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Introduction

Treatment of diabetes and its complications is a primary 
health care expense. An estimated 537 million adults world-
wide had diabetes in 2021 with the numbers expected to 
increase by 46% by 2045.1 Nearly half of patients with dia-
betes develop peripheral neuropathy, which reduces sensa-
tion and pain intensity in the feet and, up to a quarter of 
patients with diabetes will develop diabetic foot ulcers 
(DFUs) and disability.2-4 Diabetic foot ulcers are expensive 
to treat, reduce quality of life, and are associated with 
increased risk of life-threatening complications. Orthoses 

(custom shoe insoles, offloading removable cast walkers 
[RCWs], and offloading shoes, etc) are commonly pre-
scribed to patients with DFU to promote wound healing, and 
to provide offloading and protection during activities of 
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Abstract
Background: Treatment of diabetes and its complications is a primary health care expense. Up to 25% of people with 
diabetes will develop diabetic foot ulcers (DFUs). Removable cast walker (RCW) boots commonly prescribed for DFU 
treatment, promote healing, and provide offloading and wound protection. Patient RCW removal for hygiene and wound care 
can lead to decreased adherence and treatment effectiveness. This study evaluated a new system for wear-time adherence 
measurement using multiple sensor types.

Methods: An electronic wear-time monitor was developed, which included internal and external temperature sensors, an 
accelerometer, and capacitive proximity foot and ankle sensors. Time-stamped and date-stamped data were saved once per 
minute for up to 22 days. Ten healthy volunteer subjects were recruited to wear an RCW for two weeks while keeping a 
diary of don/doff times. Sensor data were then compared with volunteers’ wear diaries using confusion matrix predictive 
analytics.

Results: Algorithms were developed for data processing. Correlation coefficients between algorithms and diaries were 
calculated for individual and multiple sensor combinations. Differential temperature and accelerometer algorithms were 
significantly better at predicting subject wear-time than individual temperature sensor algorithms (P = .009, P = .001, 
respectively). Foot proximity had significantly better correlation with subject diaries than temperature (P = .024), and 
acceleration algorithms (P = .005). Multi-sensor analysis showed high correlation (.96) with wear-time from subject diaries.

Conclusions: Removable cast walker wear-time can be accurately determined using an electronic data recorder and multiple 
sensors. Wear-time measurement accuracy can be improved using algorithms that operate on data from multiple sensors 
that use a variety of sensor technologies.
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daily living.5,6 Orthotic footwear is cost-effective and gener-
ally considered effective for prevention and treatment of 
DFU.7-9 Failure to protect the foot can lead to ulcer worsen-
ing, infection, or surgical intervention, such as grafting or 
amputation.10-13

Diabetic foot ulcer offloading and adherence with pre-
scribed treatment are important topics in diabetic foot care.14 
Offloading footwear including total contact casts (TCCs) 
that cannot be removed by the patient are considered the gold 
standard treatment for DFU.15 The use of TCC can be clini-
cally time intensive requiring weekly or biweekly recast-
ing.16-18 One alternative, RCW boots, allows removal of the 
orthosis for hygiene purposes, daily wound care, and range 
of motion exercises. However, easy RCW removal can 
decrease patient adherence with prescribed wear, potentially 
leading to decreased treatment effectiveness and further 
injury of the foot.13,17

Non-adherence to prescribed wear-times (reduced wear) 
and lack of patient education are cited as reasons for failure 
of orthotic treatment.19-21 Clinician opinion and patient self-
reports have been used as a subjective basis for determining 
the minimum wear-time necessary to achieve treatment 
goals.22-24 A review by Swinnen and Kerckhofs20 on orthotic 
adherence reported that 6% to 80% of patients never wore 
their orthosis. Furthermore, patient self-reports tend to over-
estimate wear-time.22,25-28 Understanding patient non-adher-
ence and finding ways to improve adherence are necessary 
for evidence-based DFU treatment.3

The consensus from literature is that an electronic system 
can objectively determine orthosis wear-time and help in for-
mulating evidence-based criteria for DFU treatment.14 
Electronic wear-time data can be examined against measures 
of wound healing to determine treatment efficacy and dosage 
effects. Accurately determined orthotic wear-time may allow 
clinicians to understand patient orthosis use and intervene in 
the treatment or change the offloading strategy if poor wear-
time adherence is found. In turn, patients can be prompted to 
communicate concerns regarding comfort, appearance, per-
ceived stability, disruptions to daily routines, or other adher-
ence obstacles to clinicians.29

Studies in the literature have attempted to measure ortho-
sis wear-time using a variety of sensor technologies. Many of 
these systems are not well suited for wear-time measurement 
of RCW due to lack of accuracy, low data capacity, or 
because they are intended to be embedded into the orthotic 
insole while treatment of DFU often requires insole modifi-
cation or replacement.

Keeping the clinical importance of accurately measuring 
wear-time in mind, a system was designed using multiple 
sensor technologies to determine when an orthosis was being 
worn (donned) and not worn (doffed). The system was based 
on our contention that a combination of sensors can provide 
more information to better determine whether an orthosis 
was being worn, especially during sedentary activities or 
when the RCW was exposed to extreme temperature 
environments.

The long-term goal of this research is to improve out-
comes (reduce time to healing and complications) and reduce 
treatment costs of patients who are prescribed orthoses for 
DFU treatment. The short-term goals were to develop a cost-
effective, accurate, and validated electronic system to mea-
sure wear-time of RCW boots and to provide measures of 
accuracy for different sensor types. Objective wear-time data 
from different sensor types attached to RCW orthoses were 
used in testing the following hypotheses.

Hypotheses

Hypothesis 1 (H1): It is possible to accurately determine 
RCW boot wear-time using electronic sensors and data 
recorder.
Hypothesis 1a (H1a): Accuracy of wear-time measure-
ment will vary depending on sensor technology.
Hypothesis 1b (H1b): Multiple sensors and various com-
binations of sensor technologies can improve accuracy of 
wear-time measurement.

Materials and Methods

Design of Adherence Monitor

Requirements for the adherence monitor system included no 
alteration to the fit or function of the RCW. For this reason, the 
monitor system was attached to the outside of the boot shell so 
that the boot liner could be removed for hygiene purposes and 
to allow the foot bed to be replaced or modified as needed to 
provide offloading of the ulcer. The system was designed to 
collect data for a minimum of three weeks to cover the interval 
between most clinic follow-up visits, to store time-stamped 
data, to utilize multiple sensor technologies, and to be expand-
able to accommodate additional or alternate sensors for future 
use in other orthoses, prostheses, or assistive technologies.

Using these guidelines, the monitor circuitry included a 
low power microcontroller, real-time clock, and two mega-
bits of memory. The monitor circuit board measures 32 mm 
(W) × 32 mm (L) × 7.5 mm (H) and was housed in an 
enclosure attached to the outside of the RCW’s plastic shell, 
positioned laterally over the ankle of the affected foot. This 
location had a relatively flat surface and was the location 
least likely to affect a subject/patient during wear. The sys-
tem was powered by a replaceable 3-V coin cell battery 
(CR1632). The enclosure was designed to protect the 
recorder circuit board from impact and measures approxi-
mately 42 mm (W) × 65 mm (L) × 10mm (H) (Figure 1a).

Sensors

To determine RCW wear-time, the data recorder collected 
data from five electronic sensors. Preliminary studies and 
published literature were used to delineate sensor technolo-
gies that were best capable of minimal power consumption 
and accurate wear-time measures. These sensors included 
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two temperature sensors, a three-axis accelerometer, and two 
capacitive proximity sensors. Time-stamped and date-
stamped sensor data were saved once per minute allowing 
the recorder to save up to 22 days of wear-time data. The 
sample period could be altered to accommodate longer data 
collection periods.

The two capacitive proximity sensors were secured to the 
inside of the boot shell, one under the mid-foot and the other 
laterally over the ankle (Figure 1b). Each proximity sensor 
was 0.012 mm thick with an area of 60 cm2 and was tuned to 
respond when a conductive body was within 30 mm of the 
sensor. One temperature sensor was secured to the inside of 
the boot shell behind the boot liner and above the heel pad-
ding (Figure 1b). The second temperature sensor measured 
ambient temperature and was on the monitor circuit board 
attached to the outside of the RCW.24,25,30-32 Two temperature 
sensors allowed calculation of differential temperature. Boot 
acceleration was measured using the three-axis accelerome-
ter also on the monitor circuit board attached to the RCW 
shell exterior. Since the goal of this technology was to mea-
sure RCW wear-time, and since limiting standing and walk-
ing is part of the prescribed treatment of DFUs, the 
accelerometer monitored boot orientation or instantaneous 
acceleration and not step count or physical activity (PA) that 
would require greater memory for data storage and a larger 
battery or periodic battery charging.

Validation of the Monitor

Ten healthy volunteer subjects (four males and six females) 
were recruited from medical center staff. After oversight 

committee approvals, subjects were provided an RCW with 
wear-time monitor and asked to periodically wear the ortho-
sis for two weeks. There were no restrictions regarding 
where or when to wear the orthoses. However, they were 
requested to wear the orthoses for greater than ten minutes 
per don/doff event and instructed that daily wear should 
include at least two don/doff events. Subjects were instructed 
to keep a written diary of don/doff times. To ensure accurate 
time keeping, subjects were instructed to use computer time 
or cellular clock UTC (universal time coordinated) synced 
times. All subjects wore an RCW commonly prescribed for 
treatment of DFU (Aircast AirSelect, DJO Global, Vista, 
California) (Figure 1).

After the first three subjects completed their participation, 
data showed that the proximity sensor gain was too high 
resulting in signal saturation and compromised accuracy. 
The gain was subsequently adjusted, and the remaining sub-
jects used data recorders programmed with the revised gain 
values. The first three subjects then repeated their wear trials 
for an additional two weeks.

Data Analysis

The recorded data sets included date and time stamps accu-
rate to the minute. Sensor data included internal and external 
temperature with 0.25°C resolution, ±2 g X-Y-Z accelera-
tion data, and foot and leg proximity data. Using analysis 
algorithms, sensor data were reduced to binary values with 1 
representing when the orthosis was worn and 0 representing 
not worn. These algorithms included custom written and lit-
erature derived algorithms that used temperature differential 
or temperature thresholds.33,34 The Groningen algorithm, 
e.g., uses the slope and peaks of an individual temperature 
sensor to determine wear-time.34

Several custom algorithms were developed to analyze 
temperature and acceleration sensor data, but only one algo-
rithm was developed to process proximity data. A primary 
goal of data analysis was that the algorithms be automated to 
improve the processing speed and reduce human interven-
tion. This strategy worked for temperature and acceleration, 
but not for proximity data that proved too variable for a com-
pletely automated routine and required that an analyst be part 
of the data analysis process.

Data from the algorithms were then compared with actual 
wear-time as recorded by the volunteers in their written dia-
ries using binary classification and confusion matrix predic-
tive analytics.35 Algorithm output data were compared with 
true values from the subject diary producing measures of 
accuracy. The first step in this analysis was to reduce each 
algorithms output into counts of true positive (TP), true nega-
tive (TN), false positive (FP), and false negative (FN). Using 
equations from Table 1, these measures were then used to cal-
culate precision, sensitivity and a measure of accuracy using 
the Matthews correlation coefficient (MCC).35,36

The results from all subjects were averaged to determine 
average precision, sensitivity, and MCC with confidence 

Figure 1. (a) Removable cast walker (Aircast AirSelect, DJO 
Global, Vista, California) with the adherence monitor mounted 
externally over the ankle. (b) Inside of the RCW with liner 
removed and right-side air bladder lifted out of the way to show 
sensor placement. (P) shows placement of proximity sensors. (T) 
shows placement of internal temperature sensor.
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intervals. Statistical analysis was performed using R 4.3.0 
statistical software (R Core Team, 2023). Wilcoxon rank sum 
exact test with Bonferroni correction for multiple compari-
sons was used to test for significance. Significance was set at 
P < .05.

Results

Wear-time data from subjects’ written diaries are presented 
in Table 2. Trial dates are presented to show data were col-
lected during the Northern Hemisphere Spring and Summer 
causing the greatest challenge for temperature sensor 
algorithms.

The data recorders maintained accurate time throughout 
the trials remaining within ±3 seconds of UTC. Saturation 
of the proximity sensor signals in the first trials for subjects 
1 to 3 caused difficulty with analysis of those data sets. 
However, these data were still included in the analyses. 
Accelerometer data from two trials (subject 3 trial 1 and sub-
ject 8) were not usable due to failure of the solder bond of the 
accelerometer chip to the circuit board.

Mean values of performance were calculated by applying 
each algorithm to the data obtained from the 13 volunteer 
RCW data sets. The first four algorithms (temp. threshold 
25°C through Groningen temperature algorithm) use tem-
perature measurements from inside the RCW only (Table 
3A, Figure 2a). These four algorithms using an individual 
temperature sensor produced the poorest predictive wear-
time results. The remaining four temperature algorithms 
(Table 3A, Figure 2a) use temperature differential between 
the internal and external sensors.

The individual sensor/algorithms which provided the best 
measure of orthosis wear-time are presented in Table 3B and 
Figure 2b. Table 3C and Figure 2c present results using 
exclusive combinations of sensor/algorithms using the best 
algorithm performers from Table 2B. These combinations 
were calculated using a logical AND on the output of the 
specified sensor/algorithms. In this way, if all algorithms in 

the data set provided a logic 1 (RCW was worn) then the 
result was a logic 1. If the output of any of the individual 
algorithms was logic 0 (not worn) the combined result was 0. 
Combined analysis resulted in improved wear-time results 
compared with results of these sensors alone, and overall 
tended to maximize precision while simultaneously improv-
ing wear-time MCC accuracy.

Results in Table 3D and Figure 2d are from non-exclusive 
combinations of the best performing sensor/algorithms. 
These combinations result in a logic 1 (RCW is worn) when 
at least two of three, three of four, or two of four of the algo-
rithms agree the orthosis is donned. Not requiring unanimous 
agreement of the sensors, improves the correlation with sub-
ject diaries compared with exclusive combinations, and fur-
ther highlights the importance of using multiple sensors and 
sensor technologies.

Table 4 presents MCC data for the best performing algo-
rithms (Table 3B) applied to each individual subject trial 
showing intersubject variability in algorithm performance.

Algorithms based on acceleration and differential tem-
perature had occasional difficulties discriminating wear from 
non-wear. Figure 3 shows two examples from one subject 
where the best temperature algorithm (temperature 2) was 
unable to accurately classify wear-time because of a positive 
temperature deviation while, per the subject log, the RCW 
was being transported. The third event was misclassified as 
non-wear due to a small temperature differential. Figure 4 
shows data from a subject in which acceleration data (accel-
eration 4) during transportation of the RCW was misclassi-
fied. Interestingly, in each of these data sets, both the 
accelerometer and temperature algorithms had difficulty cor-
rectly classifying these transportation events, but the proxim-
ity sensors correctly identified these events. These figures 
highlight some challenges of using only one sensor technol-
ogy for wear-time measurement.

Statistical analyses of MCC showed that the best differen-
tial temperature algorithm (temperature 2) and the best accel-
erometer algorithm (acceleration 4) were both significantly 

Table 1. Equations Used for Confusion Matrix Analysis of Subject RCW Wear-Time Diary Data vs Adherence Monitor Electronic 
Data.

Matrix measure Equation Result range

Precision
 
=

+
TP

TP FP
0 ≤ precision ≤ 1

Sensitivity (recall, TPR) =
+
TP

TP FN
0 ≤ sensitivity ≤ 1

MCC accuracy =
( ) −

+( ) +( ) +( ) +( )( )
TP TN FP FN

Sqrt TP FP TP FN TN FP TN FN
* ( * )

* * *
–1 ≤ MCC ≤ 1

Abbreviations: TPR, true-positive rate; MCC, Matthews correlation coefficient; Sqrt, square root; True positive (TP), when the diary and sensor 
algorithms agree the RCW was worn. True negative (TN), when both agree the RCW was not worn. False positive (FP), when the sensor algorithm 
indicates the RCW is being worn but diary indicates the RCW was not worn. False negative (FN), when the sensor algorithm indicates the RCW is not 
worn, but the diary indicates the RCW was worn.
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Table 2. Data From Subjects’ Written Wear-Time Diaries.

Trial start and end 
dates (month/day)

Number of 
don/doff 
events

Subject diary don time Subject diary doff time Total recorded time

Subject Start End
Total 

minutes
Days
h:min

Total 
minutes

Days
h:min

Total 
minutes

Days
h:min

1. Trial 1 4/19 5/4 28 1768 01
05:28

19 835 13 18:35 21 603 15
00:03

2. Trial 1 4/21 5/8 23 1778 01
05:38

22 810 15 20:10 24 589 17
01:49

3. Trial 1 4/21 5/8 22 1147 00
19:07

23 177 16 02:17 24 324 16
21:24

1. Trial 2 8/4 8/23 22 1546 01
01:46

25 533 17 17:33 27 079 18
19:19

2. Trial 2 8/24 9/11 26 4863 03
09:03

20 936 14 12:56 25 799 17
21:59

3. Trial 2 9/21 10/13 25 1245 00
20:45

30 295 21 00:55 31 540 21
21:40

4 5/16 6/5 20 2467 01
17:07

26 061 18 02:21 28 528 19
19:28

5 5/16 6/5 20 1064 00
17:44

27 588 19 03:48 28 652 19
21:32

6 5/17 6/5 19 1425 00
23:45

18 918 13 03:18 20 343 14
03:03

7 6/7 6/27 4 177 00
02:57

28 779 19 23:39 28 956 20
02:36

8 6/7 6/23 21 1247 00
20:47

21 526 14 22:46 22 773 15
19:33

9 6/8 6/27 20 2078 01
10:38

25 367 17 14:47 27 445 19
01:25

10 6/8 6/27 13 789 00
13:09

26 580 18 11:00 27 369 19
00:09

Total 263 21 595 14
23:55

317 405 220 10:05 339 000 235
10:00

Average 20 1661 01
03:41

24 416 16 22:55 26 077 18
02:36

The number of don/doff events is the total number of times the subject wore the RCW. Don time is the total time the subject wore the RCW. Doff 
time is the total time the subject was not wearing the RCW. Total recorded time is the amount of time the wear-time recorder collected data.

better at predicting subject wear-time than the best algorithm 
based on an individual temperature sensor (Groningen) (P = 
.009 and P = 0.001, respectively). The foot proximity sensor 
algorithm had significantly higher correlation with subject 
diaries than the best differential temperature algorithm, tem-
perature 2 (P = .024), and the best acceleration algorithm 
(acceleration 4) (P = .005).

Discussion

Wear-time recorders in the literature are not well suited for 
RCW wear-time measurement of DFU patients because they 
are intended to be placed inside the orthosis or embedded 
into an orthotic insole or will alter the fit or function of the 
orthosis. Treatment of DFUs at our medical center using 
RCW boots often requires insole modification or 

replacement by clinic staff to allow for ulcer site offloading. 
Therefore, we chose to integrate the electronic monitor sys-
tem into the RCW shell that would not alter the orthosis fit, 
function, prescription, or cause difficulties for the patient or 
clinical staff. The RCW used in this study has a removable 
padded liner and inflatable bladders to improve comfort and 
fit. These both present challenges for integration of an adher-
ence monitor.

Many studies in the literature which measured wear-time 
of orthoses or custom-made footwear used a single tempera-
ture sensor placed adjacent to the skin.22,30,31,37-39 This 
arrangement is prone to false positives when ambient tem-
perature approaches skin temperature.40 Lutjeboer et al. used 
temperature sensors placed in the insole to measure foot  
temperature but not ambient temperature. Analysis of their 
data was done using their Groningen algorithm.34 Our 
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Table 3. Heatmap of Predictive Analytic Results.

Poor performing sensor algorithms

A. Precision Sensitivity MCC MCC CI

Temperature threshold 25°C 0.24 0.57 0.28 0.20-0.35
Temperature threshold 26°C 0.28 0.36 0.22 0.12-0.32
Temperature threshold 27°C 0.24 0.19 0.14 0.03-0.25
Groningen temperature 0.56 0.67 0.58 0.51-0.65
Temperature differential 0.5°C 0.68 0.86 0.73 0.62-0.83
Temperature differential 0.75°C 0.78 0.68 0.69 0.60-0.78
Temperature differential 1.0°C 0.81 0.46 0.55 0.44-0.67
Temperature diff. algorithm 1 0.70 0.85 0.73 0.70-0.90
Acceleration algorithm 1 0.78 0.34 0.49 0.63-0.83
Acceleration algorithm 2 0.71 0.93 0.79 0.43-0.56
Acceleration algorithm 3 0.77 0.65 0.69 0.74-0.84

B. Best performing sensor algorithms

Foot proximity sensor 0.94 0.94 0.94 0.90-0.97
Leg proximity sensor 0.85 0.96 0.89 0.82-0.96
Acceleration algorithm 4 0.73 0.93 0.81 0.76-0.87
Temperature diff. algorithm 2 0.79 0.85 0.80 0.70-0.90

C. Exclusive combinations of the best sensor algorithms

All four best performing sensors 0.98 0.77 0.86 0.81-0.91
Foot, leg proximity, temp. 2 0.98 0.79 0.87 0.82-0.92
Foot, leg proximity, accel. 4 0.97 0.87 0.91 0.86-0.96
Foot proximity, temp. 2, accel. 4 0.98 0.80 0.87 0.82-0.92
Leg proximity, temp. 2, accel. 4 0.98 0.79 0.87 0.83-0.91
Foot, leg proximity sensors 0.97 0.91 0.93 0.90-0.97
Foot proximity, temperature 2 0.98 0.82 0.89 0.84-0.93
Foot proximity, acceleration 4 0.96 0.90 0.92 0.87-0.97
Leg proximity, temperature 2 0.97 0.82 0.88 0.85-0.92
Leg proximity, acceleration 4 0.96 0.90 0.92 0.89-0.96
Acceleration 4, temperature 2 0.95 0.82 0.87 0.83-0.91

D. Non-exclusive combinations of the best sensor algorithms

2 of 3: foot, leg prox., temp. 2 0.95 0.97 0.96 0.94-0.98
2 of 3: foot, leg prox., accel. 4 0.94 0.98 0.96 0.94-0.98
2 of 3: foot prox., temp. 2, accel. 4 0.93 0.96 0.95 0.92-0.97
2 of 3: leg prox., temp. 2, accel. 4 0.93 0.98 0.95 0.93-0.97
Any three of four sensors agree 0.97 0.96 0.96 0.94-0.98
Any two of four sensors agree 0.90 0.99 0.94 0.92-0.96

The table presents mean values of precision, sensitivity, and correlation data (MCC) of each algorithm’s ability to correctly classify wear and non-wear 
compared with volunteers’ wear-time diary data. Temperature differential (diff.) algorithms use temperature difference between internal and external 
sensors for analysis. (A.) Algorithms which produced the lowest precision, sensitivities, and MCC. (B.) Results of the best algorithms at correctly 
predicting wear-times. (C.) Results of exclusive combinations of the best sensor/algorithms (all sensors listed are included in analysis) at accurately 
predicting wear-times. (D.) Results of non-exclusive combinations of the best sensor algorithms (at each time interval, one or two of the sensors listed is 
not used to determine wear) at correctly predicting wear-times. Abbreviations: MCC, Matthews correlation coefficient; CI, 95% confidence interval; diff.,  
differential; temp., temperature; prox., proximity.

implementation of the Groningen algorithm resulted in only 
modest prediction of actual wear-time (Table 3). This may be 
due to the limited description of the algorithm, or the fact 
that placement of sensors in that study was more responsive 
to temperature change than sensor placement in this study.

Other recent publications used two temperature sensors, 
one facing toward and the other away from the patient.24,30,31 
Using temperature differential produced more accurate 
results and better agreement with subject diaries in this work 
and published work by Menz and Bonanno.33
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Figure 2. Mean Matthews correlation coefficient (MCC) results with 95% confidence intervals for 13 subject trials. The blue dashed 
line is drawn at 0.87 (87%), the level of predictive performance provided by the combination of the best acceleration and the best 
temperature algorithm (ie, acceleration 4 and temperature 2). (a) Algorithms which produced the lowest accuracy. (b) Best performing 
sensor algorithms. (c) Exclusive combinations of sensor/algorithms at predicting subject wear-time. (d) Non-exclusive combinations, or 
majority agreement of sensor/algorithms at predicting subject wear-time.
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Data collected in this study provided the ability to com-
pare wear-time algorithms based on each individual sensor 
type and combinations of sensors. Our results of differential 
temperature measurement may have been degraded because 
the internal temperature sensor was not placed in contact 
with or even adjacent to the skin as in other published  
studies .24,31,33 Instead, the sensor was secured to the inside of 

the RCW shell and behind the liner. This placement insulated 
the sensor from the foot and reduced the distance between 
the external (ambient sensor) and the internal sensor, likely 
decreasing the temperature differential. Illustrating this, in 
our study, the temperature differential was generally < 3°C, 
compared with 6°C to 7°C in the work of Menz and 
Bonanno.33

Table 4. Results of Each Volunteer Subject Showing Matthews Correlation Coefficients (MCC) of the Best Sensor Algorithms at 
Correctly Predicting Wear-Times.

Subject Proximity foot Proximity leg Acceleration 4 Temperature 2

1—Trial 1 0.93 0.97 0.79 0.86
2—Trial 1 0.75 0.91 0.65 0.69
3—Trial 1 0.88 0.97 — 0.39
1—Trial 2 0.99 0.98 0.86 0.94
2—Trial 2 1.00 0.90 0.87 0.97
3—Trial2 0.91 0.67 0.72 0.83
4 0.98 0.62 0.93 0.87
5 0.98 0.99 0.90 0.94
6 0.93 0.80 0.85 0.80
7 0.97 0.84 0.65 0.96
8 0.88 0.93 - 0.59
9 0.98 0.98 0.79 0.63
10 0.98 0.98 0.94 0.93
Mean MCC 0.94 0.89 0.81 0.80
Stdev. 0.07 0.12 0.10 0.18
MCC CI 0.90-0.97 0.82-0.96 0.76-0.87 0.70-0.90

Acceleration data were not available for subject 3, trial 1 and for subject 8.
Abbreviations: CI, confidence interval; stdev., standard deviation.

Figure 3. Examples of inaccurate wear/non-wear classification using differential temperature algorithms. The top graph shows internal 
and ambient temperature of three thermal events. The bottom graph shows data from the subject’s diary and the output of the two 
temperature algorithms (high = don, low = doff). The first two temperature events which were erroneously labeled as don time by 
the temperature algorithms, occurred during transportation of the RCW in a warm vehicle. The third event likely occurred because 
of loosely wearing the RCW in an office setting, such that, the leg was not in contact with the boot liner and hence was not near the 
internal temperature sensor.
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Physical activity monitors are good at detecting activities, 
such as walking, running, and stair climbing.41 Inactivity/
sedentary behavior and non-use of the PA monitor produce 
similar accelerometer data. Therefore, algorithms were 
developed to classify inactivity or non-use based on how 
long there is minimal or no acceleration.42-44 Diabetic foot 
ulcer patients are specifically requested to limit activities, 
such as standing and walking. For these reasons, PA moni-
tors may not provide an accurate assessment of wear-time for 
DFU patients.

The proximity sensor algorithms had the highest MCC, 
but the sensors required considerable surface area inside the 
orthosis, were the most complex to integrate in the orthosis, 
and are known to be sensitive to moisture and proximity to 
electrically conductive objects external to the orthosis. In our 
volunteer trials, there were no issues with moisture, but this 
will likely occur in a patient population where cleaning of the 
RCW, extended wear-times causing perspiration, rain, snow-
fall, and so on are likely. While not statistically significant, 
the foot proximity sensor was notably better at predicting 
wear-time than the leg proximity sensor. Potential reasons for 
this are that inflatable bladders inside the RCW may increase 
the distance between the sensor and subject leg and it is pos-
sible for the leg to migrate anteriorly during walking or sitting 
if the leg straps on the RCW are not snug. The foot sensor 
does not have this limitation as the foot is always in contact 
with the RCW insole and a fixed distance from the sensor.

This volunteer data set showed a wear-time vs total 
recorded time ratio of 6.5% ± 4.4%, which means subject 
orthosis wear averaged just over 90 minutes a day. Diabetic 

foot ulcer patients are typically requested to wear the ortho-
sis as much as can be tolerated, and during all weight-bearing 
activities. Therefore, it is expected that DFU patient wear-
times will be greater than volunteer wear-times, which may 
affect sensor and data processing algorithm function.

Given the shortcomings of the different sensors investi-
gated in this study, sensor type, sensor placement, and ortho-
sis type will all affect the accuracy of a multi-sensor 
adherence system. Our data show multiple sensors and vary-
ing types of sensors can improve wear-time adherence sys-
tem accuracy.

The main limitation of this study concerned the location 
of the internal temperature sensor. As previously discussed, 
its location was dictated by the RCW design incorporating a 
removable liner and inflatable bladders. Due to its attach-
ment to the RCW shell, the sensitivity of the internal tem-
perature sensor was likely diminished.

Difficulties with the proximity sensor gain, data analysis, 
and their sensitivity to ambient moisture, such as perspira-
tion proved to be other limitations. We chose to use the accel-
erometer to measure boot orientation as a surrogate for 
motion and not measure step count. This was done to pre-
serve battery life, memory space, and because the clinical 
prescription is to limit ambulation. Future revision may 
include step count for comparative analysis.

Our goal, in this work, was to automate data processing to 
not affect clinic workflow. While fully automated data pro-
cessing was not realized for the proximity sensors, this limi-
tation does not diminish the value of the technology and 
analysis presented.

Figure 4. Examples of inaccurate wear-time classification by an accelerometer algorithm. Vehicle transportation of the RCW or other 
non-wear activities was erroneously interpreted as wear-time by the best accelerometer wear-time algorithm. The top graph shows 
accelerometer X, Y, Z data. The subject diary trace shows actual don/doff times. The accelerometer algorithm trace shows premature 
and incorrect identification of the start and end of wear event 1, and good identification of event 3. From the subject’s diary, events 2 
and 4 are known to be transportation of the orthosis but were erroneously labeled as don time by the algorithm.
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Conclusion

This study demonstrated that RCW wear-time up to three 
weeks can be accurately determined using an electronic sys-
tem composed of a data recorder and multiple sensors. Results 
show that the wear-time monitoring system performed as 
intended, that accuracy of wear-time measurement is depen-
dent on sensor technology and accuracy can be improved 
using multiple sensors and a variety of sensor technologies.
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