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A B S T R A C T

This study aimed to investigate the effects of maturity on the changes in major lipid metabolites of coffee and
their associated pathways. UPLC-ESI-MS/MS was used to compare the lipidomic profiles of coffee beans at five
different maturity stages. A total of 516 lipid metabolites across 26 subclasses were identified, with 111 showing
significant differences. Glycerolipids (GL) and fatty acyls (FA) were the most abundant, followed by glycer-
ophospholipids (GP), sphingolipids (SP) and prenol lipids (PR). PCA and OPLS-DA analyses demonstrated sig-
nificant changes in coffee lipids during maturation. Glycerophospholipid metabolism and glycerolipid
metabolism were identified as key metabolic pathways, with phosphatidic acid (PA), lysophosphatidic acid (LPA)
and diacylglycerol (DG) as key lipid metabolites in these pathways during coffee maturation. Lipids in immature
and overripe beans were significantly different from those in mature coffee beans. This study provides a foun-
dational understanding of lipid transformation and flavor profile formation during coffee maturation.

1. Introduction

In the ‘third wave coffee’ era, the demand for higher quality coffee
has transformed the industry, turning coffee from a traditional com-
modity into a product rich in characteristics (Sittipod, Schwartz, Para-
visini, & Peterson, 2019; Wang et al., 2024). Arabica coffee (Coffea
arabica L.), the most widely produced and commercialized coffee species
globally, is recognized for its outstanding drinking quality, rich aroma
and unique flavor (Agnoletti et al., 2022; Cheng, Furtado, Smyth, &
Henry, 2016). Improving the flavor quality of coffee can tap into high-
value markets and increase profits for growers (Wang et al., 2023).
However, achieving this is a complex process involving many stages
from seed to cup (Wang et al., 2022). Factors such as species/cultivars,
geographical origin, maturity, processing, roasting and storage all in-
fluence coffee flavor (Hu et al., 2020; Wang et al., 2023). Ensuring
uniform and appropriate cherry maturity to optimize the accumulation
of flavor precursor compounds is one of the key prerequisites for pro-
ducing high-quality coffee.

Coffee cherry maturity is commonly assessed by color, a widely
accepted classification method, although other indicators like firmness,
acidity, sugar content, and density are also relevant but harder to
measure in the field (Velásquez, Peña, Bohórquez, Gutierrez, & Sacks,
2019). As coffee cherries ripen, their color changes from green to red,
yellow, or orange, reflecting chemical composition changes specific to
each variety, most of which are red-fruiting (de Melo Pereira et al.,
2019). As coffee cherries ripen, phenolic compounds and astringency
decrease, while flavor precursors accumulate and volatile compounds
(e.g., aldehydes, ketones, and higher alcohols) increase, enhancing the
aroma of coffee (Yeretzian, Jordan, Badoud, & Lindinger, 2002). How-
ever, the lack of an automatic abscission mechanism in coffee cherries
can result in overripening, leading to nutritional deficiencies and a
higher risk of parasite invasion (Aristizábal, Johnson, Shriner, & Wall,
2023). These issues not only affect coffee bean quality but also nega-
tively impact the sensory attributes of the final beverage (Hu et al.,
2020). Lipid composition in coffee beans changes during ripening,
greatly influencing the flavor, body and fragrance/aroma during
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roasting and brewing (Jham, Velikova, Muller, Nikolova-Damyanova, &
Cecon, 2001; Pazmino-Arteaga, Gallardo, Gonzalez-Rodriguez, & Win-
kler, 2022). These changes highlight the critical role of lipids in defining
coffee quality parameters. However, the role of lipids in metabolic
transformation and flavor formation during ripening remains underex-
plored, emphasizing the importance of targeted studies on lipid profile
changes. Understanding these transformations can provide insights into
optimizing harvest timing and post-harvest processing, ultimately
contributing to enhanced coffee quality.

Lipidomics, a branch of metabolomics, offers comprehensive mo-
lecular insights into lipid metabolism and pathways at the system level.
Recent applications of lipidomic analysis have significantly advanced
our understanding of lipid profiles in green and roasted coffee beans.
Silva, da Silva, Garrett, and Rezende (2020) used LC-HRMS/MS tech-
nology to profile lipids in green coffee beans, discovering that the
Matyash extraction method identified a greater variety of lipids than the
traditional Folch and Bligh-Dyer methods. Silva, Garrett, Rezende, and
Meckelmann (2022) further showed that LC-IM-qTOF-MS enhanced
lipidomic characterization, revealing that triacylglycerols were pre-
dominantly associated with Arabica coffee, while diacylglycerols and
phospholipids were more prevalent in Robusta. Aurum et al. (2022) used
LC-MS/MS for lipid profiling, successfully determining the geographical
origins of coffee from six major Indonesian regions through multivariate
analysis. Additionally, Zhu et al. (2023) investigated dynamic changes
in lipid composition during coffee roasting, providing detailed insights
into how lipid levels vary throughout the process. Despite these ad-
vances, comprehensive studies on lipid profiles during coffee ripening
remain lacking, highlighting a significant gap in current research.

This study aims to monitor key lipid content during coffee ripening
and explore lipid transformation mechanisms using an extensive tar-
geted lipidomic analysis (UPLC-ESI-MS/MS(MRM)). Unlike previous
studies focusing solely on general chemical changes during coffee
maturation, our work uniquely integrates lipid profiling with maturity
stages, revealing key metabolic pathways that drive flavor and aroma
development. This understanding provides a scientific basis for devel-
oping targeted harvesting strategies that align with optimal maturity
levels, ensuring higher quality coffee with optimized flavor profiles to
meet consumer satisfaction.

2. Materials and methods

2.1. Chemicals and standards

In this study, the following HPLC-grade chemicals were utilized:
acetonitrile (ACN, CAS 75–05-8, Merck, Germany); methanol (MeOH,
CAS 67–56-1, Merck, Germany); isopropyl alcohol (IPA, CAS 67–63-0,
Merck, Germany); dichloromethane (CH2Cl2, CAS 75–09-2, Merck,
Germany); methyl tert-butyl ether (MTBE, CAS 1634-04-4, Merck,
Germany); formic acid (FA, CAS 64–18-6, Sigma-Aldrich, USA); and
ammonium formate (AmFA, CAS 540–69-2, Sigma-Aldrich, USA). Lipid
standards were sourced from Sigma-Aldrich and Avanti Polar Lipids
(Alabaster, AL). Ultrapure water was produced using a Milli-Q system
(Millipore, Billerica, MA).

2.2. Samples collection

The study took place during the 2023/2024 harvest season at the
experimental field of the Dehong Tropical Agriculture Research Insti-
tute, Yunnan, China (97o86′10″E, 24o02′57″N, 796.4 m above sea level).
The coffee trees, belonging to the Sarchimor series of C. arabica L., were
planted in 2017 with a spacing of 2.5 m × 2 m (2000 trees/ha). The
region has a subtropical humid monsoon climate, with an average
annual temperature of 21 ◦C and annual precipitation of 1394.8 mm.
The soil at the test site is derived from granite parent material and is
brick red, with a pH of 4.9.

This study sampled coffee cherries at five distinct maturity stages

from the same vigorous coffee tree, based on appearance (Marín-López,
Arcila-Pulgarín, Montoya-Restrepo, & Oliveros-Tascón, 2003). Each
maturity stage was sampled replicates, with 20 fresh coffee cherries
collected for each replicate (Fig. 1). Maturity stage 1 (M1) featured
yellow-green cherries (i.e., 203 days), stage 2 (M2) corresponds to
nearly ripe or “pintón” cherries (i.e., 210 days), stage 3 (M3) to ripe
cherries (i.e., 217 days), stage 4 (M4) to overripe cherries (i.e., 224
days), and stage 5 (M5) to withered cherries (i.e., 231 days). All coffee
cherries were immediately flash-frozen in liquid nitrogen after collec-
tion, then freeze-dried and stored at − 80 ◦C until analysis.

2.3. Total lipid extraction

Green coffee beans total lipid extraction was performed using a
MeOH and MTBE solvent system, as outlined by Song et al. (2020).
Initially, the sample was pulverized, and 20 mg was placed into a 2 mL
centrifuge tube. The sample was then homogenized with a 4 mm
diameter steel ball at a 30 Hz frequency for 20 s using a mixer mill
(MM400, Retsch, Germany). Subsequently, 1 mL of a MTBE: MeOH
solution (3:1, v/v), containing an internal standard mix, was added and
the mixture was vigorously shaken for 30 min using a vortex mixer
(MIX-200, Shanghai Jingxin, China). After adding 300 μL of ultra-pure
water, the tube was agitated for one minute and then allowed to stand
at 4 ◦C for 10min. The contents were then centrifuged at 12,000 rpm in a
centrifuge (5424R model, Eppendorf, Germany) at 4 ◦C for 3 min. From
this, 400 μL of the upper layer was transferred into a fresh 1.5 mL
centrifuge tube and dried under a CentriVap system (LABCONCO, USA)
at − 20 ◦C. Once dried, the residue was reconstituted in 200 μL of an
ACN: IPA solution (1:1, v/v), vortexed for 3 min, and centrifuged at
− 20 ◦C at 12,000 rpm for 3 min. Finally, 120 μL of this solution was
collected for further analysis by liquid chromatography-mass
spectrometry.

2.4. Lipid analysis

The sample extracts were analyzed using a UPLC-ESI-MS/MS system
(UPLC, ExionLC AD′ https://sciex.com.cn/; MS, QTRAP® 6500+ Sys-
tem, https://sciex.com/) by MetWare Biotechnology Co., Ltd. (Wuhan,
China), based on the AB Sciex QTRAP 6500 LC-MS/MS platform. To
monitor the stability of the system, pooled quality control (QC) samples
were injected every 10 samples throughout the running batch.

The UPLC system utilized a Thermo Accucore™ C30 column (2.6 μm,
2.1 mm × 100 mm i.d.), with an injection volume of 2 μL and a column
temperature set at 45 ◦C. A flow rate of 0.35 mL/min was maintained
throughout the analysis. Mobile phase A consisted of acetonitrile/water
(60/40 v/v) with 0.1 % formic acid and 10 mmol/L ammonium formate,
while mobile phase B was acetonitrile/water (10/90 v/v) with the same
additives. The elution gradient included steps transitioning from an
initial A/B ratio of 80:20 (v/v) at t = 0 to 70:30 (v/v) at t= 2 min, 40:60
(v/v) at t = 4 min, 15:85 (v/v) at t = 9 min, 10:90 (v/v) at t = 14 min,
and finally 5:95 (v/v) at t = 15.5 min and t = 17.3 min, before returning
to 80:20 (v/v) at t = 17.5 min and maintaining this ratio until t = 20.0
min. The effluent from the UPLC system was directed to an ESI-triple
quadrupole-linear ion trap (QTRAP)-MS instrument.

A QTRAP-MS (QTRAP® 6500+ LC-MS/MS System) equipped with
an ESI Turbo Ion-Spray interface was used for both linear ion trap (LIT)
and triple quadrupole (QQQ) scans. Analyst 1.6.3 software (Sciex)
controlled the instrument in positive and negative ion mode, with the
ESI source set to turbo spray ion source at a temperature of 500 ◦C, and
ion spray voltages of 5500 V (Positive) and − 4500 V (Negative). Gas
pressures for gas 1 (GS1), gas 2 (GS2), and curtain gas (CUR) were set at
45, 55, and 35 psi, respectively. Instrument calibration used 10 μmol/L
and 100 μmol/L polypropylene glycol solutions for QQQ and LIT mode,
respectively. QQQ scans were conducted as an MRM experiment with
nitrogen collision gas set to 5 psi. Optimization of declustering potential
(DP) and collision energy (CE) facilitated individual MRM transitions.
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Specific MRM transitions were monitored based on eluting metabolites,
with the MRM metabolite detection multi-peak diagram illustrating
detectable substances in the sample.

2.5. Metabolites identification and quantification

The mass spectrometry data were processed using Analyst 1.6.3
software (AB Sciex Pte. Ltd., Singapore). Qualitative analysis relied on
the Metware Database (MWDB) developed by Metware Biotechnology
Co., Ltd., utilizing retention times (RT), daughter ions, and parent ions
of detected substances for identification.

For lipid quantification, QQQ MS analysis in MRM mode was uti-
lized. Chromatographic peaks detected for each substance across
different samples were initially corrected to ensure accuracy prior to
quantitative analysis. Subsequently, peak areas for all substances were
integrated. Quantitative analysis employed the internal standard
method, with lipid concentrations (C) calculated using the formula:

C(nmol/g) = 0.001×
R× c× F× V

m

Here, R for the ratio of the analyte’s peak area to that of the internal
standard, F for correction factors specific to each substance, c for the
internal standard’s concentration in μmol/L, V for the sample extraction
solution volume in μL, m for the sample’s weight in grams, and 0.001 as
a unit conversion factor.

2.6. Statistical analysis

Chord plots were generated using Origin 2022. Additionally, heat-
maps and volcano plots were created on the Metware Cloud platform
(https://cloud.metware.cn), which offers free online data analysis tools.
Heatmaps were generated using R version 3.5.1 (pheatmap 1.0.12), and
volcano plots using R version 3.5.1 (ggplot2 3.3.0). Unsupervised
principal component analysis (PCA) and orthogonal partial least squares
discriminant analysis (OPLS-DA) were performed using R version 3.5.1
(MetaboAnalystR 1.0.1) on the same platform. A permutation test with
200 permutations was conducted to mitigate overfitting risks. Metabo-
lites showing significant changes between groups were identified using
Variable Importance in Projection (VIP) scores (VIP ≥ 1) and fold
changes (FC ≥ 2.0 or FC ≤ 0.5).

2.7. KEGG annotation and enrichment analysis

Differential lipids were annotated using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) compound database (https://www.kegg.
jp/kegg/compound/), and these annotated metabolites were mapped
to the KEGG Pathway database (https://www.kegg.jp/kegg/pathway.ht
ml). Pathway analysis was then performed to elucidate changes in the
metabolic pathways of coffee bean lipids during ripening. Additionally,
metabolite set enrichment analysis (MSEA) was employed to identify
significantly modulated pathways, with significance determined by the
P-value from the hypergeometric test.

3. Result and discussion

3.1. Lipidomics profiling of of green coffee beans

The lipid composition of coffee samples at different maturity stages
was analyzed using HPLC-ESI-MS/MS (MRM) technology to monitor
changes during maturation. To ensure the reliability of the lipidomics
analysis, the repeatability of quality control (QC) samples was assessed.
The TIC curve overlap, Pearson correlation, and CV (coefficient of
variation) value distribution of QC samples (Fig. S1) indicated that mass
spectrometry analysis of the same sample at different time points pro-
duced stable signals with high repeatability and reliability. These results
confirm the robust analytical performance of the lipidomics methodol-
ogy used. Through qualitative and quantitative analysis of mass spec-
trometry data, 516 lipid molecules were identified, spanning five major
lipid classes: fatty acyls (FA; N= 23; 4.46 %), glycerophospholipids (GP;
N = 53; 10.29 %), sphingolipids (SP; N = 51; 9.89 %), glycerolipids (GL;
N = 386; 74.80 %), and prenol lipids (PR; N = 3; 0.58 %) (Fig. 2a,
Table S1). Among them, GP, SP, and GL were predominant in green
coffee beans based on the number of lipid molecules.

To better understand the complex pathways of lipid molecular
transformation at different stages of coffee maturity, these lipid mole-
cules were further divided into 26 subclasses. Our results revealed one
subclass in the FA category (free fatty acids [FFA; N = 23; 4.46 %]), 12
subclasses in the GP category (phosphatidic acid [PA; N = 5; 0.97 %],
phosphatidylcholine [PC; N = 4; 0.78 %], phosphatidylethanolamine
[PE; N = 8; 1.55 %], phosphatidylglycerol [PG; N = 3; 0.58 %], phos-
phatidylinositol [PI; N = 10; 1.94 %], lysophosphatidic acid [LPA; N =

4; 0.78 %], lysophosphatidylcholine [LPC; N = 7; 1.36 %], lysophos-
phatidylethanolamine [LPE; N = 3; 0.58 %], lysophosphatidylglycerol
[LPG; N= 3; 0.58 %], lysophosphatidylinositol [LPI; N= 4; 0.78 %], and
phosphatidylmethanol [PMeOH; N = 2; 0.39 %]), four subclasses in the
SP category (sphingine [SPH; N = 4; 0.78 %], ceramide [Cer; N = 21;
4.07 %], hexosylceramide [HexCer; N = 8; 1.55 %], and phytoceramide
[Cert; N = 18; 3.49 %]), one subclass in the PR category (coenzyme Q
[CoQ; N = 3; 0.58 %]), and nine subclasses in the GL category (acyl-
diacylglyceryl glucuronide [ADGGA; N = 2; 0.39 %], diacylglycerol
[DG; N = 61; 11.82 %], digalactosyldiacylglycerol [DGDG; N = 2; 0.39
%], diacylglyceryl glucuronide [DGGA; N = 1; 0.19 %], diacylglycer-
yltrimethylhomoserine [DGTS; N = 3; 0.58 %], monoacylglycerol [MG;
N = 5; 0.97 %], monogalactosyldiacylglycerol [MGDG; N = 3; 0.58 %],
sulfoquivonosyldiacylglycerol [SQDG; N = 3; 0.58 %], and tri-
acylglycerol [TG; N = 306; 59.30 %]).

3.2. Dynamic changes of lipid during coffee maturity stages

In this study, the internal standard method was used to analyze and
compare different lipids in green coffee beans across various maturation
stages. A chord diagram (Fig. 3a) and heat maps (Fig. 3b, c) were
employed to visualize the dynamic changes in lipid content during
maturation. The lipids with the highest content in green coffee beans
were GL and FA, followed by GP, SP, and PR (Fig. 3a). GL levels

Fig. 1. Coffee samples were collected from different stages of maturity (M1 - M5). M1, yellow-green cherries; M2, nearly ripe or “pintón” cherries; M3, ripe cherries;
M4, overripe cherries; M5, withered cherries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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increased from the M1 to M3 stages, decreased significantly at the M4
stage, and increased slightly at the M5 stage, though they remained
significantly lower than at the M3 stage. GP levels showed little change
between the M1 and M2 stages, increased significantly at the M3 stage,
and further increased at the M4 and M5 stages. GP, which contains more
unsaturated bonds, is more prone to oxidation (Liu et al., 2023), possibly
explaining the substantial variation in its content in overripe coffee
beans. FA levels decreased significantly from the M1 to M4 stages and
increased slightly at the M5 stage, a trend also reflected in Fig. 3b.

Throughout the maturation process, the relative content of FA exhibited
a downward trend due to the generation of GP and GL. Additionally, SP
levels were significantly higher at the M3 stage than at other stages.

Next, a heat map was generated to visually display the differences in
lipid subclasses of coffee beans at different maturity stages (Fig. 3c). The
lipid profile of coffee beans continued to change throughout the matu-
ration process. In the M1 and M2 stages, the overall lipid composition of
coffee beans showed minimal variation, except for a significant decrease
in the content of the lipid subclass SPH. SPH and its derivatives play a

Fig. 2. Composition of lipid profile of coffee beans with different maturity. (A) Quantities of lipid categories and subclasses. (B) Percentages of lipid categories and
subclasses. M1, yellow-green cherries; M2, nearly ripe or “pintón” cherries; M3, ripe cherries; M4, overripe cherries; M5, withered cherries. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (A) Dynamic changes of lipid contents during coffee maturation. Heatmap visualization of the metabolic variations of lipid classes (B) and subclasses (C)
during coffee maturation. M1, yellow-green cherries; M2, nearly ripe or “pintón” cherries; M3, ripe cherries; M4, overripe cherries; M5, withered cherries. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Y. Wang et al. Food Chemistry: X 24 (2024) 102062 

4 



crucial role in seed development and maturation by regulating cell
membrane structure, participating in signal transduction, stress
response, and the formation of storage substances (Sperling & Heinz,
2003). Hu et al. (2020) and Velásquez et al. (2019) observed that the
cupping score of immature green cherries was significantly lower than
that of other maturity stages, and these results indicate that flavor
precursor compounds are still accumulating and transforming at this
stage. This finding also explains the substantial changes in SPH content
during early maturation. As the beans further mature, the lipid
composition undergoes more pronounced changes, with the relative
content of lipid metabolites shifting most significantly at the M3 stage.
At this time, the coffee beans are in the fully mature stage, lipids
continue to participate in the corresponding metabolic reactions,
metabolite accumulation may be optimal here, and lipid content reaches
a peak here (Fig. S2). Additionally, due to the absence of a ripening and
shedding mechanism, the lipid components of overripe coffee cherries
(M4 andM5) may undergo further oxidation and degradation, leading to
a significant decrease in lipid content and major changes in lipid sub-
class composition.

3.3. Multivariate statistical analysis

To further compare lipidomic characteristics and identify differences
in lipid content across coffee maturity stages, we performedmultivariate
statistical analysis on the five sample groups. PCA, primarily used as a
dimensionality reduction method, is a tool for visualizing and analyzing
complex data sets by revealing data groupings, trends, and outliers

(Rodionova, Kucheryavskiy, & Pomerantsev, 2021). Unsupervised PCA
was applied to reveal the separation trends of lipid metabolites at each
maturity stage. Similar approaches have been used to evaluate lipid
datasets from other foods, such as during egg yolk storage, dry-cured
mutton ham processing and Mongolian sheep postmortem chilled
aging (Guo et al., 2022; Liu, Guo, et al., 2023; Zhang et al., 2023). The
PCA score plot (Fig. 4a) shows a clear separation trend among the five
groups, indicating significant differences between these sample groups.
The percentage variance explained by the first two principal compo-
nents (PC1 and PC2) accounted for 35.34 % and 19.40 % of the total
variance, respectively. As shown in Fig. 4a, the M3 stage exhibited the
most pronounced lipid changes and the greatest separation from other
stages, likely due to more significant lipid transformation and accumu-
lation during this stage.

These dynamic lipid shifts revealed by PCAwere further validated by
OPLS-DA, which enhanced group separation and identified key lipid
metabolites critical for coffee quality. These analyses provided insights
into the biochemical processes underlying the formation of flavor and
aroma precursors, thus supporting the optimization of harvesting and
processing strategies. Based on the PCA results, an OPLS-DA model was
established to enhance group separation. OPLS-DA, a supervised
learning method, combines partial least squares regression with
discriminant analysis to improve the accuracy and interpretability of
high-dimensional data classification (Kang et al., 2022). The OPLS-DA
model validated the PCA findings (Fig. 4b), showing that the lipid
content in green coffee bean samples changes dynamically during
ripening. A permutation test was conducted to further assess the model’s

Fig. 4. The PCA score plot (A), OPLS-DA score plot (B) and permutation test of the OPLS-DA model (C) were based on overall lipid molecules during coffee
maturation. M1, yellow-green cherries; M2, nearly ripe or “pintón” cherries; M3, ripe cherries; M4, overripe cherries; M5, withered cherries. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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validity (Fig. 4c). The classification metrics, R2Y and Q2, were 0.997 and
0.907, respectively, indicating that the OPLS-DA model was reliable
with good fit and predictability.

3.4. Screening of key lipids

Metabolomics data are typically high-dimensional and massive, and
requiring a combination of univariate and multivariate statistical
methods to accurately identify differential metabolites (Guo et al.,
2022). Based on the OPLS-DA results for adjacent maturation stages (M1
vs M2, M2 vs M3, M3 vs M4 and M4 vs M5), variable importance in
projection (VIP) values were obtained through multivariate analysis
(Fig. S3). Additionally, univariate analysis was employed to calculate
Fold Change (FC) values for lipid content between adjacent maturation
stages (Fig. S4). By integrating these data, highly differential lipids were
identified using criteria of VIP ≥ 1.0 and FC ≥ 2.0 or FC ≤ 0.5. A total of
111 highly differential lipids were identified across the maturation
stages (Table S2), distributed among five major lipid classes (FA, N = 1;
GP, N= 43; SP, N = 17; GL, N = 48; PR, N = 2), indicating that different
maturation stages significantly impact lipid diversity.

The statistical significance of lipid content changes between
consecutive treatment stages was visualized using a volcano plot
(Fig. 5). The x-axis represents the logarithm of the FC of a metabolite
between the two samples, while the y-axis represents the VIP value.
Higher values on both axes indicate more significant changes in lipid
content. In the volcano plot, each point represents a lipid molecule:
green points indicate downregulation, red points indicate upregulation,
and gray points indicate no significant difference. From stage M1 to M2,

minimal lipid changes were observed, with 6 lipids showing significant
changes (2 upregulated, 4 downregulated); from M2 to M3, 58 lipids
exhibited significant changes (53 upregulated, 5 downregulated); from
M3 to M4, 81 lipids were significantly altered (22 upregulated, 59
downregulated); and from M4 to M5, 29 lipids showed significant
changes (20 upregulated, 9 downregulated). Around the full maturity
stage (M3), coffee beans underwent significant lipid synthesis and
decomposition, as evidenced by the greater distance between M3 and
adjacent groups in the PCA and OPLS-DA score plots (Fig. 4a, b), which
explains the substantial lipid content changes between M3 and adjacent
stages (Fig. S2).

From stage M1 to M2, the color of coffee cherries transitions from
yellow-green to a mixture of red and yellow, signaling the coffee’s
progression to the mature stage. Hu et al. (2020) found that starting
from immature green cherries (1#), as the maturity increases (1# to
7#), the flavor, acidity and sweetness in the cupping flavor attributes all
show an upward trend, confirming that the flavor compounds in coffee
beans begin to synthesize and accumulate during this period. Fig. 5a
illustrates the lipid composition changes at this stage, where DGDG
(18:2_18:2) and DGTS (18:4_20:5) are significantly upregulated, while
LPE (18:1), PE (18:2_18:2), PE (20:4_20:0), and PI (18:2_20:0) are
significantly downregulated. As coffee beans are still developing at this
stage, these lipid changes suggest that lipid synthesis lags slightly behind
the synthesis of other major compounds such as proteins and
carbohydrates.

As maturation progressed, significant changes in lipid content were
observed in coffee beans at stage M3 compared with stage M2 (Fig. 5b),
with most differential lipids being upregulated. Among the differential

Fig. 5. Volcano plot of the differential lipids of M1 vs M2 (A), M2 vs M3 (B), M3 vs M4 (C) and M4 vs M5 (D), the criteria set at VIP ≥ 1, FC ≥ 2 or ≤ 0.5. M1, yellow-
green cherries; M2, nearly ripe or “pintón” cherries; M3, ripe cherries; M4, overripe cherries; M5, withered cherries. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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lipids, Cer (t18:0/16:0), PMeOH (18:2_18:2), DG (19:1_18:2), Cer
(t18:0/18:0), and PE (18:1_18:0) were significantly downregulated,
while the remaining 53 lipids (GL: 18; GP: 26; SP: 9) were significantly
upregulated. At this stage, the synthesis rate of GL and GP lipids
increased markedly, resulting in a significant rise in lipids such as DGTS
(14:0_18:4), DGTS (18:4_20:5), LPA (18:1), LPA (16:0), and LPA (18:0).
Concurrently, the large-scale synthesis of GP and GL led to a significant
decrease in FA content, which serves as a precursor. These lipids accu-
mulate in mature seeds as essential components for energy storage and
cell membrane structure. SP lipids, which confer unique properties to
cell membranes, regulate plant water loss or absorption, maintain water
balance within seeds, and protect plants from physical, chemical, and
biological damage (Heredia, 2003; Liu, Hou, Bao, Wang,& Chen, 2021).
The large-scale upregulation of SP during stage M3 corresponds with the
full maturation of coffee seeds.

From stage M3 to M4 (Fig. 5c), coffee beans undergo further matu-
ration, marked by deepening color and increased sugar accumulation in
the pulp. During this stage, lipid composition changes more actively: 22

lipids (GL: 8; GP: 12; PR: 2) are significantly upregulated, while 59 lipids
(FA: 1; GL: 40; GP: 7; SP: 11) are significantly downregulated. These
findings suggest that lipids in mature coffee seeds are unstable, with
overripeness potentially leading to the oxidation or decomposition of GL
and GP. Additionally, the absence of a dormancy mechanism in coffee
seeds may trigger early germination within the cherry fruit (Waters,
Arendt, & Moroni, 2017). During seed germination or early growth, FA
is transported to the mitochondria for β-oxidation, generating energy for
seed growth and development (Xiang et al., 2023). The significant
decrease in FA content in overripe coffee seeds could indicate the onset
of germination.

Due to the absence of an abscission mechanism, withered coffee
cherries remain on the tree, prompting further investigation into lipid
transformations during the M4-M5 stage (Fig. 5d). Among the differ-
ential lipids, 9 GPs were significantly downregulated, while 20 lipids (18
GP and 2 SP) were significantly upregulated. At this stage, the high
water content in coffee seeds and ongoing germination lead to signifi-
cant changes in GP levels. These changes can be attributed to two main

Fig. 6. KEGG pathway analysis of 111 differentially expressed lipids in coffee beans at different maturity stages. (A) KEGG pathway annotations, with the x-axis
representing the proportion and number of annotated metabolites, and the y-axis listing pathway names. (B) KEGG enrichment statistics, where the x-axis shows the
rich factor for each pathway, and the y-axis lists the KEGG metabolic pathways. Bubble size and color indicate the number of different lipids and the degree of
enrichment, respectively.
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factors: first, GP is broken down during germination to provide the en-
ergy required for initial growth (Liu et al., 2023); second, as a key
component of the cell membrane, GP stabilizes and regulates membrane
structure and function by forming a bilayer lipid structure, playing a
crucial role in membrane reorganization and new membrane formation
during seed germination (Qin, Zhang, Wang, & Su, 2023).

3.5. Lipid metabolism pathways analysis

To further analyze lipid changes during coffee maturation, the 111
major differential lipids identified were mapped to the KEGG database
for metabolic pathway analysis. These lipids were primarily involved in
15 metabolic pathways (Fig. 6a), including glycerophospholipid meta-
bolism, alpha-linolenic acid metabolism, linoleic acid metabolism, and
the biosynthesis of unsaturated fatty acids. Seven key KEGG pathways
with an average relative abundance greater than 30 %were identified in

Fig. 7. Overview of significant lipid metabolic pathways in coffee during maturation. (A) Glycerophospholipid metabolism. (B) Glycerolipid metabolism. The
numbers correspond to the ID of each lipid subclass.
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the ripening samples, including metabolic pathways, glycer-
ophospholipid metabolism, biosynthesis of secondary metabolites, gly-
cosylphosphatidylinositol (GPI)-anchor biosynthesis, phosphatid
ylinositol signaling system, autophagy - other, and glycerolipid meta-
bolism. These metabolic pathways are likely the most critical in the
coffee maturation process.

As shown in Fig. 6a, metabolic pathways have the highest relative
abundance among all pathways, at 79.55 %. These pathways involve a
series of complex biochemical reactions in organisms, including energy
production and utilization, synthesis and decomposition of organic
matter, material transport and transformation, and signal transduction
(Guo et al., 2022). This indicates that coffee seeds undergo vigorous
biochemical reactions during maturation. Glycerophospholipid meta-
bolism, with an enrichment of 77.27 %, is the second most abundant
pathway. This pathway maintains cell membrane stability and supports
signal transduction during coffee maturation, enabling the accumula-
tion of key flavor precursors like volatile aromatics and lipid in-
termediates, which shape coffee’s aroma and mouthfeel (Silva et al.,
2020). GP also play a crucial role in the release of arachidonic acid,
promoting membrane fusion, and protection cells from oxidation
(Zitouni, Wewer, Dörmann, Abdelly, & Ben Youssef, 2016). Due to its
unique physiological characteristics, coffee undergoes both maturation
and germination stages during its maturation process, which contributes
to its vigorous metabolism.

A dataset of 111 significantly different lipids was analyzed using
MetaboAnalyst 6.0 to identify the most significant metabolic pathways.
The results are visualized as a bubble chart, where larger and darker
bubbles indicate greater pathway enrichment and impact. As shown in
Fig. 6b, glycerolipid metabolism and glycerophospholipid metabolism
have the largest and darkest bubbles, highlighting them as the most
critical pathways, followed by sphingolipid metabolism. Glycerolipid
metabolism, in particular, is essential for energy storage and the
biosynthesis of key lipids, which act as precursors for Maillard reaction
products during roasting, a process essential for the development of
coffee’s characteristic flavors and aromas (Wang et al., 2025; Yeretzian
et al., 2002). From stages M1 to M4, FA content decreased, likely due to
the synthesis of GP and GL, while in stage M5, FA content increased as
GP and GL were decomposed during germination. In summary, glycer-
olipid metabolism and glycerophospholipid metabolism are the path-
ways with the greatest impact during coffee maturation.

To further explore lipid metabolism changes during coffee matura-
tion, we annotated the KEGG pathways of glycerophospholipid meta-
bolism and glycerolipid metabolism. Fig. 7 illustrates the transformation
of lipid molecules during coffee maturation. Specifically, PI (C00416),
PE (C00157), PC (C00350), PA (C01194), LPA (C00681), LPC (C04230),
LPE (C04438), LPG (C18126), LPI (C03819) and DG (C00641) are pri-
marily involved in glycerophospholipid metabolism (Fig. 7a), while
LPA, PA, DG, DGDG (C06037), MG (C01885), MGDG (C03692) and TG
(C00422) are mainly associated with glycerolipid metabolism (Fig. 7b).
Coffee maturation encompasses two key physiological functions: seed
maturation and germination. In these processes, glycerophospholipid
metabolism and glycerolipid metabolism serve different roles. Lipid
accumulation is crucial during seed maturation, where GP maintain the
stability of cell membranes, support seed integrity, participate in signal
transduction, and provide antioxidant protection. Simultaneously, GL
act as energy reserves, supplying the necessary energy through hydro-
lysis to facilitate germination (Cao et al., 2023; Huang et al., 2022).

Lipid degradation plays a vital role in seed germination and seedling
formation. GP help rebuild cell membranes and regulate energy utili-
zation, while GL release energy through hydrolysis, supporting the
germination process and related metabolic pathways, thereby promot-
ing smooth seed germination and growth (Cao et al., 2023). During
coffee bean maturation, DG, PA, and LPA emerge as key lipid metabo-
lites (Fig. 7). PA and LPA, as precursors for GP synthesis, form the
foundation for the production of essential GP. Additionally, these lipids
function as phospholipid signaling molecules, regulating membrane

stability, signal transduction, cell behavior, and energy metabolism (Liu,
Guo, et al., 2023). Notably, DG plays a critical role in membrane as-
sembly, energy storage and supply, signal transduction, and metabolic
regulation. DG and PA can be interconverted under certain conditions,
further participating in glycerophospholipid metabolism and glycer-
olipid metabolism (Fig. 7). Thus, during coffee maturation, the inter-
action between glycerophospholipid metabolism and glycerolipid
metabolism is ongoing.

4. Conclusion

This study conducted a comprehensive lipidomic analysis to reveal
differences in lipid profiles of coffee beans at various stages of maturity.
A total of 516 lipid molecules were identified throughout the maturation
process, categorized into five major lipid classes: FA, GP, SP, GL, and PR.
These lipids were further subdivided into 26 subclasses, with TG having
the highest number of species, followed by DG, FFA, Cer, and Cert. A
detailed analysis of lipid content changes during maturation identified
111 lipids with significant differences. KEGG pathway analysis of these
differential lipids highlighted glycerophospholipid and glycerolipid
metabolism as the most critical metabolic pathways. Further annotation
identified PA, LPA, and DG as key lipid metabolites involved in these
pathways during maturation. To our knowledge, this is the first lip-
idomic study on coffee maturation. These findings are significant for
understanding lipid transformations and flavor profile formation during
coffee maturation, offering practical guidance for optimizing harvest
timing and enhancing coffee quality to meet high-value market
demands.
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Marín-López, S., Arcila-Pulgarín, J., Montoya-Restrepo, E., & Oliveros-Tascón, C. (2003).
Relación entre el estado de madurez del fruto del café y las características de
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