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Abstract 
Background.   Fully automatic skull-stripping and tumor segmentation are crucial for monitoring pediatric brain 
tumors (PBT). Current methods, however, often lack generalizability, particularly for rare tumors in the sellar/
suprasellar regions and when applied to real-world clinical data in limited data scenarios. To address these chal-
lenges, we propose AI-driven techniques for skull-stripping and tumor segmentation.
Methods.   Multi-institutional, multi-parametric MRI scans from 527 pediatric patients (n = 336 for skull-stripping, 
n = 489 for tumor segmentation) with various PBT histologies were processed to train separate nnU-Net-based 
deep learning models for skull-stripping, whole tumor (WT), and enhancing tumor (ET) segmentation. These 
models utilized single (T2/FLAIR) or multiple (T1-Gd and T2/FLAIR) input imaging sequences. Performance was 
evaluated using Dice scores, sensitivity, and 95% Hausdorff distances. Statistical comparisons included paired or 
unpaired 2-sample t-tests and Pearson’s correlation coefficient based on Dice scores from different models and 
PBT histologies.
Results.   Dice scores for the skull-stripping models for whole brain and sellar/suprasellar region segmentation 
were 0.98 ± 0.01 (median 0.98) for both multi- and single-parametric models, with significant Pearson’s correlation 
coefficient between single- and multi-parametric Dice scores (r > 0.80; P < .05 for all). Whole tumor Dice scores for 
single-input tumor segmentation models were 0.84 ± 0.17 (median = 0.90) for T2 and 0.82 ± 0.19 (median = 0.89) 
for FLAIR inputs. Enhancing tumor Dice scores were 0.65 ± 0.35 (median = 0.79) for T1-Gd+FLAIR and 0.64 ± 0.36 
(median = 0.79) for T1-Gd+T2 inputs.
Conclusion.   Our skull-stripping models demonstrate excellent performance and include sellar/suprasellar regions, 
using single- or multi-parametric inputs. Additionally, our automated tumor segmentation models can reliably de-
lineate whole lesions and ET regions, adapting to MRI sessions with missing sequences in limited data context.

Key Points

•	 Deep learning models for skull-stripping, including the sellar/suprasellar regions, 
demonstrate robustness across various pediatric brain tumor histologies.

•	 The automated brain tumor segmentation models perform reliably even in limited data 
scenarios.

Automated pediatric brain tumor imaging assessment 
tool from CBTN: Enhancing suprasellar region inclusion 
and managing limited data with deep learning  
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Pediatric brain tumors (PBTs) are the most prevalent 
childhood cancers of the central nervous system (CNS), 
encompassing a wide range of histologies and survival 
rates,1–4 and are one of the leading causes of cancer-
related deaths in children, only secondary to leukemia.5–7 
The World Health Organization (WHO), in the fifth edition 
of its Classification of Tumors of the CNS (WHO CNS5), 
recognizes that PBTs possess distinct histological and mo-
lecular features.8 Consequently, there are notable differ-
ences in neuroimaging characteristics between adults and 
PBT, including variations in brain structures, image signal 
intensity, skull formation, and tumor subregions.9 These 
differences underscore the need for image processing and 
assessment tools tailored specifically to pediatric neuroim-
aging data.

Quantitative analysis of PBTs for response assessment 
requires accurately locating and delineating the tumorous 
region, a challenging and tedious task prone to inter-reader 
variability and lack of consensus.10,11 While established 
automated preprocessing and tumor size measurement 
approaches exist for adult brain tumors,12 and despite re-
cent advances in developing pediatric-specific automated 
methods for tumor assessment,13–18 there still remains 
a lack of comprehensive methods addressing the unique 
challenges of tumor assessment in pediatric patients.

Automated pediatric-specific approaches employing 
deep learning models, such as convolutional neural net-
works (CNNs), have been utilized for skull-stripping and 
segmentation of whole lesions or tumor subregions.9,14–16,19 
Skull-stripping, also referred to as brain extraction, is a 
crucial image preprocessing technique for isolating brain 
tissue from non-brain tissue in MRI. This step is vital for 
downstream neuroimaging analyses and plays an essential 
role in ensuring patient anonymization during data sharing. 
Various imaging analysis methodologies, including image 
intensity standardization for radiomic feature extraction, 
image registration, tumor segmentation, and the mapping 
of MRI to other imaging modalities, achieve higher accu-
racy when the images are skull-stripped.20,21

Previous skull-stripping methods were either developed 
using MRI data from patients without brain tumors,22 based 
on adult brain tumors,20,23 or, although trained for PBTs—
as in our previous study16—did not adequately cover 
deep-seated brain regions such as the sellar/suprasellar 
areas, leading to undersegmentation of tumors in these 

regions. In pediatrics, sellar and suprasellar tumors ac-
count for approximately 10% of all CNS tumors and encom-
pass a diverse array of entities, each with unique histologic 
origins and radiological features.24 These tumors often 
present with specific clinical and neuroimaging character-
istics, necessitating tailored surgical interventions and ther-
apeutic approaches.24 Therefore, it is essential to accurately 
include these regions within the brain tissue for image 
processing tools to be generalizable across various PBT 
histologies. Furthermore, given that sellar/suprasellar tu-
mors can distort the anatomy of the optic pathway, it is cru-
cial to develop a tool that improves the extraction of brain 
tissue while preserving the sellar/suprasellar region.25

In our earlier work,15,16 we developed multi-parametric 
tumor subregion segmentation models capable of ef-
ficiently predicting the whole tumor (WT) and different 
tumor subregions, including enhancing tumor (ET) core, 
non-enhancing tumor (NET) core, cystic component (CC), 
and peritumoral edema (ED), for a variety of PBTs using 
4 standard MRI sequences: T1-weighted (T1), T1-weighted 
post-contrast enhanced (T1-Gd), T2-weighted (T2), and 
T2-weighted fluid-attenuated inversion recovery (FLAIR) 
images. However, in some instances, depending on the 
purpose of the imaging (eg, initial assessment versus 
follow-up imaging), not all 4 sequences are acquired at a 
given time point, or the images may be unusable due to 
artifacts or specific protocol settings. This lack of availa-
bility of multi-parametric scans, particularly in retrospec-
tive studies and longitudinal tumor response assessments, 
is especially pronounced in pediatric cases. The relatively 
low incidence of brain tumors in the pediatric population 
necessitates data collection from multiple sites, each with 
differing clinical protocols, leading to decreased harmoni-
zation of input data.

This inconsistency may result in the exclusion of 
subjects who otherwise meet eligibility criteria and could 
be included for model training and further analysis. 
Nevertheless, based on tumor histology, single-parametric 
scans can still provide valuable clinical information. For 
instance, in the context of diffuse midline glioma (DMG), 
delineating the WT based on T2 and/or FLAIR scans may 
be sufficient for longitudinal response assessment.26 In the 
case of tumors with enhancing components, such as pe-
diatric low-grade and high-grade gliomas (LGG and HGG, 
respectively), segmentation of the ET based on T1-Gd 

Importance of the Study

We present robust skull-stripping models that work 
with single- and multi-parametric MR images and in-
clude the sellar/suprasellar regions in the extracted 
brain tissue. Since ~10% of the pediatric brain tumors 
originate in the sellar/suprasellar region, including the 
deep-seated regions within the extracted brain tissue 
makes these models generalizable for a wider range of 
tumor histologies. We also present 2 tumor segmenta-
tion models, one for segmenting whole tumor using T2/
FLAIR images, and another for segmenting enhancing 

tumor region using T1-Gd and T2/FLAIR images. These 
models demonstrate excellent performance with limited 
input. Both the skull-stripping and tumor segmentation 
models work with one- or two-input MRI sequences, 
making them useful in cases where multi-parametric 
images are not available—especially in real-world clin-
ical scenarios. These models help to address the issue 
of missing data, making it possible to include subjects 
for longitudinal assessment and monitoring treatment 
response, which would have otherwise been excluded.
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images could be beneficial for evaluating tumor behavior 
and likely progression.27,28 Although several studies have 
explored the efficacy of single versus multi-parametric MRI 
for developing segmentation pipelines in CNS lesions such 
as meningioma or vestibular schwannoma,29,30 no estab-
lished preprocessing pipelines or tools currently exist to 
address this problem in PBTs.

To address these unmet needs, we propose a general-
izable pediatric preprocessing pipeline for enhanced auto-
mated brain tissue extraction (skull-stripping) and tumor 
segmentation. This pipeline complements our previously 
developed multi-parametric auto skull-stripping and tumor 
segmentation models. In this study, we trained 3D convo-
lutional neural networks (CNNs) using a U-Net-based ar-
chitecture (nnU-Net)31 with multi- and single-parametric 
MRI sequences as inputs for the auto-segmentation tasks. 
We selected nnU-Net because it has been proven to out-
perform most available CNNs, especially in applications 
involving PBTs.15,32,33

We hypothesize that this pipeline can establish a stand-
ardized method for preprocessing pediatric brain MRI 
acquisitions. Furthermore, we expect that the proposed 
auto-segmentation models will demonstrate acceptable 
performance in segmenting either the WT or ET compo-
nents, including sellar and suprasellar regions, even in 
subjects lacking multi-parametric MRI scans.

Methods

Data Description and Patient Cohort

This was a HIPAA-compliant, IRB-approved retrospec-
tive study of previously acquired data from the multi-
institutional Children’s Brain Tumor Network (CBTN) 
repository and BraTS-PEDs 2023.34,35 Children’s Brain 
Tumor Network is a biorepository (cbtn.org) that allows for 
the collection of specimens, longitudinal clinical and im-
aging data, and sharing of de-identified samples and data 
for future research. Written informed consent was obtained 
from the patients at the time of their enrollment. Subjects 
were included if they had the following 4 MR images 
obtained routinely for clinical evaluation of brain tumors: 
T1, T1-Gd, T2, and FLAIR. Additionally, only subjects who 
underwent minor surgical procedures that did not result in 
major neuroanatomical changes and had all 4 brain MR im-
ages mentioned above, were included. Subjects were ex-
cluded if they underwent surgical procedures that resulted 
in major changes to neuroanatomy.

Based on the availability of ground truth brain masks 
and tumor segmentations, 2 different subject cohorts were 
created as a part of this study, one for training the skull-
stripping models and another for training the tumor seg-
mentation models. A detailed description of the patient 
demographics and distribution of tumor histology for each 
cohort is provided (Figure 1).

Image Preprocessing and Data Preparation

Data preparation for single- and multi-parametric 
model training included a series of preprocessing steps 

(Supplementary Figure 1). First, all images were reori-
ented to left-posterior-superior (LPS) coordinate system. 
Next, the T1-Gd image was coregistered to the SRI24-atlas 
space and subsequently the T1, T2, and FLAIR images were 
coregistered to the T1-Gd image. Images were resampled 
to 1 mm3 isotropic resolution and the image dimensions 
were changed to 240 × 240 × 155, based on the anatomical 
SR124-atlas space.36 Coregistration was performed using a 
greedy algorithm in the Cancer Imaging Phenomics Toolkit 
open-source software v.1.8.1 (CaPTk, https://www.cbica.
upenn.edu/captk).37,38

A semiautomated process was used to create ground 
truth segmentation masks for model training. For the skull-
stripping model, images were passed through an existing 
automated skull-stripping tool based on DeepMedic from 
CaPTk.39 The resulting brain masks underwent manual 
modification to make any corrections and, importantly, 
to include the sellar/suprasellar regions within the brain 
masks. Similarly, to generate initial tumor segmentations, 
images were passed through a baseline automated tumor 
segmentation tool,15 which segmented 4 various tumor 
subregions—ET, NET, CC, and ED—where present. For the 
baseline segmentations generated above, manual revi-
sions were made by trained researchers using ITK-SNAP.40 
These revisions were then reviewed by one of the 3 prac-
ticing neuroradiologists (J.W. with 6 years, A.N. with 10 
years, and A.V. with 16 years of clinical neuroradiology ex-
perience, respectively), and were iteratively corrected until 
final approval by one of the neuroradiologists. All manual 
annotators, including the neuroradiologists, had received 
prior training and participated in consensus sessions. 
From the finalized manual segmentations, WT segmen-
tation masks were created by combining all tumor subre-
gions into a single segmentation label. Separately, the ET 
subregion was extracted. These WT and ET masks were 
used as ground truth for model training and evaluation.

Model Training and Validation

We trained two 3D CNNs using nnU-Net for automated 
skull-stripping: one with multi-parametric input, and the 
other with single-parametric input (T1, T1-Gd, and T2 or 
FLAIR). We also trained 2 different 3D CNNs using nnU-
Net for automated brain tumor segmentation: one using 
only T2 or FLAIR images as input for auto-segmentation of 
the WT region (without individual tumor subregions), and 
the other using T1-Gd along with either T2 or FLAIR images 
for auto-segmentation of the ET region (excluding other 
tumor subregions). nnU-Net v1 (https://github.com/MIC-
DKFZ/nnUNet/tree/nnunetv1) with 5-fold cross validation 
was trained.31 Training parameters were: initial learning 
rate = 0.0, stochastic gradient descent (SGD) with Nesterov 
momentum (μ = 0.99), and number of epochs = 1000 × 250 
minibatches.

A total of 336 subjects were included in the skull-stripping 
model training, with 153 subjects in the training cohort and a 
withheld set of 183 subjects in the testing cohort. Four hun-
dred eighty-nine subjects were included in tumor segmenta-
tion model training, with 364 subjects in the training cohort 
and a withheld set of 125 subjects in the testing cohort. A 
variety of patient demographics and brain tumor histology 

https://cbtn.org
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
https://www.cbica.upenn.edu/captk
https://www.cbica.upenn.edu/captk
https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1
https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1
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were included in this study in order to build robust and gen-
eralizable models (Figure 1). The entire image preprocessing, 
automatic skull-stripping, and tumor segmentation pipeline 
are presented in Supplementary Figure 1.

Statistical Analysis

The performances of the different nnU-Net models with 
respect to the expert manual ground truth segmentations 
were evaluated using several evaluation metrics, including 
Dice score (Sørensen-Dice similarity coefficient), sensi-
tivity, and 95% Hausdorff distance.

For skull-stripping, paired t-tests were used to determine 
any differences in the Dice scores between single- and 
multi-parametric skull-stripping models, whereas 2-sample 
t-tests were used to compare the differences in Dice scores 
between different PBT histologies and age ranges. The cor-
respondence in performance between single- and multi-
parametric skull-stripping models was evaluated using 
Pearson’s correlation.

For tumor segmentation: paired t-tests were used to 
compare the performance between T2 or FLAIR inputs for 
WT segmentation, T1-Gd and T2 or FLAIR inputs for ET 
segmentation for the different histologies. Two-sample 
t-tests were used to compare the difference in ET volumes 

for different histologies, using T1-Gd and T2 or T1-Gd and 
FLAIR inputs. The correlation between ET Dice scores and 
ET volumes was evaluated using Pearson’s correlation.

Results

Skull-Stripping Model performance

Supplementary Table 1 shows the resulting Dice scores, 
sensitivity, and 95% Hausdorff distance for the multi- 
and single-parametric skull-stripping models for both 
the whole brain and when selecting only the slices con-
taining sellar/suprasellar regions. For whole brain masks, 
the multi- and single-parametric models demonstrated 
similar performance, as indicated by the Dice scores 
(Supplementary Table 1; Figure 2A). A similar trend was 
observed for the sellar/suprasellar slices (Supplementary 
Table 1; Figure 2B), with the median Dice scores being 
slightly higher than those for whole brain masks 
(Supplementary Table 1). When comparing the perfor-
mance of the proposed muti-parametric model against the 
DeepMedic model (which was not trained to include sellar/
suprasellar regions) specifically for the sellar/suprasellar 
slices, the Dice scores (mean ± SD [median]) are similar 

Total pediatric subjects with brain MRI
(n = 527)

Skull-stripping cohort
(n = 336)

Median age & range: 8.59 (0.24 – 18.36)
Age n/a: n = 35

Sex: male = 148 (44.04%), females =
151 (44.94%) and n/a = 37 (11.01%)

Brain tumor histology:
LGG/astrocytma = 143 (42.56%)

DMG = 57 (16.96%)
Medulloblastoma = 53 (15.77%)

Others = 83 (24.7%)

Supra-sellar tumors = 32 (9.5%)
Other tumor locations = 304 (90.5%)

Training cohort
(n = 153)

Testing cohort
(n = 183)

Brain Tumor segmentation
cohort (n = 489)

Median age & range: : 8.17 (0.24 – 19.23)
Age n/a: n = 69

Sex: male = 208 (42.54%), females =
211(43.15%) and n/a = 70 (14.31%)

Brain tumor histology:
LGG/astrocytoma = 180 (36.81%)

DMG = 119 (24.34%)
Medulloblastoma = 105 (21.47%)

Others = 85 (17.38%)

Treatment naive patients = 475 (97.13%)
Post-op patients = 14 (2.87%)

Training cohort
(n = 364)

Testing cohort
(n = 125)

Figure 1.  Patient demographics for subjects used in model training and testing for the skull-stripping and brain tumor segmentation cohorts.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
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(0.98 ± 0.01 [0.99] vs 0.98 ± 0.01 [0.98]). However, the pro-
posed model showed higher sensitivity (0.98 ± 0.01[0.99] 
vs 0.97 ± 0.01 [0.98]) and lower Hausdorff distance 
(1.06 ± 0.32 [1] vs 1.18 ± 0.36 [1]). The differences in perfor-
mance between the 2 models are less pronounced due to 
the smaller size of the sellar/suprasellar regions compared 
to the entire brain tissue.

The distribution of whole brain Dice scores using the 
multi- and single-parametric skull-stripping models for dif-
ferent brain tumor histologies—low-grade glioma (LGG), 
medulloblastoma, diffuse midline glioma (DMG), and Other 
Histologies including high-grade glioma—astrocytoma 
(HGG), ependymoma, and ganglioglioma—shows that both 
models performed similarly well (Supplementary Figure 2). 
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http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
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Performance was largely affected by one DMG subject in the 
single-parametric model with T1 input, which had a whole 
brain Dice score of 0.89, leading to a slightly less dense 
group-level distribution.

Comparison of the Dice scores between the multi- and 
single-parametric models for whole brain and sellar slices 
showed a significant correlation (P < .05), demonstrating 
similar performance for skull-stripping in both whole brain 
and sellar slices (Supplementary Figures 3 and 4).

Whole brain Dice scores of the multi-parametric model 
showed no significant difference across different age 
ranges (0–3, 3–13, and 13–18 years) (all P > .05), suggesting 
the model’s generalizability across all pediatric age groups 
(Supplementary Figure 5).

Supplementary Figure 6 depicts representative pre-
processed brain MR images overlaid with ground truth 
brain masks along with predicted whole brain masks from 
single- and multi-parametric skull-stripping models. The 
successful performance of the multi-parametric model on 
craniopharyngioma and germinoma, which originate from 
the sellar/suprasellar regions, is also shown.

We further tested the impact of our proposed skull-
stripping model on automated tumor segmentation by 
comparing skull-stripped images to nonskull-stripped 
images in data from 12 subjects with sellar/suprasellar 
tumors. Supplementary Table 2 shows the mean ± SD 
(median) values for Dice score, sensitivity, and 95% 

Hausdorff distance metrics for WT segmentation in both 
skull-stripped and nonskull-stripped images. The results 
indicate no significant difference, based on the Wilcoxon 
signed-rank test (P = .18), suggesting no adverse im-
pact of skull-stripping on a downstream task. Finally, a 
qualitive comparison of the nnU-Net-based skull-stripping 
model with the previously reported DeepMedic-based 
skull-stripping model, reveals that the nnU-Net-based 
skull-stripping model performs better at including sellar/
suprasellar areas, frontal lobe, and brainstem from the 
brain tumor as part of the extracted brain tissue region 
(Figure 3).

Tumor Segmentation Model Performance

Table 1 shows the Dice scores, sensitivity, and 95% 
Hausdorff distance for (1) T2 or FLAIR model–WT region 
and (2) T1-Gd and either T2 or FLAIR model–ET region. The 
distribution of Dice scores from the T2 and FLAIR models 
showed no significant difference between various tumor 
histologies for both T2 and FLAIR images (Figure 4A). An 
example of preprocessed MRI sequences, images over-
laid with the ground truth segmentation, and predicted 
segmentations for the T1-Gd and FLAIR model, T1-Gd and 
T2 model, and T2 or FLAIR model is shown (Figure 5A–C, 
respectively).

DeepMedic brain mask +
tumor seg 

T1-Gd + nnU-Net brain
mask 

T1-Gd + DeepMedic Brain
mask 

nnU-Net brain mask +
tumor seg

Figure 3.  Examples of skull-stripping performance using the multi-parametric nnU-Net-based model compared to an earlier pediatric 
DeepMedic-based skull-stripping model. The nnU-Net-based model shows improved performance, successfully segmenting tumor regions that 
the DeepMedic-based model fails to include as part of the brain tissue.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
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Table 1.  Performance Metrics for T2 or FLAIR Whole Tumor Segmentation Models, and T1-Gd and T2 or FLAIR Enhancing Tumor Segmentation 
Models

Model and region/metric Dice score
Mean ± SD (median)

Sensitivity
Mean± SD (median)

95% Hausdorff distance
Mean ± SD (median)

One-sequence models—WT

 � FLAIR-only 0.84 ± 0.17 (0.90) 0.83 ± 0.18 (0.88) 8.09 ± 13.20 (3.32)

 � T2-only 0.82 ± 0.19 (0.89) 0.8 ± 0.21 (0.88) 8.24 ± 12.79 (3.61)

Two-sequence models—ET

 � T1-Gd and FLAIR 0.65 ± 0.35 (0.79) 0.76 ± 0.26 (0.86) 6.41 ± 9.25 (3)

 � T1-Gd and T2 0.64 ± 0.36 (0.79) 0.76 ± 0.26 (0.85) 6.09 ± 9.33 (2.83)

Abbreviations: ET, enhancing tumor; FLAIR, fluid-attenuated inversion recovery; SD, standard deviation; WT, whole tumor.
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Figure 4.  Violin plots showing the distribution of whole tumor (WT) Dice scores using the T2 or FLAIR tumor segmentation model for different 
histologies (A). There is no significant difference in the Dice scores between T2 and FLAIR inputs for different tumor histologies. Violin plots showing the 
distribution of enhancing tumor (ET) Dice scores using the T1-Gd and T2 or FLAIR tumor segmentation models for the different histologies (B). Enhancing 
tumor Dice scores from LGG and medulloblastoma patients were significantly higher than those from DIPG/DMG and other histologies (all P < .0.5).
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The distribution of ET Dice scores using the T1-Gd with T2 
or FLAIR inputs for different PBT histologies showed that 
ET Dice scores for DMG are significantly lower than those 
for LGG and medulloblastoma (Figure 4B). Two sample 
t-tests indicated significant differences in ET Dice scores 
between DMG and LGG (P = .004 for T1-Gd and T2, P = .018 
for T1-Gd and FLAIR), between DMG and medulloblastoma 
(P = .02 for T1-Gd and T2, P = .037 for T1-Gd and FLAIR). 
Additionally, significant differences were found between 
tumors categorized as “Other Histologies” and LGG 
(P = .0003 for T1-Gd and T2, P = .011 for T1-Gd and FLAIR) 
and “Other Histologies” and medulloblastoma (P = .0008 
for T1-Gd and T2, P = .011 for T1-Gd and FLAIR). High-grade 
gliomas and medulloblastoma subjects had significantly 
higher ET volumes than DMG and “Other Histologies,” 
indicating the model’s superior performance in histologies 
where the ET region is more prevalent and tumor size is 
larger (Supplementary Figure 7A, B). A scatter plot com-
paring ET Dice scores with ground truth ET volumes 
showed a low but significant correlation (r = 0.33, P < .05) 
(Supplementary Figure 7C).

Discussion

In this study, we aimed to develop generalizable, pediatric-
specific automated methods for skull-stripping that in-
cludes the sellar/suprasellar regions and an automated 
tumor segmentation approach for use in limited data 
contexts. Our study demonstrated excellent results for 
skull-stripping for both the multi-parametric and single-
parametric models, with similar performance on the whole 

brain mask and sellar/suprasellar slices. The brain tumor 
segmentation models presented in this study build on our 
previous work, enabling the evaluation of imaging ses-
sions of PBTs without multi-parametric MRI acquisitions. 
Additionally, these models allow for the segmentation of 
the nonenhancing component by subtracting ET from WT 
in cases where T1-Gd and either T2 or FLAIR images are 
available.

This study utilized the most comprehensive pediatric 
brain MRI dataset for training skull-stripping and tumor 
auto-segmentation models to date, based on the diver-
sity of tumor histologies included in both training and 
testing. The dataset was multi-institutional, encompassing 
a wide range of MRI scanner field strengths and manufac-
turers (see Supplementary Table 3). It included a variety 
of brain tumor types, with the major ones being LGG, 
medulloblastomas, and DMG, as well as other types such as 
HGG, ependymomas, germinomas, craniopharyngiomas, 
and other rare tumors.

Our automated tumor segmentation models using only 
T2 or FLAIR sequences achieved high accuracy in WT 
region segmentation (median Dice scores: 0.9 for FLAIR-
only input and 0.89 for T2-only input). The results for ET 
region segmentation using combinations of T1-Gd with 
T2 or FLAIR sequences were more moderate (median 
Dice scores: 0.79 for both T1-Gd & T2 and T1-Gd & FLAIR 
models).

Comparing our results to the BraTS-PEDs 2023 chal-
lenge,35 our WT and ET segmentation models performed 
better than the top-performing models. For WT segmen-
tation using our T2 or FLAIR models compared to the 
top-performing BraTS-PEDS 2023 teams, Dice score was 
0.84 ± 0.17 (0.90) versus 0.84 ± 0.16 (0.87), sensitivity was 

Pre-processed Images

Pre-processed Images

Pre-processed Images Ground truth enhancing tumor T1-Gd & FLAIR model predicted ET

T1-Gd & T2 model predicted ET

FLAIR-only model 
predicted WT

T2-only model 
predicted WT

Ground truth enhancing tumor

Ground truth WT segmentation

Enhancing tumor

Enhancing tumorT1-Gd

T1-Gd

FLAIR

FLAIR

T2

T2

C

B

A

Whole tumor

Figure 5.  (A) and (B) Examples of brain MR images overlaid with ground truth segmentation labels and model-predicted enhancing tumor seg-
mentation labels for T1-Gd and FLAIR, and T1-Gd and T2, respectively. (C) Results for the T2 or FLAIR model for segmenting whole tumor (WT).

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdae190#supplementary-data
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0.83 ± 0.18 (0.88) versus 0.8 ± 0.09 (0.82), and 95% Hausdorff 
distance was 8.09 ± 13.20 (3.32) versus 18.05 ± 62.77 
(4.30). Similarly, for ET segmentation using our T1-Gd 
with T2 or FLAIR models compared to the top-performing 
BraTS-PEDS 2023 teams, Dice score was 0.65 ± 0.35 (0.79) 
versus 0.65 ± 0.32 (0.74), sensitivity was 0.76 ± 0.26 (0.86) 
versus 0.7 ± 0.18 (0.74), and 95% Hausdorff distance was 
6.41 ± 9.25 (3) versus 43.89 ± 108.59 (3.67). These results 
collectively highlight that while our models used limited 
imaging sets for segmentation of WT and ET regions, as 
opposed to the methods submitted to the BraTS-PEDs 
2023 that use multi-parametric MRI, they achieve better 
performance.

While numerous studies have focused on skull-stripping 
in adult brain MRI scans, only a few have addressed this 
task using pediatric brain MRI scans. Kazerooni et al. dem-
onstrated Dice scores of 0.98 using the DeepMedic ar-
chitecture for skull-stripping with multi-parametric MR 
images, which is comparable to our results. However, their 
study used a smaller dataset of 21 cases for inference, did 
not include single-parametric models, and did not encom-
pass the sellar/suprasellar regions in the brain masks.16 
Kim et al. reported whole brain Dice scores in the range 
of 0.79–0.8 using VUNO Med-DeepBrain for subjects with 
SCN1A mutations (n = 21) and healthy subjects (n = 42) in 
a multi-institutional and multi-scanner dataset. However, 
their study did not include any subjects with brain tu-
mors and used a significantly smaller dataset compared 
to ours.19 Chen et al. used ANUBEX based on nnU-Net 
for skull-stripping in neonates and compared it against 
5 other deep learning models, achieving Dice scores in 
the range of 0.92–0.96.41 However, their model only used 
T1 images as input and was tested on a small withheld 
dataset of 39 subjects. In contrast, our study demonstrated 
excellent skull-stripping results using both multi- and 
single-parametric models, outperforming previously pub-
lished studies. Additionally, our study showed accurate 
skull-stripping performance across different pediatric age 
groups (0–3, 3–13, and 13–18 years), highlighting its ro-
bustness to the structural and signal intensity changes in 
the skull due to child development.

While Dice scores for skull-stripping with sellar/suprasellar 
region inclusion do not directly inform on the perfor-
mance of downstream analyses, a comparison between 
the DeepMedic skull-stripping model (not trained to include 
sellar/suprasellar regions) and our proposed nnU-Net-
based model indicates that the latter is qualitatively better 
at including brain tumor regions from the sellar/suprasellar 
areas, frontal lobe, and brainstem as part of the extracted 
brain tissue. Furthermore, using either skull-stripped im-
ages or non skull-stripped images as input to the automated 
tumor segmentation model did not impact its performance 
for tumors located in the sellar/suprasellar regions.

A few studies in the literature have investigated the use 
of T2 or FLAIR images for WT segmentation in pediatric 
populations. Boyd et al. trained and compared multiple 
stepwise transfer learning models based on nnU-Net for 
WT segmentation using T2 images.14 The best-performing 
transfer-encoder model had a median Dice score of 0.877 
for the internal validation set, whereas the external valida-
tion set had a median Dice score of 0.833. These median 
Dice scores are lower compared with the median WT Dice 

score of 0.89 using T2 inputs for the tumor segmentation 
model presented in our study. Additionally, the transfer-
encoder stepwise transfer learning model was only trained 
on LGG cases, whereas our multi-institutional dataset was 
larger and trained on a wider range of PBT histologies. 
Furthermore, Vafaeikia et al. trained a 2-step U-Net-based 
deep learning model for WT segmentation using just FLAIR 
images.42 They reported a mean Dice score of 0.795, which 
is lower than the mean Dice score of 0.84 reported in our 
study for WT segmentation using just FLAIR images. The 
2 step U-Net model was trained only on LGG patients 
and included data from a single institution, compared to 
the wider range of PBT histologies and multi-institutional 
dataset included in the present study. To the best of our 
knowledge, there is only one study in the literature that ex-
plored the use of one- or two-input MRI sequences for seg-
menting the ET region in the case of PBT. Peng et al. used 
T1-Gd and T2 images to train a U-Net model for ET segmen-
tation from 638 preoperative PBT patients.43 They reported 
mean and median Dice scores of 0.724 and 0.843, respec-
tively. In comparison, our proposed model, using the same 
inputs, achieved mean and median Dice scores of 0.64 and 
0.79, respectively. While the U-Net model was trained on a 
larger dataset and demonstrated better results, it is impor-
tant to note that our proposed model works with T1-Gd and 
T2 or FLAIR inputs

Our study had a few limitations that are important to 
note. In subjects with smaller ET subregion volumes, even 
slight inaccuracies in model prediction can push the Dice 
scores to extreme values (close or equal to 0) due to the 
low number of voxels being compared. This disproportion-
ately penalizes model performance and biases subsequent 
statistical analysis. Moreover, weak enhancement and 
poor-quality T1-Gd scans can complicate the segmentation 
of the ET region.10 Despite these limitations, we believe 
that the proposed ET segmentation model will help reduce 
the burden of manual segmentation by providing a reliable 
initial prediction of the ET region, which can then be re-
viewed and modified, by experienced radiologists.

To our knowledge, no other children’s hospitals currently 
incorporate automated tumor segmentation into their 
clinical workflow. However, for the BraTS-PEDs 2024 chal-
lenge, we utilized our pretrained automated tumor seg-
mentation model to generate initial segmentations. These 
were subsequently reviewed and refined by experienced 
radiologists. The feedback from the radiologists was posi-
tive, indicating that the automated segmentations signifi-
cantly reduced the manual revision workload. As part of the 
upcoming BraTS-PEDs 2025 challenge (now recognized as 
a MICCAI Lighthouse Challenge), we will thoroughly eval-
uate inter- and intra-reader variability when starting from 
automated segmentations versus manual segmentation 
without preprocessing. The findings from this evaluation 
will be shared with the community.

Future work will include training a separate tumor seg-
mentation model for postoperative subjects, perhaps with 
an additional label for the resected tumor. Incorporating 
intraorbital tumors and fine-tuning the model with data 
from specific histologies, such as DMG, will improve its 
performance in segmenting tumor subregions, beneficial 
for many applications. Additionally, we plan to apply our 
tumor segmentation models to clinical trial studies that 
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monitor tumor response to treatment, to further demon-
strate their generalizability. Although this study is retro-
spective, we are actively working on validating our models 
with a prospective cohort to establish a reliable framework 
for routine clinical application.

In summary, this study presents enhanced skull-
stripping and tumor segmentation models that are more 
generalizable across various PBT histologies and adapt-
able to limited MRI sequence availability. The proposed 
skull-stripping models can support applications such as 
synthesizing missing MRI sequences using generative ad-
versarial networks44 and extracting radiomic features, both 
of which depend on accurate and comprehensive brain 
tissue segmentation, including the entirety of tumor.

The single-parametric skull-stripping models, as well 
as one-input (T2 or FLAIR) WT segmentation and 2-input 
(T1-Gd and T2 or FLAIR) ET segmentation, enable the inclu-
sion of cases with incomplete multi-parametric image sets 
in the limited data context. These advancements facilitate 
more extensive clinical translation and improved assess-
ment of PBTs.

Supplementary material

Supplementary material is available online at Neuro-
Oncology Advances (https://academic.oup.com/noa).
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