui et al.
2023; Robertson et al. 2022). However, as discussed in Wason,
Stecher, and Mander (2014), there are scenarios where FWER
is seen as the recommended error control, and it can be a
regulatory requirement.

One may wish to include interim analyses as they allow for
ineffective treatments to be dropped for futility earlier and allow
treatments to stop early if they are found superior to the control.
Therefore, potentially improving the efficiency of the design
of a clinical trial by decreasing the expected sample size and
cost of a trial (Pocock 1977; Todd et al. 2001; Wason et al.
2016). Multi-arm multi-stage (MAMS) designs (Magirr, Jaki, and
Whitehead 2012; Royston, Parmar, and Qian 2003) allow interim
analyses while still allowing several treatments to be evaluated
within one study, but do not allow for additional arms to be
added throughout the trial. Burnett, König, and Jaki (2024)
have developed an approach that builds on Hommel (2001) to
incorporate unplanned additional treatment arms to be added to
a trial already in progress using the conditional error principle
(Proschan and Hunsberger 1995). This allows for modifications
during the course of a trial. However, due to the unplannednature
of the adaptation, later treatments can be greatly underpowered
compared to arms which begin the trial.

In a recent paper, Greenstreet et al. (2024) proposed a preplanned
approach to adding additional arms in which interim analyses
can be conducted and multiple arms can be evaluated with some
arms being added at later time points. In this work, the trial was
powered assuming that only one treatmentmay be taken forward.
However, as discussed in the work by Urach and Posch (2016)
and Serra, Mozgunov, and Jaki (2022), this may not always be
the case. For example, one may be interested in: lower doses;
multiple treatments from different sponsors; if another treatment
has preferable secondary outcomes if it also meets the primary
outcome. Furthermore, in Greenstreet et al. (2024), treatment
arms can only be added when an interim analysis happens, this
can greatly restrict when arms can join the trial. This results in
potentially large time periods that a new treatment is available
before able to join the trial, as it is waiting for an interim to
be conducted.

In this work, we provide an analytical method for the adding
of treatments at any point to a MAMS trial in a preplanned
manner, while still controlling the statistical errors. The focus is
on preplanned trials, so, at the design stage it is known howmany
treatments are likely to be added and at what point in the trial
they are planned to be added. For example, this can happen in
a pharmaceutical company when another treatment is looking
promising but is in an earlier stage of development and is not

yet ready to be evaluated in the planned trial but can be added
later on. Due to the flexibility of the methodology, one can create
multiple designs for different numbers of treatments and for each
point the additional treatments may be added into the trial. As
a result, one can present multiple options and then use the trial
design which matches the reality of the trial.

The focus is on trials in which one is interested in continuing to
investigate the other treatments even after a superior treatment
has been found. In addition, multiple types of power will
be considered, and will prove that the conjunctive power of the
study is at its lowest for a given sample size when all the active
treatments have a targeted clinically relevant effect, where the
conjunctive power is the probability of finding all the active
treatments with a clinically relevant effect.

This work will focus predominantly on the case where one has a
fixed allocation ratio across all the treatments and the same num-
ber of interim analyses per treatment with the same boundary
shape. The proposed methodology, however, is general, therefore
can be implemented for when the allocation ratio between active
treatments and control can be different between each stage and
each arm. One needs to be cautious of the potential effects of
time trends on the test statistics when changing allocation ratios
between active treatments and the control treatment mid trial
(Altman and Royston 1988; Getz and Campo 2017; Proschan and
Evans 2020; Roig et al. 2023).

We begin by analytically calculating the FWER and power of the
study and use these to calculate both the stopping boundaries and
sample size. Then, in Section 2.4, the equations for sample size
distribution and expected sample size are given. A trial example
of FLAIR (Howard et al. 2021), in Section 3, is used to motivate
a hypothetical trial of interest. The sample size and stopping
boundaries are found for multiple types of power control and the
effect of different treatment effects is studied. The trial designs
are then compared to running multiple separate trials. Finally, in
Section 4, there is a discussion of the paper.

2 Methodology

2.1 Setting

In the clinical trial design considered in this work, 𝐾 experimen-
tal arms effectiveness is compared to a common control arm. The
trial has 𝐾⋆ treatments starting at the beginning of the trial, and
the remaining𝐾 − 𝐾⋆ treatments being added at later points into
the platform. The primary outcome measured for each patient is
assumed to be independent, continuous, and follows a normal
distribution with a known variance (𝜎2).

The points at which each active treatment arm is added are
predetermined, but can be set to any point within the trial.
Each of the 𝐾 treatments is potentially tested at a series of
analyses indexed by 𝑗 = 1, … , 𝐽𝑘 , where 𝐽𝑘 is the maximum
number of analyses for a given treatment 𝑘 = 1, … , 𝐾. Let 𝑛(𝑘)
denote the number of patients recruited to the control treatment
before treatment 𝑘 is added to the platform trial and define the
vector of adding times by 𝐧(𝐊) = (𝑛(1), … , 𝑛(𝐾)). Therefore, for
treatments that start at the beginning of the trial, 𝑛(𝑘) = 0. We
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also denote 𝑛𝑘,𝑗 as the number of patients recruited to treatment
𝑘 by the end of its 𝑗th stage and define 𝑛0,𝑘,𝑗 as the total number
of patients recruited to the control at the end of treatment 𝑘’s
𝑗th stage. We define 𝑛𝑘 = 𝑛𝑘,1 as the number recruited to the
first stage of treatment 𝑘, 𝑘 = 1, … , 𝐾. The total sample size of a
trial is denoted by 𝑁. The maximum total planned sample size is
max(𝑁) =

∑𝐾

𝑘=1 𝑛𝑘,𝐽𝑘 +max𝑘∈1,…,𝐾(𝑛0,𝑘,𝐽𝑘 ).

We define 𝑟𝑘,𝑗 and 𝑟0,𝑘,𝑗 as the ratio of the number of patients
recruited to treatment 𝑘 and to the control by treatment 𝑘’s
𝑗th stage, respectively, compared to the number of patients
on treatment 1 at stage 1. Therefore, the ratio of the number
of patients recruited on treatment 1 at stage 1 equals 𝑟1,1 = 1.
The relationship between 𝑟𝑘,𝑗 and 𝑛𝑘,𝑗 is 𝑟𝑘,𝑗 = 𝑛𝑘,𝑗∕𝑛1,1, the
relationship between 𝑟0,𝑘,𝑗 and 𝑛0,𝑘,𝑗 is 𝑟0,𝑘,𝑗 = 𝑛0,𝑘,𝑗∕𝑛1,1. Also, 𝑟(𝑘)
denotes the ratio of the number of patients recruited to the control
before treatment 𝑘 is added to the trial compared to 𝑟1,1. For
example, if a trial was planned to have equal number of patients
per arm per stage with active treatment 1 added at the beginning
of the trial (𝑟(1) = 0) and a treatment, 𝑘′, was added at the first
interim then 𝑟(𝑘′) = 1 and at the first stage for 𝑘′, 𝑟0,𝑘′,1 = 2. The
ratio should be chosen to calculate the required boundaries to
control the FWER as provided in Section 2.2.

Throughout the trial, the control arm is recruited andmaintained
for the entire duration. The comparisons between the control arm
and the active treatment arms are based on concurrent controls,
meaning that only participants recruited to the control arm at
the same time as the corresponding active arm are used in the
comparisons.Work on theuse of nonconcurrent controls includes
Lee and Wason (2020) and Marschner and Schou (2022).

The null hypotheses of interest are 𝐻0𝑘 ∶ 𝜇𝑘 ≤ 𝜇0, 𝑘 = 1, … , 𝐾,
where 𝜇1, … , 𝜇𝐾 are the mean responses on the 𝐾 experimental
treatments and 𝜇0 is the mean response of the control group.
The global null hypothesis, 𝜇0 = 𝜇1 = 𝜇2 = … = 𝜇𝐾 is denoted by
𝐻𝐺 . At analysis 𝑗 for treatment 𝑘, to test 𝐻0𝑘 it is assumed that
responses,𝑋𝑘,𝑖 , frompatients 𝑖 = 1, … , 𝑛𝑘,𝑗 are observed, as well as
the responses 𝑋0,𝑖 from patients 𝑖 = 𝑛(𝑘) + 1, … , 𝑛0,𝑘,𝑗 . These are
the outcomes of the patients allocated to the control which have
been recruited since treatment 𝑘 has been added into the trial up
to the 𝑗th analysis of treatment 𝑘. The null hypotheses are tested
using the test statistics

𝑍𝑘,𝑗 =
𝑛−1
𝑘,𝑗

∑𝑛𝑘,𝑗

𝑖=1 𝑋𝑘,𝑖 − (𝑛0,𝑘,𝑗 − 𝑛(𝑘))−1
∑𝑛0,𝑘,𝑗

𝑖=𝑛(𝑘)+1 𝑋0,𝑖

𝜎
√
(𝑛𝑘,𝑗)−1 + (𝑛0,𝑘,𝑗 − 𝑛(𝑘))−1

.

The decision making for the trial is made by the upper and lower
stopping boundaries, denoted as 𝑈𝑘 = (𝑢𝑘,1, … , 𝑢𝑘,𝐽𝑘 ) and 𝐿𝑘 =
(𝑙𝑘,1, … , 𝑙𝑘,𝐽𝑘 ). These boundaries are utilized to determine whether
to continue or halt a treatment arm or even the whole trial at
various stages. The decision-making process is as follows: if the
test statistic for treatment 𝑘 at stage 𝑗 exceeds the upper boundary
𝑢𝑘,𝑗 , the null hypothesis 𝐻0𝑘 is rejected, and the treatment is
stopped with the conclusion that it is superior to the control.
Conversely, if 𝑍𝑘,𝑗 falls below the lower boundary 𝑙𝑘,𝑗 , treatment
𝑘 is stopped for futility for all subsequent stages of the trial.
If neither the superiority nor futility conditions are met, 𝑙𝑘,𝑗 ≤
𝑍𝑘,𝑗 ≤ 𝑢𝑘,𝑗 , treatment 𝑘 proceeds to its next stage 𝑗 + 1. If all the

active treatments are stopped, then the trial stops. The bounds are
determined such that they control the FWER of the trial.

If one wants to change the allocation ratio between the control
arm and active arms mid trial, then one should adjust the test
statistics if there are any time trends present (Burnett, König, and
Jaki 2024;Greenstreet et al. 2024; Lee andWason 2020;Marschner
and Schou 2022) otherwise the errors in the trial may be inflated
(Proschan andEvans 2020; Roig et al. 2023). Changes to allocation
ratios are out of the scope for this paper. Those adjustmentswould
typically be adaptive in nature and may require adaptive design
methodology for control of type I error. The notation defined
throughout this section is provided in the Supporting Information
(Section 1) in tables for reader’s convenience.

2.2 FWER

The FWER in the strong sense is defined as

𝑃(reject at least one true𝐻0𝑘 under any null configuration,

𝑘 = 1, … , 𝐾) ≤ 𝛼, (1)

where 𝛼 is the desired level of control for the FWER. As proven
in Greenstreet et al. (2024) which builds on Magirr, Jaki, and
Whitehead (2012), if one can show for the given boundaries that
the FWER is controlled at the desired level under the global null
hypothesis then the FWER is controlled in the strong sense. The
proof that this holds when continuing the trial even after finding
a superior treatment, is provided in the Supporting Information
(Section 2).

To calculate the FWER under the global null hypothesis, one
needs to consider every possible outcome of the trial which results
in no active treatments being declared superior to the control
treatment. Each treatment can be stopped for futility at any of its
stages (1, … , 𝐽𝑘); therefore, we define 𝑗𝑘 as the stage for treatment
𝑘 where it stops. For treatment 𝑘 to stop at stage 𝑗𝑘 for futility,
the test statistics need to be within the following upper and lower
boundaries 𝑈𝑘,𝑗𝑘

(0) = (𝑢𝑘,1, … , 𝑙𝑘,𝑗𝑘 ) and 𝐿𝑘,𝑗𝑘 (0) = (𝑙𝑘,1, … ,−∞),
respectively. To calculate the FWER, one needs to combine every
possible combination of 𝑗𝑘 for all 𝐾 treatments, so we define
𝐣𝐤 = (𝑗1, … , 𝑗𝐾) as a list of the stages where each treatment stops.
As each event that results in all the treatments being stopped
for futility are disjoint, then the additivity probability theorem
(Kolmogorov andBharucha-Reid 2018) can be used,which results
in summing all the events. The FWER under the global null
hypothesis then equals

1 −
𝐽𝑘∑
𝑗𝑘=1

𝑘=1,2,…,𝐾

Φ(𝐋𝐣𝐤 (𝟎),𝐔𝐣𝐤
(𝟎), Σ𝐣𝐤 ). (2)

Here, Φ(𝐿,𝑈, Σ) denotes the multivariate normal distribution
function with mean zero and covariance matrix Σ between
the lower boundaries 𝐿 and upper boundaries 𝑈. With 𝐣𝐤 ,
one can define the vector of upper and lower limits for the
multivariate standard normal distribution function as 𝐔𝐣𝐤

(𝟎) =
(𝑈1,𝑗1

(0), … ,𝑈𝐾,𝑗𝐾
(0)) and 𝐋𝐣𝐤 (𝟎) = (𝐿1,𝑗1 (0), … , 𝐿𝐾,𝑗𝐾 (0)), which
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is the combination of required boundaries for each active
treatment 𝑘 given 𝑗𝑘 .

The correlation matrix, Σ𝐣𝐤 , complete correlation structure is

Σ𝐣𝐤 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜌(1,1),(1,1) 𝜌(1,1),(1,2) … 𝜌(1,1),(1,𝑗1) 𝜌(1,1),(2,1) … 𝜌(1,1),(𝐾,𝑗𝑘)
𝜌(1,2),(1,1) 𝜌(1,2),(1,2) … 𝜌(1,2),(1,𝑗1) 𝜌(1,2),(2,1) … 𝜌(1,2),(𝐾,𝑗𝑘)

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝜌(1,𝑗1),(1,1) 𝜌(1,𝑗1),(1,2) … 𝜌(1,𝑗1),(1,𝑗1) 𝜌(1,𝑗1),(2,1) … 𝜌(1,𝑗1),(𝐾,𝑗𝑘)
𝜌(2,1),(1,1) 𝜌(2,1),(1,2) … 𝜌(2,1),(1,𝑗1) 𝜌(2,1),(2,1) … 𝜌(2,1),(𝐾,𝑗𝑘)

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝜌(𝐾,𝑗𝑘),(1,1) 𝜌(𝐾,𝑗𝑘),(1,2) … 𝜌(𝐾,𝑗𝑘),(1,𝑗1) 𝜌(𝐾,𝑗𝑘),(2,1) … 𝜌(𝐾,𝑗𝑘),(𝐾,𝑗𝑘)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3)

where 𝜌(𝑘,𝑗),(𝑘⋆,𝑗⋆) is defined in the Supporting Information
(Section 3).

If treatment 𝑘⋆ is added to the platform trial after the 𝑗𝑘 stage
for treatment 𝑘 then the correlation equals 0 as there is no
shared controls. The proposed methodology allows for different
critical boundaries to be used for each treatment 𝑘 as shown in
Equation (2).

If it is assumed that there is an equal number of stages per
treatment and equal allocation across all the active treatments,
then if one is using the same stopping boundary shape, one
can just calculate the FWER. This is because it results in equal
PWER for each treatment (Bratton et al. 2016; Choodari-Oskooei
et al. 2020; Greenstreet et al. 2024). This removes the potential
issue of time trends with changing allocation ratios. Therefore,
to find the boundaries, one can use a single scalar parameter 𝑎
with the functions 𝐿𝑘 = 𝑓(𝑎) and 𝑈𝑘 = 𝑔(𝑎), where 𝑔 and 𝑓 are
the functions for the shape of the upper and lower boundaries,
respectively. This is similar to the method presented in Magirr,
Jaki, and Whitehead (2012). If one includes the lower boundaries
when calculating the boundaries to control the FWER then
these boundaries are binding (Schüler, Kieser, and Rauch 2017).
However, for nonbinding boundaries, then Equation (2) can
be used, now setting 𝑙1, … , 𝑙𝐽𝑘−1 to be equal to −∞ for all 𝑘 =
1, … , 𝐾 to remove the effect of the lower boundaries. Examples of
nonbinding boundaries are given in the Supporting Information
(Section 9).

2.3 Power

When designing a multi-arm trial in which all treatments get
tested until they are stopped for futility or superiority, regardless
of the other treatments, different definitions of power could be
considered. The power of a study is focused on the probability that
the trial results in some or all of the treatments going forward. The
sample size of the study is then found to ensure that the chosen
power is greater than or equal to some chosen value, 1 − 𝛽.

One may be interested in ensuring that at least one treatment is
taken forward from the study. This can be split into two types
of power discussed in the literature. The first is the disjunctive
power (Choodari-Oskooei et al. 2020; Hamasaki et al. 2021; Urach

and Posch 2016) which is the probability of taking at least one
treatment forward. The second is the pairwise power which is
the probability of taking forward a given treatment (Choodari-
Oskooei et al. 2020; Royston et al. 2011). Pairwise power may

be of interest if different interventions are produced by different
companies in a platform trial. Therefore, pairwise error control
ensures that the power for their given treatment is controlled
at the desired level irrespective of any other treatment. In the
Supporting Information (Section 4), the equations needed to
calculate the disjunctive power (𝑃𝐷) are given.

Another way of thinking of powering a study is the probability
of taking forward all the treatments which have an effect greater
than or equal to the targeted clinically-relevant effect. This is
known as the conjunctive power of a study (Choodari-Oskooei
et al. 2020; Hamasaki et al. 2021; Serra, Mozgunov, and Jaki 2022;
Urach and Posch 2016). For the conjunctive power, we prove that
it is lowest when all the treatments have the targeted clinically-
relevant effect. Conjunctive power may be of interest in the
scenario where new treatments are rare relative to the prevalence
of a disease, so the trial is designed to ensure all treatments with
a clinically-relevant effect are found, with high probability.

2.3.1 Pairwise Power

The pairwise power of a treatment is independent of other
active treatments. This is because the other active treatments
effect has no influence on the treatment of interest as these are
independent. Therefore, we only need to consider the probability
that the treatment of interest is found superior to the control. The
pairwise power for treatment 𝑘 (𝑃𝑝𝑤,𝑘) is

𝑃𝑝𝑤,𝑘 =
𝐽𝑘∑
𝑗𝑘=1

Φ(𝑈+
𝑘,𝑗𝑘
(𝜃𝑘), 𝐿

+
𝑘,𝑗𝑘
(𝜃𝑘), Σ̈𝑘,𝑗𝑘 ), (4)

with

𝐿+
𝑘,𝑗𝑘
(𝜃𝑘) = (𝑙𝑘,1 −

𝜃𝑘√
𝐼𝑘,1

, … , 𝑙𝑘,𝑗𝑘−1 −
𝜃𝑘√
𝐼𝑘,𝑗𝑘−1

, 𝑢𝑘,𝑗𝑘 −
𝜃𝑘√
𝐼𝑘,𝑗𝑘

),

(5)

𝑈+
𝑘,𝑗𝑘
(𝜃𝑘) = (𝑢𝑘,1 −

𝜃𝑘√
𝐼𝑘,1

, … , 𝑢𝑘,𝑗𝑘−1 −
𝜃𝑘√
𝐼𝑘,𝑗𝑘−1

,∞), (6)

where 𝜃𝑘 = 𝜇𝑘 − 𝜇0 is the treatment 𝑘’s effect compared to the
control treatment, and 𝐼𝑘,𝑗 = 𝜎2(𝑛−1

𝑘,𝑗
+ (𝑛0,𝑘,𝑗 − 𝑛(𝑘))−1). When

4 of 14 Biometrical Journal, 2025



ALGORITHM 1 Iterative approach to compute the 𝑛 for the pairwise power with predefined 𝐧(𝐊)

0 Begin by assuming 𝐧(𝐊) = (0, 0, … , 0) and find the stopping boundaries to control the FWER. Now calculate 𝑛 such that the
pairwise power is greater than or equal to a prespecified (1 − 𝛽). Then repeat the following iterative steps until the pairwise
power, given the true 𝐧(𝐊), is greater than (1 − 𝛽):

1 Find the stopping boundaries to control the FWER for the true predefined 𝐧(𝐊) given the current 𝑛.
2 Calculate 𝑃𝑝𝑤 for the given boundaries.
3 If 𝑃𝑝𝑤 ≥ 1 − 𝛽 then stop, else increase 𝑛 by 1 and repeat steps 1–3.

calculating the required sample size to control the pairwise
power, we set 𝜃𝑘 = 𝜃′, so we find the power under the targeted
clinically relevant effect (𝜃′). This ensures the study is powered at
the desired level for a treatment with a clinically relevant effect
or greater. The correlation matrix, Σ̈𝑘,𝑗𝑘 , complete correlation
structure is

Σ̈𝑘,𝑗𝑘 =
⎛⎜⎜⎜⎝
𝜌(𝑘,1),(𝑘,1) 𝜌(𝑘,1),(𝑘,2) … 𝜌(1,1),(𝑘,𝑗𝑘)
𝜌(𝑘,2),(𝑘,1) 𝜌(𝑘,2),(𝑘,2) … 𝜌(𝑘,2),(𝑘,𝑗𝑘)

⋮ ⋮ ⋱ ⋮

𝜌(𝑘,𝑗𝑘),(𝑘,1) 𝜌(𝑘,𝑗𝑘),(𝑘,2) … 𝜌(𝑘,𝑗𝑘),(𝑘,𝑗𝑘)

⎞⎟⎟⎟⎠ , (7)

where 𝜌(𝑘,𝑗),(𝑘,𝑗⋆) is defined in the Supporting Information (Sec-
tion 3).

One can then design the trial so that the pairwise power for each
treatment 𝑘 (𝑃𝑝𝑤,𝑘) is greater than or equal to some chosen 1 −
𝛽 for every treatment assuming all treatments have a clinically
relevant effect. If one has an equal number of stages per treatment
and equal allocation across all the active treatmentswith the same
stopping boundaries, this ensures that pairwise power is equal for
each treatment with a clinically relevant effect, so 𝑛𝑘 = 𝑛𝑘⋆ for all
𝑘, 𝑘⋆ = 1, … , 𝐾. Therefore, we define 𝑛 = 𝑛𝑘 for all 𝑘 = 1, … , 𝐾.
To ensure pairwise power is controlled, keep increasing 𝑛 until
𝑃𝑝𝑤 ≥ 1 − 𝛽, where 𝑃𝑝𝑤 = 𝑃𝑝𝑤,𝑘 for all 𝑘 = 1, … , 𝐾.

If designing a trial inwhich there is a set number of patients to the
control before an active treatment 𝑘 is added, so𝑛(𝑘) is predefined
before calculating the boundaries and sample size, one needs to
use an approach such as Algorithm 1. This is because when the
sample size increases there is no increase in 𝑛(𝑘) for all 𝑘. This
results in a change in the allocation ratio between 𝑟(𝑘) and 𝑟0,𝑘,𝑗
for each 𝑗. Therefore, requiring the bounds to be recalculated for
the given 𝑟(𝑘). If one focus is on the new arms being added after
a set percentage of the way through the trial, this issue no longer
persists, as the allocation ratio stays the same so the bounds can
be calculated once.

2.3.2 Conjunctive Power

The conjunctive power is defined as the probability of taking
forward all the treatments which have a clinically relevant effect.
We begin by proving when the conjunctive power is at its lowest.
We define the events

𝐵𝑘,𝑗(𝜃𝑘) =[𝑙𝑘,𝑗 + (𝜇𝑘 − 𝜇0 − 𝜃𝑘)𝐼
1∕2

𝑘,𝑗
< 𝑍𝑘,𝑗 < 𝑢𝑘,𝑗 + (𝜇𝑘 − 𝜇0 − 𝜃𝑘)𝐼

1∕2

𝑘,𝑗
],

𝐶𝑘,𝑗(𝜃𝑘) =[𝑍𝑘,𝑗 > 𝑢𝑘,𝑗 + (𝜇𝑘 − 𝜇0 − 𝜃𝑘)𝐼
1∕2

𝑘,𝑗
],

where 𝐵𝑘,𝑗(𝜃𝑘) defines the event that treatment 𝑘 continues to the
next stage and 𝐶𝑘,𝑗(𝜃𝑘) defines the event that treatment 𝑘 is found
superior to the control at stage 𝑗. If 𝜇𝑘 − 𝜇0 = 𝜃𝑘 for 𝑘 = 1, … , 𝐾,
the event that 𝐻01, … ,𝐻0𝐾 are all rejected (�̄�𝐾(Θ)) is equivalent
to

�̄�𝐾(Θ) =
⋂

𝑘∈{1,…,𝐾}

(
𝐽𝑘⋃
𝑗𝑘=1

[( 𝑗𝑘−1⋂
𝑗=1

𝐵𝑘,𝑗(𝜃𝑘)

)
∩ 𝐶𝑘,𝑗𝑘 (𝜃𝑘)

])
,

where Θ = (𝜃1, 𝜃2, … , 𝜃𝐾) with the convention that
⋂0

𝑖=1 = Ω

where Ω is the whole sample space. We define Θ′ as the Θ when
𝜃𝑘 = 𝜃′ for all 𝑘 = 1, … , 𝐾 therefore Θ′ = (𝜃′, … , 𝜃′).

Theorem 2.1. For any Θ, 𝑃(reject all𝐻0𝑘 for which 𝜃𝑘 ≥
𝜃′|Θ) ≥ 𝑃(reject all𝐻0𝑘 for which 𝜃𝑘 ≥ 𝜃′|Θ′).

The formal proof of Theorem 2.1 is given in the Supporting
Information (Section 5). The proof can be split into two key parts.
In Part 1, one can show that the conjunctive power, with respect
to treatment effect, is a monotonically increasing function.
Therefore, the power for treatments with at least a clinically
relevant effect is at its lowest when the treatments are at the
clinical relevance threshold, 𝜃′. Part 2 shows that the probability
with respect to the number of intersection hypotheses included is
a monotonically decreasing function, so the conjunctive power is
smallest when all treatments have a clinically relevant effect.

It follows from Theorem 2.1 that the conjunctive power (𝑃𝐶)
is minimized when all treatments have the smallest interesting
treatment effect. In order to ensure the conjunctive power is
greater than level 1 − 𝛽, we rearrange the events 𝐵𝑘,𝑗𝑘 (𝜃𝑘) and
𝐶𝑘,𝑗(𝜃𝑘) and take advantage of the fact that each event that results
in all the treatments being stopped for efficiency are disjoint
(Kolmogorov and Bharucha-Reid 2018) to find

𝑃𝐶 = 𝑃(�̄�𝑙(Θ
′)) =

𝐽𝑘∑
𝑗𝑘=1

𝑘=1,2,…,𝐾

Φ(𝐋+
𝐣𝐤
(Θ′),𝐔+

𝐣𝐤
(Θ′), Σ𝐣𝐤 ), (8)

where 𝐔+
𝐣𝐤
(Θ′) = (𝑈+

1,𝑗1
(𝜃′), … ,𝑈+

𝐾,𝑗𝐾
(𝜃′)) and 𝐋+

𝐣𝐤
(Θ′) =

(𝐿+
1,𝑗1
(𝜃′), … , 𝐿+

𝐾,𝑗𝐾
(𝜃′)) with 𝑈+

𝑘,𝑗𝑘
(𝜃𝑘) and 𝐿+

𝑘,𝑗𝑘
(𝜃𝑘) defined

in Equations (6) and (5), respectively. The correlation matrix Σ𝐣𝐤
is the same as that given for FWER in Equation (7).

When one has equal number of stages and fixed allocation ratio to
find the sample size, one needs to increase 𝑛 until 𝑃𝐶 ≥ 1 − 𝛽. If
one is in the case of fixed 𝐧(𝐤) then one can use Algorithm 1, now
replacing pairwise power for conjunctive power as once again

5 of 14



fixed 𝐧(𝐤) results in a change in the allocation ratio between 𝑟(𝑘)
and 𝑟0,𝑘,𝑗 for each 𝑗.

2.4 Sample Size Distribution and Expected
Sample Size

The determination of sample size distribution and expected
sample size involves calculating the probability for each outcome
of the trial, denoted as 𝑄𝐣𝐤 ,𝐪𝐤

. Here, 𝐪𝐤 = (𝑞1, … , 𝑞𝐾) is defined,
where 𝑞𝑘 = 0 indicates that treatment 𝑘 falls below the lower
stopping boundary at point 𝑗𝑘, and 𝑞𝑘 = 1 indicates that treatment
𝑘 exceeds the upper stopping boundary at point 𝑗𝑘 . We find

𝑄𝐣𝐤 ,𝐪𝐤
=Φ(�̃�𝐣𝐤 ,𝐪𝐤 (Θ), �̃�𝐣𝐤 ,𝐪𝐤

(Θ), Σ𝐣𝐤 ),

with 𝐣𝐤 one can define �̃�𝐣𝐤 ,𝐪𝐤 (Θ) = (�̃�1,𝑗1,𝑞1 (𝜃1), … , �̃�𝐾,𝑗𝐾 ,𝑞𝐾 (𝜃𝐾))

and �̃�𝐣𝐤 ,𝐪𝐤
(Θ) = (�̃�1,𝑗1,𝑞1

(𝜃1), … , �̃�𝐾,𝑗𝐾 ,𝑞𝐾
(𝜃𝐾)) where

�̃�𝑘,𝑗𝑘 ,𝑞𝑘 (𝜃𝑘) = (𝑙𝑘,1 −
𝜃𝑘√
𝐼𝑘,1

, … , 𝑙𝑘,𝑗𝑘−1 −
𝜃𝑘√
𝐼𝑘,𝑗𝑘−1

,

[𝟙(𝑞𝑘 = 0)(−∞) + 𝑢𝑘,𝑗𝑘 ] −
𝜃𝑘√
𝐼𝑘,𝑗𝑘

),

�̃�𝑘,𝑗𝑘 ,𝑞𝑘
(𝜃𝑘) = (𝑢𝑘,1 −

𝜃𝑘√
𝐼𝑘,1

, … , 𝑢𝑘,𝑗𝑘−1 −
𝜃𝑘√
𝐼𝑘,𝑗𝑘−1

,

[𝟙(𝑞𝑘 = 1)(∞) + 𝑙𝑘,𝑗𝑘 ] −
𝜃𝑘√
𝐼𝑘,𝑗𝑘

),

respectively. The correlation matrix Σ𝐣𝐤 is given in Equation (7).
The 𝑄𝐣𝐤 ,𝐪𝐤

are associated with their given total sample size 𝑁𝐣𝐤,𝐪𝐤

for that given 𝐣𝐤 and 𝐪𝐤

𝑁𝐣𝐤 ,𝐪𝐤
=
( 𝐾∑

𝑘=1
𝑛𝑘,𝑗𝑘

)
+ max

𝑘∈1,…𝐾
(𝑛0,𝑘,𝑗𝑘 ).

This shows that the control treatment continues being recruited
to until, at the earliest, the last active treatment to be added has
had at least one analysis. To obtain the sample size distribution,
as similarly done in Greenstreet et al. (2024), we group all the
values of 𝐣𝐤 and 𝐪𝐤 that gives the same value of 𝑁𝐣𝐤,𝐪𝐤

with its
corresponding 𝑄𝐣𝐤 ,𝐪𝐤

. This set of 𝑄𝐣𝐤 ,𝐪𝐤
is then summed together

to give the probability of the realization of this sample size.
To calculate the sample size distribution for each active arm,
group 𝑛𝑘,𝑗𝑘 with its corresponding 𝑄𝐣𝐤 ,𝐪𝐤

and this can similarly
be done for the control treatment. The expected sample size for a
given Θ, denoted as 𝐸(𝑁|Θ), is obtained by summing all possible
combinations of 𝐣𝐤 and 𝐪𝐤 ,

𝐸(𝑁|Θ) = 𝐽𝑘∑
𝑗𝑘=1

𝑘=1,2,…,𝐾

∑
𝑞𝑘∈{0,1}
𝑘=1,2,…,𝐾

𝑄𝐣𝐤 ,𝐪𝐤
𝑁𝐣𝐤 ,𝐪𝐤

. (9)

The expected sample size for multiple different treatment effects
(Θ = (𝜃1, … , 𝜃𝐾)) can then be found using Equation (9).

3 Motivating Trial Example

3.1 Setting

One example of a platform trial is FLAIR, which focused on
chronic lymphocyte leukemia (Howard et al. 2021). FLAIR ini-
tially planned to incorporate an additional active treatment arm
and conduct an interim analysis midway through the intended
sample size for each treatment. During the actual trial, two
extra arms were introduced, including an additional control arm.
The original trial design primarily addressed the pairwise type I
error due to the inclusion of both additional experimental and
control arms.

Following Greenstreet et al. (2024), a hypothetical trial that mir-
rors some aspects of FLAIR will be studied. In this hypothetical
trial, the FWER in the strong sense will be controlled. Controlling
the FWERmay be seen as crucial in this scenario, as the trial aims
to assess various combinations of treatments involving a common
compound for all active treatments (Wason, Stecher, andMander
2014). There is an initial active treatment arm, a control arm,
and a planned addition of one more active treatment arm during
the trial. We apply the proposed methodology to ensure FWER
control and consider the conjunctive power and pairwise power.

The pairwise power is the main focus of the simulation study
rather than the disjunctive power, as a potential drawback of
disjunctive power is it is highly dependent on the treatment
effect of all the treatments in the study, even the ones with a
small or even negative treatment effect. For example, assume
one treatment has a clinically relevant effect and the rest have
an effect equal to the control treatment, then the disjunctive
power will keep increasing the more treatments that are added
if one keeps the same bounds, even though the probability of
taking the correct treatment forward does not increase. Equally,
the minimum the disjunctive power can be is equal to the
pairwise power. This is when only one treatment has a clinically
relevant effect and the rest have an extreme negative effect. A
further advantage of the pairwise power is it gives the proba-
bility of the treatment with the greatest treatment effect being
found.

Considering the planned effect size from FLAIR, we assume
an interesting treatment difference of 𝜃′ = − log(0.69) and a
standard deviation of 𝜎 = 1. It should be noted that while FLAIR
used a time-to-event endpoint with 0.69 representing the clini-
cally relevant hazard ratio between the experimental and control
groups, our hypothetical trial will focus on continuous endpoints
using a normal approximation of time-to-event endpoints as
discussed in Jaki and Magirr (2013). The desired power is 80%.
We will maintain the same power level as FLAIR while targeting
a one-sided FWER of 2.5%. The active treatment arms interim
analysis will be conducted midway through its recruitment and
1:1 allocation will be used between the control and the active
treatments as done in FLAIR (Hillmen et al. 2023).

The difference between a design which controls the pairwise
power and the conjunctive power will be studied in Section 3.2.
In Sections 3.3 and 3.4, the effect of different numbers of patients
recruited to the control before the second treatment is added
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TABLE 1 The stopping boundaries and sample size of the proposed designs, for control of both pairwise power and of conjunctive power.

Design controlling
(
𝑼𝟏

𝑼𝟐

) (
𝑳𝟏
𝑳𝟐

) (
𝒏𝟏,𝟏 𝒏𝟏,𝟐
𝒏𝟐,𝟏 𝒏𝟐,𝟐

) (
𝒏𝟎,𝟏,𝟏 𝒏𝟎,𝟏,𝟐
𝒏𝟎,𝟐,𝟏 𝒏𝟎,𝟐,𝟐

) (
𝒏(𝟏)

𝒏(𝟐)

)
𝐦𝐚𝐱(𝑵)

Pairwise power
(
2.501 2.358

2.501 2.358

) (
0.834 2.358

0.834 2.358

) (
76 152

76 152

) (
76 152

152 228

) (
0

76

)
532

Conjunctive power
(
2.501 2.358

2.501 2.358

) (
0.834 2.358

0.834 2.358

) (
96 192

96 192

) (
96 192

192 288

) (
0

96

)
672

(𝑛(2)) will be studied with the focus being on expected sample
size and maximum sample size of the trial. The designs will be
compared to running two completely separate independent trials
for each of the two active treatments. In Section 3.5, the effect
of using a more liberal FWER control compared to type I error
control for the separate trials is studied for trials with three and
four active arms.

3.2 Comparing the Two Types of Power

We will consider the effect of adding the second treatment
halfway through recruitment of the first active treatment, both
for ensuring pairwise power and conjunctive power are at
80%. Binding triangular stopping boundaries will be used (Li,
Herrmann, and Rauch 2020; Wason and Jaki 2012; Whitehead
1997) with the nonbinding triangular stopping boundaries given
in the Supporting Information (Section 9). The stopping bound-
aries are the same regardless of if one is controlling pairwise
power or conjunctive power as 𝑟(2) = 𝑟1,1 for both. The stopping
boundaries are given inTable 1 and are equal for both designs. The
calculationswere carried out using R (RCore Team 2021) with the
method given here having the multivariate normal probabilities
being calculated using the packages mvtnorm (Genz et al. 2021)
and gtools (Warnes et al. 2021). Code is available at https://
github.com/pgreenstreet/Platform_trial_multiple_superior.

Based on the two designs in Table 1, the conjunctive power,
pairwise power, and disjunctive power for different values of 𝜃1
and 𝜃2 alongside the expected sample size are given inTable 2. The
values of 𝜃1 and 𝜃2 are chosen to study the effects under the global
null hypothesis, when treatments have a clinically relevant effect
and when one of the active treatments performs considerably
worse than the rest.

In Table 2, it can be seen that the pairwise power for the treatment
with a clinically relevant effect is equal to the disjunctive power
when the other treatment has an extremely negative treatment
effect compared to the control. This is because there is no longer a
chance that the other treatment can be taken forward. Therefore,
𝜃1 = −∞, 𝜃2 = 𝜃′ or 𝜃1 = 𝜃′, 𝜃2 = −∞, is the point when the
pairwise, disjunctive, and conjunctive power are all equal. In
Table 2, it is shown that when both treatments have effect 0 the
disjunctive power is equal to the FWER for the trial. In addition,
when a treatment has effect 0 this results in the pairwise power
for that treatment equaling the PWER. Furthermore, Table 2
shows when there is only one treatment with a clinically relevant
effect, the conjunctive power equals the pairwise power of that
treatment.When neither treatment has a clinically relevant effect
the conjunctive power equals 100%, as there are no treatments
with a clinically relevant effect that need to be found.

The results for using both O’Brien and Fleming (O’Brien and
Fleming 1979) and Pocock boundaries (Pocock 1977) are shown,
with the futility boundary equal to 0 (Magirr, Jaki, andWhitehead
2012), for both binding and nonbinding futility boundaries, in the
Supporting Information (Sections 8 and 9). Overall, Tables 1 and
2 have shown that the choice of type of power to control may be
highly dependent on the sample size available, as if the design
ensures conjunctive power of level 1 − 𝛽 it will ensure pairwise
power of at least 1 − 𝛽 but the opposite does not hold. However,
the sample size for a trial designed for pairwise power will be less
than that of a design for conjunctive power.

3.3 ComparisonWith Running Separate Trials

This section studies the effect on maximum and expected sample
size depending on when the additional treatment arm is added
to the platform trial. The examples for both conjunctive power
and pairwise power are compared to running two separate trials.
There are two settings for separate trials which are considered.
Setting 1 is when the type I error across both the trials is set to
be 2.5%, therefore, the type I error for each is 1 −

√
1 − 0.025 =

1.26%. For Setting 2, the type I error of each trial is controlled at
2.5%. For the separate trials which are compared to the pairwise
power, the power level for each is set to 80%. This results in the
following sample size and stopping boundaries for the two trials
for Setting 1,

𝑈1 =
(
2.508 2.364

)
, 𝐿1 =

(
0.836 2.364

)
,(

𝑛1,1 𝑛1,2
)
=
(
77 154

)
,

with 𝑛0,1,1 = 𝑛1,1, 𝑛0,1,2 = 𝑛1,2, and 𝑛(1) = 0. Setting 2 gives:

𝑈1 =
(
2.222 2.095

)
, 𝐿1 =

(
0.741 2.095

)
,(

𝑛1,1 𝑛1,2
)
=
(
65 130

)
,

with 𝑛0,1,1 = 𝑛1,1, 𝑛0,1,2 = 𝑛1,2, and 𝑛(1) = 0. For comparison with
the conjunctive power designs, the probability of finding both
treatments across the two trials is set to 80%. The required power
for each trial is therefore

√
1 − 𝛽 = 0.894. The boundaries remain

the same for both settings as the type I error remains the same.
The new sample size for Setting 1 is

(
𝑛1,1 𝑛1,2

)
=
(
98 196

)
and

for Setting 2 is
(
𝑛1,1 𝑛1,2

)
=
(
85 170

)
.

Figure 1 gives the maximum sample size and the expected
sample size under different 𝜃1, 𝜃2 depending on when the second
treatment is added, for the pairwise power control of 80%. Figure 2
gives similar results however the focus now is on control of the
conjunctive power at 80%.
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TABLE 2 Operating characteristics of the proposed designs under different values of 𝜃1 and 𝜃2, for control of both pairwise power and of
conjunctive power.

Design for pairwise power

Treatment
effect Pairwise power Conjunctive power Disjunctive power Expected sample size
𝜽𝟏 𝜽𝟐 𝑷𝑷𝑾,𝟏 𝑷𝑷𝑾,𝟐 𝑷𝑪 𝑷𝑫 𝑬(𝑵|𝜽𝟏, 𝜽𝟐)
𝜃′ 𝜃′ 0.800 0.800 0.660 0.941 420.6
𝜃′ 0 0.800 0.013 0.800 0.802 372.7
𝜃′ −∞ 0.800 0 0.800 0.800 342.9
0 𝜃′ 0.013 0.800 0.800 0.802 396.6
0 0 0.013 0.013 1 0.025 348.7
−∞ 𝜃′ 0 0.800 0.800 0.800 381.7

Design for conjunctive power

Treatment
effect Pairwise power Conjunctive power Disjunctive power Expected sample size
𝜽𝟏 𝜽𝟐 𝑷𝑷𝑾,𝟏 𝑷𝑷𝑾,𝟐 𝑷𝑪 𝑷𝑫 𝑬(𝑵|𝜽𝟏, 𝜽𝟐)
𝜃′ 𝜃′ 0.890 0.890 0.801 0.979 508.1
𝜃′ 0 0.890 0.013 0.890 0.890 463.0
𝜃′ −∞ 0.890 0 0.890 0.890 425.4
0 𝜃′ 0.013 0.890 0.890 0.891 485.6
0 0 0.013 0.013 1 0.025 440.5
−∞ 𝜃′ 0 0.890 0.890 0.890 466.7

FIGURE 1 Both panels give the maximum sample size and the expected sample size under different 𝜃1, 𝜃2 depending on the value 𝑛(2), for the
pairwise power control of 80%. Left panel: dashed vertical lines correspond to the points where the maximum/expected sample size of the trial is now
greater than running two separate trials with type I error control across both trials set to 2.5%. The lines 𝜃1 = 𝜃′, 𝜃2 = 𝜃′; 𝜃1 = 𝜃′, 𝜃2 = 0; and 𝜃1 = 𝜃′,
𝜃2 = −∞ are at 𝑛(2) = 117 for all three configurations. Right panel: dashed vertical lines correspond to the points where the maximum/expected sample
size of the trial is now greater than running two separate trials with type I error control for each trial set to 2.5%.

As indicated in Figure 1, when controlling the pairwise power,
if the second active treatment is introduced at the beginning of
the trial, the total sample size required is 456, whereas if it is
added at the end of recruitment for treatment 1, the total sample
size becomes 616. This increase in sample size is attributable to
two factors. First, there is a necessity to increase the number
of patients recruited to the control group until treatment 2 has
completed the trial. Second, the decrease in correlation between
the two treatments results in an enlargement of the boundaries to

maintain control over the FWER. It is this secondary factor which
causes the small jumps inmaximum sample size seen in Figures 1
and 2.

In Figure 1, when comparing the platform designs with pairwise
power control to running two separate trials, it can be seen that,
for the casewhere the pairwise error for each trial is 2.5%, once the
second treatment is added after 64 patients have been recruited to
the control (𝑛(2) ≥ 64), the maximum sample size of running the
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FIGURE 2 The maximum sample size and the expected sample size under different 𝜃1, 𝜃2 depending on the value 𝑛(2), for the conjunctive power
control of 80%. Left panel: dashed vertical lines correspond to the points where the maximum/expected sample size of the trial is now greater than
running two separate trials under Setting 1. The lines 𝜃1 = 𝜃′, 𝜃2 = 𝜃′ and 𝜃1 = 𝜃′, 𝜃2 = −∞ are at 𝑛(2) = 143 for both configurations; 𝜃1 = 𝜃′, 𝜃2 = 0

and 𝜃1 = 0, 𝜃2 = 0 are at 𝑛(2) = 121 for both configurations. Right panel: dashed vertical lines correspond to the points where the maximum/expected
sample size of the trial is now greater than running two separate trials under Setting 2.

platform design is greater than or equal to that of running two
separate trials, which is 520 patients. However, when controlling
the error across both separate trials, the maximum sample size is
now the same as when adding the second treatment at the end
of recruitment for the first treatment in the platform design so
616. For Setting 1, it can be seen that the expected sample size
for separate trials can be better than that of the platform design.
In the case of 𝜃1 = −∞ and 𝜃2 = 𝜃′, then once 𝑛(2) ≥ 81, the
expected sample size of running the platform design is greater
than that of running two separate trials. For Setting 1, the lines
for 𝜃1 = 𝜃′, 𝜃2 = 𝜃′; 𝜃1 = 𝜃′, 𝜃2 = 0; and 𝜃1 = 𝜃′, 𝜃2 = −∞ are all
at the point 𝑛(2) = 117. When studying the expected sample size
of Setting 2 compared to the platform designs, it can be seen that
if 𝜃1 = −∞ and 𝜃2 = 𝜃′ then once 𝑛(2) ≥ 15, the expected sample
size of running the platform design is greater than that of running
two separate trials. The expected sample size for two separate
trials when 𝜃1 = −∞ and 𝜃2 = 𝜃′ is 319.5.

In Figure 2, the equivalent results to Figure 1 when controlling
the conjunctive power are shown, with themaximum sample size
now ranging from 558 if the second active treatment is introduced
at the beginning of the trial, to 784 if it is added at the end of
recruitment for treatment 1. For Setting 1 in Figure 2, 𝑛(2) = 143

is the point for both 𝜃1 = 𝜃′, 𝜃2 = 𝜃′ and 𝜃1 = 𝜃′, 𝜃2 = −∞, also
𝑛(2) = 121 is the point for both 𝜃1 = 0, 𝜃2 = 𝜃′ and 𝜃1 = 0, 𝜃2 = 0.

It is worth noting that there is the underlying assumption that in
the platform trial there will be no pause in patient recruitment
even if for a period there is only the control treatment. The case
of continuous recruitment can be seen as a worst-case scenario
as there are multiple practical issues around pausing recruitment
and the time this may take (Constable et al. 2020; Mitchell et al.
2020). However, in Section 3.4, the results when one does pause
recruitment during periods of no active treatment are shown.

Overall, Figures 1 and 2 have shown there maybe times that there
is no benefit to running a platform trial with regard to sample size,
depending on when the later treatment is added to the trial. This
issue is further emphasized when there is not the expectation to
control the type I error across all the individual trials as seen in
Setting 2. The Supporting Information (Section 7) provides a table

which gives the maximum sample size of the trial for multiple
values of 𝑛(2) based on Figures 1 and 2.

3.4 ComparisonWith Running Separate Trials
When Allowing for Pauses in Recruitment

Figure 3 gives the maximum sample size and the expected
sample size under different 𝜃1, 𝜃2 depending on when the second
treatment is added, for the pairwise power of 80% and con-
junctive power of 80%, respectively, when allowing for pauses
in recruitment. In the Supporting information (Section 6), the
equation to calculate the expected sample size when allowing
pauses in recruitment is given. In Figure 3, it can now be seen
that the rate at which the expected sample size increases slows
with increased time before the second treatment is added after
the first interim analyses. This is because there is a chance that
active treatment 1 will be stopped at the first stage. Therefore,
there will be a period of paused recruitment. How extreme the
decrease in rate of the expected sample size increase depends on
the configuration studied. For example, if active treatment 1 has a
very negative effect then it will almost always stop recruitment at
the first stage, so resulting in a very extreme decrease in the rate
of expected sample size increase.

For Setting 1, the reason there are points in Figures 1 and 2
in which the platform trial performs worse than running two
separate trials is because there is the underlying assumption that
in the platform trial, there will be no pause in patient recruitment
even if for a period there is only the control treatment. It is worth
noting that if both the platform design and two separate trials are
required to control the FWER then the platformapproach is never
worse than running two trials when pausing recruitment. They
are equal at the point when the second treatment is added after
themaximumplanned sample size for treatment 1, so for pairwise
power this iswhen𝑛(2) = 154 andmax(𝑁) = 616; for conjunctive
power this is when 𝑛(2) = 196 andmax(𝑁) = 784.

The dashed vertical lines on Figure 3 correspond to the points
where the maximum/expected sample size of the trial is now
greater than running two separate trials under Setting 2. The
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FIGURE 3 The maximum sample size and the expected sample size under different 𝜃1, 𝜃2 depending on the value 𝑛(2) when allowing for pauses
in recruitment, with the dashed vertical lines corresponding to the points where the maximum/expected sample size of the trial is now greater than
running two separate trials under Setting 2. Left panel: The pairwise power is at 80%. Right panel: The conjunctive power is at 80%.

ability to pause the trial in this case has no effect on the value
of 𝑛(2) for which the separate trials’ expected sample size is less
than that of running the platform for the configurations studied.
This is because 𝑛(2) < 𝑛0,1,1 for the configurations studied so at
these points the trial will never pause recruitment.

3.5 ComparisonWith Running Separate Trials
Under Different Controls of Type I Error

When designing amulti-arm trial, onemay find that the expected
control of the FWER is less than that of the type I error control
for an individual trial, as seen in the TAILoR trial for example
(Pushpakom et al. 2020, 2015). Therefore, in Table 3, we consider
the effect of allowing FWER control of 5% one-sided compared
to 2.5% type I error for the individual trials. In this table, the
same design parameters were used as above; however, now the
number of active arms has increased in the hypothetical trial
to 3 or 4, and the number of stages is now either 1, 2, or 3. In
Table 3, the focus is on controlling the power at the desired 80%
level with the pairwise power being the focus for the top half
and conjunctive power for the bottom half. When controlling the
conjunctive power, the power for each separate trial is (1 − 𝛽)1∕𝑘 .
In these hypothetical trials, it is assumed that each one of the
arms is added sequentially, with an equal gap between each one.
Therefore, in the three active arm cases if the second arm is added
after 20 patients have been recruited to the control then the third
arm will be added after a total of 40 patients have been recruited
to the control.

In Table 3, the first two columns give the number of active
arms and stages for the platform trial, respectively. The third
and fourth columns then give the sample size per stage and
the maximum sample size of the individual trials, respectively.
The next two columns give the range in sample size per stage
and maximum sample size for the platform trial design. The
platform trial designs range from all the treatments starting
at once (𝑛(𝑘) = 0 for 𝑘 = 1, … , 𝐾), to each treatment not start-
ing until the maximum number of patients are recruited to
the previous treatment (𝑛(𝑘) = 𝑛0,𝑘−1,𝐽 for all 𝑘 = 2, … , 𝐾). The
remaining columns give when there is no benefit with regards
to the maximum and expected sample size of conducting a
platform trial compared to running separate trials, with respect

𝑛(𝑘) − 𝑛(𝑘 − 1). The value of 𝑛(𝑘) − 𝑛(𝑘 − 1) = 𝑛(2) as the first
treatment is added at the beginning of the trial. In the Sup-
porting Information (Section 10), the plots for the two-stage and
three-stage example trials as given in Table 3 are shown.

Using Table 3, for the three active arms, two-stage example each
separate trial has 𝑛1,1 = 65 and 𝑛1,2 = 130. The total maximum
sample size of running these three separate trials is therefore
780. The platform trial’s maximum sample size ranges from 552
if all the treatments begin at once to 864 if 𝑛(𝑘) = 𝑛0,𝑘−1,𝐽 for
all 𝑘 = 2, … , 𝐾. Once the second treatment is planned to be
added after 105 patients recruited to the control (therefore 210
recruited to the control before treatment 3), there is no benefit
in using the platform design with respect to maximum sample
size. For the expected sample size, four different configurations
of the treatment effects are studied. The first (Θ1) assumes all
the treatments have the clinically relevant effect, so 𝜃𝑘 = 𝜃′ for
𝑘 = 1, … , 𝐾. The second (Θ2) assumes only the first treatment has
a clinically relevant effect and the rest have an effect equal to
that of the control treatment, so 𝜃1 = 𝜃′, 𝜃𝑘 = 0 for 𝑘 = 2, … , 𝐾.
The third (Θ3) assumes only the last treatment has a clinically
relevant effect and the rest equal the control, so 𝜃𝐾 = 𝜃′, 𝜃𝑘 = 0

for 𝑘 = 1, … , 𝐾 − 1. The fourth configuration (Θ4) assumes all the
treatments have an effect equal to that of the control treatment,
so the global null hypothesis, so 𝜃𝑘 = 0 for 𝑘 = 1, … , 𝐾. For the
expected sample size for the four treatment effect configurations
studied here, there is no benefit in using a platform trial after
potentially just 62 patients ifΘ3 is true, this does rise to 73 if Θ1 is
true, if the focus is on sample size.

This section has shown that there are periods in which using
a platform trial can be beneficial with regards to sample size if
one can use a more liberal type I error control compared to that
used for individual trials. However, this has also shown that if
treatments are added late into the trial there may not be benefit,
so highlighting the importance of considering which trial design
should be use.

4 Discussion

This paper has built on the work of Greenstreet et al. (2024) to
show how one can control the FWER for a trial in which the
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TABLE 3 The comparison of using the proposed platform design with FWER of 5% one-sided against running separate trials with type I error
control of each at 2.5% one-sided, for different numbers of arms and stages. The sample size for the platform trial designs ranges from all the treatments
starting at once (𝑛(𝑘) = 0 for 𝑘 = 1, … , 𝐾), to each treatment not starting until the maximum number of patients are recruited to the previous treatment
(𝑛(𝑘) = 𝑛0,𝑘−1,𝐽 for all 𝑘 = 2, … , 𝐾).

Design for pairwise power

Active
arms Stages Separate trial Platform trial range 𝐦𝐢𝐧𝒏(𝟐)(𝐦𝐚𝐱(𝑵𝒔) 𝐦𝐢𝐧𝒏(𝟐)(𝑬(𝑵𝒔|𝚯) ≤ 𝑬(𝑵|𝚯))
𝑲 𝑱 𝒏 𝐦𝐚𝐱(𝑵𝒔) 𝒏 𝐦𝐚𝐱(𝑵) ≤𝐦𝐚𝐱(𝑵)) 𝚯𝟏 𝚯𝟐 𝚯𝟑 𝚯𝟒

3 1 115 690 123–128 492–768 90 90 90 90 90
3 2 65 780 69–72 552–864 105 73 72 62 66
3 3 46 828 49–50 588–900 114 68 67 55 60
4 1 115 920 131–138 655–1104 79 79 79 79 79
4 2 65 1040 73–76 730–1216 94 61 62 54 59
4 3 46 1104 51–53 765–1272 103 59 58 49 55

Design for conjunctive power

Active
arms Stages Separate trial Platform trial range 𝐦𝐢𝐧𝒏(𝟐)(𝐦𝐚𝐱(𝑵𝒔) 𝐦𝐢𝐧𝒏(𝟐)(𝑬(𝑵𝒔|𝚯) ≤ 𝑬(𝑵|𝚯))
𝑲 𝑱 𝒏𝟏,𝟏 𝐦𝐚𝐱(𝑵𝒔) 𝒏𝟏,𝟏 𝐦𝐚𝐱(𝑵) ≤𝐦𝐚𝐱(𝑵)) 𝚯𝟏 𝚯𝟐 𝚯𝟑 𝚯𝟒

3 1 171 1026 168–187 672–1122 143 143 143 143 143
3 2 97 1164 95–105 760–1260 166 107 109 101 106
3 3 68 1224 67–73 804–1314 174 98 99 92 98
4 1 185 1480 190–215 950–1720 140 140 140 140 140
4 2 105 1680 107–119 1070–

1904
167 102 109 103 109

4 3 74 1776 74–83 1110–1992 182 93 99 93 99

Note:𝑁𝑠 is the sample size of running 𝐾 separate trials, Θ1: 𝜃𝑘 = 𝜃′ for 𝑘 = 1, … , 𝐾; Θ2: 𝜃1 = 𝜃′, 𝜃𝑘 = 0 for 𝑘 = 2, … , 𝐾; Θ3: 𝜃𝐾 = 𝜃′, 𝜃𝑘 = 0 for 𝑘 = 1, … , 𝐾 − 1; Θ4:
𝜃𝑘 = 0 for 𝑘 = 1, … , 𝐾.

treatments can be preplanned to be added at any point. This
work has then studied the different approaches for powering the
trial in which the trial will continue even if a superior treatment
is found. This paper shows how the expected sample size and
sample size distribution can be found. Finally, a hypothetical trial,
motivated by FLAIR (Howard et al. 2021) is discussed. Section 3.2
evaluates the pairwise and conjunctive power when the second
active treatment is added halfway through recruitment for the
first active treatment.We investigate the operating characteristics
for multiple values of 𝜃1 and 𝜃2. Then the section goes on to study
the effect of adding the later treatments at different points in
the platform design and compares these trial designs to running
separate trials.

The designs’ flexibility to incorporate the addition of treatments at
any point during a trial allows for the creation of multiple designs
at the development stage of the trial that depend on when and
howmany treatments are introduced. As a result, one can present
multiple options and then use the trial design, which is expected
to match the reality of the trial closest. If in reality there are less
treatments added than planned, the control of FWER rate will
be maintained. Due to the bounds being designed to control the
FWER across all the hypotheses, not adding a treatment and so
removing a hypothesis reduces themaximum value of the FWER.

If, however, more arms are added than were considered at the
design stage, or at later time points, there is no longer guaranteed
control of the trials’ errors. However, one could instead adjust
the trial using an unplanned approach (Burnett, König, and
Jaki 2024). However, when using an unplanned approach, one
should be aware of the potential issues. These include that
both current and later treatments can become underpowered
due to the limited amount of resources for the trial. If one
wants to reduce this, then further funding is needed to allow
for the additional patients required. Further to this, it is very
difficult, and in some cases impossible, to ensure that the type
I error is evenly shared across all the treatments. In addition,
as argued by Posch and Proschan (2012), unplanned adapta-
tions will always question the confirmatory nature of a clinical
trial. Therefore, Posch and Proschan (2012) argue unplanned
adaptations should be considered only when deemed absolutely
necessary.

This paper shows the large influence the choice of power in a
platform trial can have on the required sample size and operating
characteristics. In the scenario where recruitment can be easily
done, then one should consider designing the trial to control
the conjunctive power to, with high probability, find all the
treatments with a clinically relevant effect. This allows clinicians
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to be more informed about which treatments have a desirable
effect. The choice of which treatment to give can then be made
based onother properties of the treatments, such as its side effects.
In many trials, the number of patients can be a very limiting
factor with a very high cost of recruiting patients. In this case,
there may be a drive to cut sample size and a desire to find
any treatment that has a positive treatment effect. Therefore, the
pairwise power or disjunctive power should be used. As shown
in Section 3.2, the disjunctive power’s lowest value is the pairwise
power, so as the treatment effects of the active treatments are not
known before the trial, we would recommend using the pairwise
power, ensuring control of both pairwise power and disjunctive
power.

Based on the hypothetical trial, the effects of continuous recruit-
ment, or allowing recruitment to be paused during periods of no
active treatments, are studied in Sections 3.3 and 3.4, respectively.
For the hypothetical trial studied, there is no effect on when
running separate trials outperforms the platform approach with
respect to sample size, whether one pauses recruitment or not,
if the separate trials do not control FWER. However, when
both designs control the FWER, then it was shown there is
always benefit in using a platform approach compared to separate
trials when pausing is possible. In addition, in the Supporting
Information (Section 6), a method for calculating the expected
sample size when allowing for pauses in recruitment is given,
which builds on Equation (9). Both allowing and not allowing
for pauses in recruitment have been considered as continuous
recruitment can be seen as a worst-case scenario and there can
be multiple practical issues around pausing a trial as discussed
in Constable et al. (2020) and Mitchell et al. (2020). However,
pausing the recruitment immediately can be seen as a best-case
scenario so is also of interest.

This paper has therefore highlighted a potential issue of increased
expected and maximum sample size when requiring strong
control of FWER for a platform trial in which an arm is added
later. If one would run two completely separate trials, the FWER
control across the trials would likely not be expected. From
the perspective of type I error control, the comparison is not
equivalent, however, in reality this is likely an issue faced when
choosing if to design a platform trial, or not. As a result, there
is a lot of time where there is no benefit to the platform trial
design with regards to maximum or expected sample size as
was shown in Figures 1–3 for Setting 2. This work reiterates
the importance of the discussions around type I error control in
platform trials (Howard et al. 2018; Molloy et al. 2022; Nguyen,
Hees, and Hofner 2023; Proschan and Follmann 1995; Proschan
and Waclawiw 2000; Wason et al. 2016; Wason, Stecher, and
Mander 2014).

If one instead wants to control the pairwise error, as done,
for example, in STAMPEDE (Sydes et al. 2009), one can use
Equation (4), now setting 𝜃𝑘 = 0 for all 𝑘 = 1, … , 𝐾. An additional
advantage of using the PWER, if controlling the pairwise power,
is that the stopping boundaries and the sample size required
for each active arm are independent of when the arm is added.
Therefore, the only change will be how many patients need
to be recruited to the control. However, one may find PWER
in a platform trial insufficient for error control (Molloy et al.

2022; Wason, Stecher, and Mander 2014) and may not meet the
regulators requirements.

Building upon this research, a study could be conducted to
investigate the impact of having different numbers of stages and
stopping boundaries while maintaining equal power and type
I error for each treatment, utilizing the approach described in
Section 2.1. However, such an investigation would likely require
multiple changes in the allocation ratio, resulting in potential
issues with time trends. One could therefore examine methods to
handle these time trends, as explored in Greenstreet et al. (2024),
Lee and Wason (2020), Marschner and Schou (2022), and Roig
et al. (2023). Furthermore, a change in allocation ratio between
treatments can result in different PWER and pairwise power for
each treatment if using the same boundaries for each treatment,
so one could use an iterative approach such as that discussed in
Greenstreet et al. (2024). Equally, one could study the effect of
using nonconcurrent controls, but once again this can face a large
issue with time trends and the resulting bias. However, one could
look into incorporating approaches to reduce the bias potentially
caused (Lee and Wason 2020; Marschner and Schou 2022; Saville
et al. 2022; Wang et al. 2022).

This paper has given a general formulation for designing a
preplanned platform trial with a normal continuous endpoint,
and using the work of Jaki and Magirr (2013) one could apply
this methodology to other endpoint such as time-to-event used
in FLAIR (Howard et al. 2021). When using this approach, one
should be aware of computational issues from calculating high-
dimensional multivariate normal distributions, if one has a large
number of arms and stages in the trial design. If this is an issue,
then one can restrict to only adding arms at the interims so
one can utlize the method of Dunnett (1955) as discussed in
Greenstreet et al. (2024) and Magirr, Jaki, and Whitehead (2012).

Acknowledgments

This report is independent research supported by the National Insti-
tute for Health Research (NIHR300576). The views expressed in this
publication are those of the authors and not necessarily those of the
NHS, the National Institute for Health Research, or the Department of
Health and Social Care (DHSC). TJ and PM also received funding from
UK Medical Research Council (MC_UU_00040/03, MC_UU_00002/14,
and MC_UU_00002/19). This paper is based on work completed while
PG was part of the EPSRC funded STOR-i centre for doctoral training
(EP/S022252/1). For the purpose of open access, the author has applied
a Creative Commons Attribution (CC BY) license to any Author Accepted
Manuscript version arising. We would like to thank the two reviewers,
the Special Issue Editor and the Editor for their useful comments
and suggestions.

Conflicts of Interest

Alun Bedding is a shareholder of Roche Products Ltd. The other authors
declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are openly available
in Platform_trial_multiple_superior at https://github.com/pgreenstreet/
Platform_trial_multiple_superior.

12 of 14 Biometrical Journal, 2025

https://github.com/pgreenstreet/Platform_trial_multiple_superior


OPEN RESEARCH BADGES

This article has earned an Open Data badge for making publicly available
the digitally-shareable data necessary to reproduce the reported results.
The data is available in the Supporting Information section.

This article has earned an opendata badge “ReproducibleResearch” for
making publicly available the code necessary to reproduce the reported
results. The results reported in this article could fully be reproduced.

References

Altman, D. G., and J. P. Royston. 1988. “The Hidden Effect of Time.”
Statistics in Medicine 7, no. 6: 629–637.

Bennett, M., and A. P. Mander. 2020. “Designs for Adding a Treatment
Arm to an Ongoing Clinical Trial.” Trials 21, no. 1: 1–12.

Bratton, D. J., M. K. B. Parmar, P. P. J. Phillips, and B. Choodari-Oskooei.
2016. “Type I Error Rates of Multi-ArmMulti-Stage Clinical Trials: Strong
Control and Impact of Intermediate Outcomes.”Current Controlled Trials
in Cardiovascular Medicine 17, no. 1: 309–309.

Burnett, T., F. König, and T. Jaki. 2024. “Adding Experimental Treatment
Arms to Multi-Arm Multi-Stage Platform Trials in Progress.” Statistics in
Medicine 43, no. 18: 3447–3462.

Choodari-Oskooei, B., D. J. Bratton, M. R. Gannon, A. M. Meade, M.
R. Sydes, and M. K. Parmar. 2020. “Adding New Experimental Arms to
Randomised Clinical Trials: Impact on Error Rates.”Clinical Trials 17, no.
3: 273–284.

Cohen, D. R., S. Todd, W. M. Gregory, and J. M. Brown. 2015. “Adding a
Treatment Arm to an Ongoing Clinical trial: A Review of Methodology
and Practice.” Trials 16, no. 1: 1–9.

Constable, L., T. Davidson, S. Breeman, et al. 2020. “How to Deal With
a Temporary Suspension and Restarting Your Trial: Our Experiences and
Lessons Learnt.” Trials 21: 1–6.

Cui, X., E. Ouyang, Y. Liu, et al. 2023. “Statistical Principles for Platform
Trials.” arXiv preprint arXiv:2302.12728.

Dunnett, C. W. 1955. “A Multiple Comparison Procedure for Comparing
Several Treatments With a Control.” Journal of the American Statistical
Association 50, no. 272: 1096–1121.

Genz, A., F. Bretz, T. Miwa, et al. 2021.mvtnorm:Multivariate Normal and
t Distributions. R Package Version 1.1-2.

Getz, K. A., and R. A. Campo. 2017. “Trial Watch: Trends in Clinical Trial
Design Complexity.” Nature Reviews Drug Discovery 16, no. 5: 307.

Greenstreet, P., T. Jaki, A. Bedding, C. Harbron, and P. Mozgunov. 2024.
“A Multi-Arm Multi-Stage Platform Design That Allows Preplanned
Addition of Arms While Still Controlling the Family-Wise Error.”
Statistics in Medicine 43, no. 19: 3613–3632.

Hamasaki, T., H. J. Hung, C.-F. Hsiao, and S. R. Evans. 2021. “On
Selecting the Critical Boundary Functions in Group-Sequential Trials
With Two Time-to-Event Outcomes.” Contemporary Clinical Trials 101:
106244–106244.

Hillmen, P., A. Pitchford, A. Bloor, et al. 2023. “Ibrutinib and Rituximab
Versus Fludarabine, Cyclophosphamide, andRituximab for PatientsWith
Previously Untreated Chronic lymphocytic Leukaemia (FLAIR): Interim
Analysis of a Multicentre, Open-Label, Randomised, Phase 3 Trial.”
Lancet Oncology 24, no. 5: 535–552.

Hommel, G. 2001. “Adaptive Modifications of Hypotheses After an
Interim Analysis.” Biometrical Journal 43, no. 5: 581–589.

Howard, D. R., J. M. Brown, S. Todd, and W. M. Gregory. 2018. “Recom-
mendations on Multiple Testing Adjustment in Multi-Arm Trials With a
Shared Control Group.” Statistical Methods in Medical Research 27, no. 5:
1513–1530.

Howard, D. R., A. Hockaday, J. M. Brown, et al. 2021. “A Platform Trial
in Practice: Adding a New Experimental Research Arm to the Ongoing
Confirmatory FLAIR Trial in Chronic Lymphocytic Leukaemia.” Trials
22, no. 1: 38–38.

Jaki, T., and D. Magirr. 2013. “Considerations on Covariates and End-
points in Multi-Arm Multi-Stage Clinical Trials Selecting all Promising
Treatments.” Statistics in Medicine 32, no. 7: 1150–1163.

Kolmogorov, A. N., and A. T. Bharucha-Reid. 2018. Foundations of the
Theory of Probability: Second English Edition. Mineola, NewYork: Courier
Dover Publications.

Lee, K.M., L. C. Brown, T. Jaki, N. Stallard, and J.Wason. 2021. “Statistical
Consideration When Adding New Arms to Ongoing Clinical Trials: The
Potentials and the Caveats.” Trials 22, no. 1: 1–10.

Lee, K. M., and J. Wason. 2020. “Including Non-Concurrent Control
Patients in the Analysis of Platform Trials: Is It Worth It?” BMC Medical
Research Methodology 20, no. 1: 1–12.

Li, X., C. Herrmann, and G. Rauch. 2020. “Optimality Criteria for Futility
Stopping Boundaries for Group Sequential Designs With a Continuous
Endpoint.” BMCMedical Research Methodology 20: 1–8.

Magirr, D., T. Jaki, and J. Whitehead. 2012. “A Generalized Dunnett Test
for Multi-Arm Multi-Stage Clinical Studies With Treatment Selection.”
Biometrika 99, no. 2: 494–501.

Marschner, I. C., and I. M. Schou. 2022. “Analysis of Adaptive Platform
Trials Using a Network Approach.” Clinical Trials 19, no. 5: 479–489.

Meurer, W. J., R. J. Lewis, and D. A. Berry. 2012. “Adaptive Clinical Trials:
A Partial Remedy for the Therapeutic Misconception?” JAMA 307, no. 22:
2377–2378.

Mitchell, E. J., K. Ahmed, S. Breeman, et al. 2020. “It is Unprecedented:
Trial Management During the COVID-19 Pandemic and Beyond.” Trials
21: 1–7.

Molloy, S. F., I. R. White, A. J. Nunn, R. Hayes, D. Wang, and T.
S. Harrison. 2022. “Multiplicity Adjustments in Parallel-Group Multi-
Arm Trials Sharing a Control Group: Clear Guidance is Needed.”
Contemporary Clinical Trials 113: 106656.

Mullard, A. 2018. “How Much Do Phase III Trials Cost?” Nature Reviews
Drug Discovery 17, no. 11: 777–777.

Nguyen, Q., K. Hees, and B. Hofner. 2023. “Platform Trials: The Impact
of Common Controls on Type One Error and Power.” arXiv preprint
arXiv:2302.04713.

O’Brien, P. C., and T. R. Fleming. 1979. “A Multiple Testing Procedure for
Clinical Trials.” Biometrics 35, no. 3: 549–556.

Pocock, S. J. 1977. “Group Sequential Methods in the Design and Analysis
of Clinical Trials.” Biometrika 64, no. 2: 191–199.

Posch, M., and M. A. Proschan. 2012. “Unplanned Adaptations Before
Breaking the Blind.” Statistics in Medicine 31, no. 30: 4146–4153.

Proschan, M., and S. Evans. 2020. “Resist the Temptation of Response-
Adaptive Randomization.” Clinical Infectious Diseases 71, no. 11: 3002–
3004.

Proschan, M., and D. Follmann. 1995. “Multiple Comparisons With
Control in a Single Experiment Versus Separate Experiments: Why Do
We Feel Differently?” American Statistician 49, no. 2: 144–149.

Proschan, M. A., and S. A. Hunsberger. 1995. “Designed Extension of
Studies Based on Conditional Power.” Biometrics 51, no. 4: 1315–1324.

Proschan, M. A., and M. A. Waclawiw. 2000. “Practical Guidelines for
Multiplicity Adjustment in Clinical Trials.” Controlled Clinical Trials 21,
no. 6: 527–539.

Pushpakom, S., R. Kolamunnage-Dona, C. Taylor, et al. 2020. “TAILoR
(TelmisArtan and InsuLinResistance inHuman ImmunodeficiencyVirus
[HIV]): An Adaptive-Design, Dose-Ranging Phase IIb Randomized Trial
of Telmisartan for the Reduction of Insulin Resistance in HIV-Positive
Individuals on Combination Antiretroviral Therapy.” Clinical Infectious
Diseases 70, no. 10: 2062–2072.

13 of 14



Pushpakom, S. P., C. Taylor, R. Kolamunnage-Dona, et al. 2015. “Telmisar-
tan and Insulin Resistance in HIV (TAILoR): Protocol for a Dose-Ranging
Phase II Randomised Open-Labelled Trial of Telmisartan as a Strategy
for the Reduction of Insulin Resistance in HIV-Positive Individuals on
Combination Antiretroviral Therapy.” BMJ Open 5, no. 10: e009566.

R Core Team. 2021. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.

Robertson, D. S., J. M. S. Wason, F. König, M. Posch, and T. Jaki. 2023.
“Online Error Control for Platform Trials.” Statistics in Medicine 42, no.
14: 2475–2495.

Roig,M. B., E. Glimm, T.Mielke, andM. Posch. 2023. “Optimal Allocation
Strategies in Platform Trials.”

Royston, P., F. M.-S. Barthel, M. K. Parmar, B. Choodari-Oskooei, and V.
Isham. 2011. “Designs for Clinical Trials With Time-To-Event Outcomes
Based on Stopping Guidelines for Lack of Benefit.” Current Controlled
Trials in Cardiovascular Medicine 12, no. 1: 81.

Royston, P., M. K. B. Parmar, and W. Qian. 2003. “Novel Designs for
Multi-Arm Clinical Trials With Survival Outcomes With an Application
in Ovarian Cancer.” Statistics in Medicine 22, no. 14: 2239–2256.

Saville, B. R., D. A. Berry, N. S. Berry, K. Viele, and S. M. Berry. 2022.
“The Bayesian Time Machine: Accounting for Temporal Drift in Multi-
Arm Platform Trials.” Clinical Trials 19, no. 5: 490–501.

Schüler, S., M. Kieser, and G. Rauch. 2017. “Choice of Futility Boundaries
for Group Sequential Designs With Two Endpoints.” BMC Medical
Research Methodology 17, no. 1: 119.

Serra, A., P. Mozgunov, and T. Jaki. 2022. “An Order Restricted Multi-
Arm Multi-Stage Clinical Trial Design.” Statistics in Medicine 41, no. 9:
1613–1626.

Stallard, N., L. Hampson, N. Benda, et al. 2020. “Efficient Adaptive
Designs for Clinical Trials of Interventions for COVID-19.” Statistics in
Biopharmaceutical Research 12, no. 4: 483–497.

Sydes, M. R., M. K. B. Parmar, N. D. James, et al. 2009. “Issues in
Applying Multi-Arm Multi-Stage Methodology to a Clinical Trial in
Prostate Cancer: The MRC STAMPEDE Trial.” Current Controlled Trials
in Cardiovascular Medicine 10, no. 1: 39.

Todd, S., A. Whitehead, N. Stallard, and J. Whitehead. 2001. “Interim
Analyses and Sequential Designs in Phase III Studies.” British Journal of
Clinical Pharmacology 51, no. 5: 394–399.

Urach, S., and M. Posch. 2016. “Multi-Arm Group Sequential Designs
With a Simultaneous Stopping Rule.” Statistics in Medicine 35, no. 30:
5536–5550.

Wang, C., M. Lin, G. L. Rosner, and G. Soon. 2022. “A Bayesian
Model With Application for Adaptive Platform Trials Having Temporal
Changes.” Biometrics 79, no. 2: 1446–1458.

Warnes, G. R., B. Bolker, T. Lumley, and M. G. R. Warnes. 2015. “Package
‘gtools’.” R Package version, 3(1).

Wason, J., D. Magirr, M. Law, and T. Jaki. 2016. “Some Recommendations
forMulti-ArmMulti-Stage Trials.” StatisticalMethods inMedical Research
25, no. 2: 716–727.

Wason, J. M. S., and T. Jaki. 2012. “Optimal Design of Multi-Arm Multi-
Stage Trials.” Statistics in Medicine 31, no. 30: 4269–4279.

Wason, J. M. S., L. Stecher, and A. P. Mander. 2014. “Correcting for
Multiple-Testing in Multi-Arm Trials: Is It Necessary and Is It Done?”
Trials 15, no. 1: 364.

Whitehead, J. 1997. The Design and Analysis of Sequential Clinical Trials.
Hoboken, New Jersey: John Wiley & Sons.

Supporting Information

Additional supporting information can be found online in the Supporting
Information section.

14 of 14 Biometrical Journal, 2025


	A Preplanned Multi-Stage Platform Trial for Discovering Multiple Superior Treatments With Control of FWER and Power
	1 | Introduction
	2 | Methodology
	2.1 | Setting
	2.2 | FWER
	2.3 | Power
	2.3.1 | Pairwise Power
	2.3.2 | Conjunctive Power

	2.4 | Sample Size Distribution and Expected Sample Size

	3 | Motivating Trial Example
	3.1 | Setting
	3.2 | Comparing the Two Types of Power
	3.3 | Comparison With Running Separate Trials
	3.4 | Comparison With Running Separate Trials When Allowing for Pauses in Recruitment
	3.5 | Comparison With Running Separate Trials Under Different Controls of Type I Error

	4 | Discussion
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement
	OPEN RESEARCH BADGES

	References
	Supporting Information


