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ABSTRACT: A monocationic dicopper(I,I) nitrite complex
[Cu2(μ-κ1:κ1-O2N)DPFN][NTf2] (2) (DPFN = 2,7-bis(fluoro-
di(2-pyridyl)methyl)-1,8-naphthyridine, NTf2− = N(SO2CF3)2−),
was synthesized by treatment of a dicopper acetonitrile complex,
[Cu2(μ-MeCN)DPFN][NTf2]2 (1), with tetrabutylammonium
nitrite ([nBu4N][NO2]). DFT calculations indicate that 2 is one
of three linkage isomers that are close in energy and presumably
accessible in solution. Reaction of the μ-κ1:κ1-O2N complex with p-
TolSH produces nitrous acid (HONO) and the corresponding
dicopper thiolate species via an acid−base exchange reaction.
Notably, treatment of 2 with HNTf2 results in N−O bond cleavage
in the putative, HONO-ligated complex to form the more thermodynamically favorable nitrosyl-bridged dicopper complex [Cu2(μ-
NO)(μ-OH)DPFN][NTf2]2 (4). This scission can be reversed via deprotonation of the hydroxy ligand with KOtBu. X-ray
diffraction studies confirmed the solid-state molecular structures of 2 and 4. DFT calculations were used to construct a reaction
coordinate diagram detailing formation of the μ-NO complex and to describe its electronic structure. The nitrosyl ligand in 4 is
chemically labile, as demonstrated by its ready displacement in reactions with CO or NO2

−.

■ INTRODUCTION
The reduction of nitrite (NO2

−) to nitric oxide (NO) is a key
denitrification step in the nitrogen cycle.1,2 The bacterial
enzyme copper-containing nitrite reductase (CuNiR) catalyzes
this proton-coupled one-electron reaction through the
cooperation of type-1 and type-2 Cu sites separated by a
Cys-His bridge.3−5 Crystallographic studies indicate that in its
resting state, the active site (the type-2 Cu ion) is ligated by
three histidine residues and a water molecule in a tetrahedral
fashion.6,7 The type-1 Cu ion is bound by a (His)2-Cys-Met
donor set, consistent with its role as an electron transfer site
(Scheme 1a).8 The postulated mechanism involves initial
displacement of water and binding of a chelating nitrito (O-
bound) ligand to the oxidized type-2 Cu site. Protonation by a
nearby amino acid residue triggers electron transfer from the
type-1 to the type-2 Cu site and subsequent nitrite N−O bond
cleavage to produce NO and a Cu(II)−OH species (Scheme
1b).9,10 Moreover, the physiological pH determines the
efficiency and direction of the reaction: a pH of 6 gives rise
to an activity maximum while more basic conditions promote
the oxidation of NO back to NO2

−.11,12

Significant effort has been focused toward the development
of molecular copper nitrite complexes that serve as structural
and reactive mimics of CuNiR.13 Such studies are also
expected to aid in the design of catalysts for the removal of
nitrogen oxide pollutants from the environment.2 These
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Scheme 1. (a) CuNiR Active Site with Nitrite Bound; (b)
Postulated Mechanism for Nitrite Reduction by CuNiR
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functional models usually contain a nitrite-bound copper(II) or
copper(I) center, which performs the reduction in the
presence of a proton source such as acetic acid.14−17

Monometallic copper complexes are often the focus of these
studies, given that enzymatic catalysis only occurs at the
mononuclear, type-2 Cu site. However, the nitrite ligand’s
ability to engage in several coordination modes and chelate
more than one metal center suggests the possibility of multiple
activation pathways.18 Uyeda and Peters have shown that
bimetallic Co/Mg sites successfully reduce nitrite, with cobalt
acting as the reductant and magnesium as a Lewis acid that
aids in activating the N−O bond toward cleavage.19 Along
these lines, viable catalyst design strategies might involve
multiple copper centers that cooperate in substrate activation
and/or multielectron and multiproton transfer.
The few reported dicopper nitrite complexes have been

primarily investigated for their structural and magnetic
properties, rather than for their ability to mediate NO2

−

reduction.18,20−26 Recently, Zhang and co-workers reported
the activation of nitrite at a dicopper core to yield a novel
[Cu2(μ-NO)(μ-O)Py4DMB]2+ (Py4DMB = 1,2-bis(di-
(pyridine-2-yl)methoxy)benzene) complex that engages in
hydrogen atom abstraction (HAA) and C−H bond hydrox-
ylation.27 However, the putative dicopper nitrite intermediate
remains undefined, and only the final [Cu2(μ-O)(μ-NO)]2+
product of nitrite activation was observed.
A dicopper platform that permits stable nitrite coordination

and selective reduction should contribute to a more
comprehensive understanding of the factors controlling N−O
bond activation. To this end, this laboratory has employed
complexes of the rigid dinucleating ligand 2,7-bis(fluoro-di(2-
pyridyl)methyl)-1,8-naphthyridine (DPFN), which supports
dicopper complexes that exhibit bimetallic cooperativity and
possess unusually high electrophilicity.28,29 Herein, we describe
a rare dicopper(I,I) nitrite complex that undergoes reversible
proton-assisted N−O bond cleavage at the μ-κ1:κ1-NO2

−

ligand, to produce a unique [Cu2(μ-NO)(μ-OH)DPFN]-
[NTf2]2 complex.

■ RESULTS AND DISCUSSION
The acetonitrile ligand of [Cu2(μ-MeCN)DPFN][NTf2]2 (1)
is readily displaced by nitrite upon reaction with [nBu4N]-
[NO2] in THF solution, resulting in a color change from
orange to dark red. The diamagnetic product [Cu2(μ-κ1:κ1-
O2N)DPFN][NTf2] (2; Scheme 2 and Figure 1), was isolated

as an analytically pure brown powder in 98% yield by
precipitation from the reaction solution upon addition of
diethyl ether. The infrared spectrum of 2 contains a sharp band
at 1406 cm−1 that shifts to 1378 cm−1 with 15N labeling at the
μ-κ1:κ1-NO2

− ligand (Δν(NO2)14N−15N = 28 cm−1, Figure
S24). The 15N NMR spectrum of the enriched sample
possesses a single resonance at 556.5 ppm, which is modestly

shifted with respect to the resonance of NaNO2 in water (δ =
609.5 vs liquid NH3).
The solid-state molecular structure of 2, determined by

single crystal X-ray diffraction, revealed that the copper(I) ions
exist in an unusual, distorted seesaw geometry (τ4 ≈ 0.65, τ4′ ≈
0.44)30,31 with an average Cu−Cu distance of 2.55(3) Å. The
nitrite bonding metrics in the three cationic complexes within
the asymmetric unit cell exhibit statistically significant
variations, likely resulting from molecular motion. Never-
theless, the symmetrically O,O-bound nitrito ligand (Figure 1)
displays surprisingly short Cu−O contacts (Cu−O(avg) =
1.96(2) Å), indicating strong bonding interactions. The
enhanced bonding interactions may also result from the
reduced ring strain inherent to a μ-κ1:κ1 binding mode as
compared to a nitrite ligand chelating a single copper. The N−
O bond distances (N−O(avg) = 1.23(11) Å) are comparable to
those found in the few mononuclear copper(I) nitrito
complexes that have been reported.32−37 To our knowledge,
2 is the only dicopper(I,I) μ-κ1:κ1-nitrite complex to be
structurally characterized. In accordance with hard−soft acid−
base (HSAB) theory, the nitrito binding mode is most
common in cupric systems.38,39 Consequently, mononuclear
copper(I) nitrito complexes are often unstable.40,41 The few
that have been reported are almost exclusively stabilized by soft
phosphine ligands, with only one possessing a bidentate N-
donor ligand.32−37 In contrast, complex 2 is stable indefinitely
in the solid state and in solution. A possible explanation for the
enhanced stability of 2 is that bonding to two copper(I) ions
results in a coordinatively nonlabile nitrito ligand.
While multinuclear NMR spectroscopy and X-ray crystallog-

raphy indicate a symmetrical μ-κ1:κ1-nitrite binding mode,
DFT computations (B3LYP/def2-TZVPP/CPCM-THF) sug-
gest that the ligand can engage in several coordination modes
akin to those of previously reported mononuclear copper
nitrite complexes.42−44 Two closed-shell singlet linkage
isomers were found to be close in free energy to the O,O μ-
κ1:κ1 model complex (2*). The model linkage isomer closest in
energy (+0.5 kcal mol−1) to the observed ground state features
a μ-(η1-N:η1-O) (2*′) binding mode for the bridging nitrite
(Figure 2a), reminiscent of the nitrite-bridged cobalt−
magnesium complex reported by Uyeda and Peters.19 The
other linkage isomer, with a nitro (N-bound) binding mode
(2*″), is only 1.6 kcal mol−1 higher in free energy than the
ground state (Figure 2b). Calculations indicate that higher
solvent dielectric constants lessen the energy gap between the
isomers (Figure S34). A small energetic difference between

Scheme 2. Synthesis of [Cu2(μ-κ1:κ1-O2N)DPFN][NTf2]
(2)

Figure 1. Solid-state structure of 2 as determined by single-crystal X-
ray diffraction. The NTf2− counterion and all hydrogens are omitted
for clarity. Thermal ellipsoids are set at the 50% probability level.
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linkage isomers is not unprecedented for copper(I) nitrite
complexes,41−45 and in this case the gap is likely minimized by
the presence of a second Lewis acidic center that aids in
accommodating different binding modes. These computational
results indicate that all isomers are energetically accessible for
reaction chemistry.
To ascertain its capability for proton-coupled nitrite

reduction, complex 2 was treated with acids of varying
strength. Thiols were of particular interest given their ubiquity
in metabolic processes and the reported protonation of a
nonheme dinitro complex to produce NO.46−48 Treatment of
2 with one equiv of p-TolSH in THF solution resulted in a
rapid solution color change from dark red to orange-red. The
1H NMR spectrum of the crude mixture indicated con-
sumption of the nitrite complex and appearance of new
resonances for [Cu2(μ-STol)DPFN][NTf2] (3; Scheme 3).
The product was isolated after workup as an analytically pure
beige powder in high yield (97%).

Complex 3 is likely formed by an acid−base exchange akin
to the reactivity previously observed for a tris-pyrazolyl zinc
nitrite complex reported by Warren and co-workers.49

Although the expected nitrous acid byproduct was not directly
observed, exposure of cobalt(II) 5,10,15,20-tetraphenylpor-
phyrin (CoTPP) to the gaseous product released from the
reaction produced the {CoNO}8 product (61%) and water, as
determined by 1H NMR spectroscopy (Figure S11). The
formation of these byproducts in the reaction vessel is likely a
result of nitrous acid decomposition after expulsion from the

dicopper core.13 The solid-state molecular structure of 3
displays a thiolate ligand bridging the dicopper unit with the
tolyl substituent canted away from the plane containing the
naphthyridine backbone (Figure 3).

Since the reaction of 2 with a thiol results in displacement of
the presumed nitrous acid product formed by protonation, a
Brønsted acid with a weakly coordinating conjugate base was
employed to favor HONO retention at the dicopper core.
Treatment of 2 with HNTf2 in thawing THF at −196 °C,
followed by warming to 23 °C, resulted in a color change from
dark red to dark green, corresponding to the formation of
[Cu2(μ-NO)(μ-OH)DPFN][NTf2]2 (4; Figures 4 and 5).

Addition of pentane to a saturated THF solution of the
compound enabled its isolation as an analytically pure dark
green powder in high yield (92%). The diamagnetic complex
exhibits a 1H NMR spectrum reflecting a loss of symmetry
evident by the presence of 11 resonances that together
integrate to 21 protons. The 19F{1H} NMR spectrum reveals a
shift of the ligand resonance from −172.90 ppm in 2 to
−174.41 ppm (with respect to the resonance of benzene-f6 in

Figure 2. DFT calculated molecular structures of closed-shell singlet
linkage isomers of [Cu2(μ-κ1:κ1-O2N)DPFN]+ (2*). The [Cu2(μ-
η1:η1-NO2)DPFN]+ (2*′, a) and the [Cu2(μ-η1-NO2)DPFN]+ (2*″,
b) linkage isomers are 0.5 and 1.6 kcal mol−1 higher in free energy
than the ground state, respectively. All hydrogens are omitted for
clarity.

Scheme 3. Synthesis of [Cu2(μ-STol)DPFN][NTf2] (3)

Figure 3. Solid-state structure of 3 as determined by single-crystal X-
ray diffraction. The NTf2− counterion and all hydrogens are omitted
for clarity. Thermal ellipsoids are set at the 50% probability level.

Figure 4. Stoichiometric cycle illustrating the synthesis of [Cu2(μ-
NO)(μ-OH)DPFN][NTf2]2 (4) and its deprotonation to yield
[Cu2(μ-κ1:κ1-O2N)DPFN][NTf2] (2) via a dicopper(II,II) μ-NO,
μ-O intermediate that undergoes N−O bond formation. The DFT-
calculated geometry of [Cu2(μ-NO)(μ-O)DPFN]+ is also shown with
hydrogens omitted for clarity. *Yield determined by integration of the
1H NMR spectrum against an internal standard.
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THF) and the presence of two NTf2− counterions per formula
unit (Figure S9). Infrared spectroscopy confirms the presence
of two new bands belonging to 4, a broad band at 3547 cm−1,
assigned as an O−H stretch, and another weak band at 1555
cm−1. The latter band shifts to 1522 cm−1 with 15N labeling
(Δν(NO)14N−15N = 33 cm−1, Figure S28) and is assigned as an
N−O stretch. This low νN−O value is consistent with those
reported in the literature for a NO− ligand bridging an oxidized
dicopper core.27,50,51

The obtained solid state molecular structure for this
compound is a mixture (30:70) of 4 and the previously
reported [Cu2(μ-OH)2DPFN][NTf2]2 (5), likely resulting
from unavoidable exposure of single crystals of 4 to air during
the diffraction experiment.53 Further collection attempts
yielded X-ray diffraction data with similar mixtures. While
the structural data illustrates the NO binding mode and the
lack of NO/OH ligand disorder across the plane containing
the naphthyridine backbone, the structural metrics are less
informative as they represent a superposition of both species.
Nonetheless, both copper atoms have a slightly distorted
square pyramidal geometry (τ5 ≈ 0.04)52 and are 2.7569(3) Å
apart. This distance is much larger than that of 2, which
suggests that the nitrite functions to bring the copper ions
closer together. The hydroxy ligand symmetrically bridges the
dicopper core (Cu−O = 1.9047(11) Å) in a manner similar to
that of other hydroxy-bridged dicopper complexes supported
by DPFN (1.89−1.96 Å).53,54 The nitrosyl N−O bond
distance (N−O = 1.3816(14) Å) is longer than those of the
other reported dicopper μ-nitrosyl complexes, with the Zhang
group’s [Cu2(μ-NO)(μ-OMe)Py4DMB]2+ complex being the
closest at 1.32(5) Å. The Cu−Nμ bond distance [1.9601(16)
Å] in the complex is the smallest reported for such a moiety,
but remains consistent with structural data of the other
nitrosyl-bridged dicopper complexes.27,50,51,55

Computational modeling shows that the ground state of 4 is
best described as a dicopper(II,II) open-shell singlet. The
copper(II) ions show no coupling between each other, but
instead engage in antiferromagnetic interactions with the
nitrosyl ligand. This is in good agreement with the diamagnetic
character reflected in sharp NMR resonances of the complex.
Analysis of its Löwdin spin population shows ca. +0.4 unpaired
e− on each of the copper atoms. The remaining spin density is
mostly located on the nitrosyl ligand with approximately −0.6
unpaired e− on each of its atoms. The oxygen atom on the
hydroxy ligand minimally contributes to the antiferromagnetic
behavior with a spin density of +0.1 e−. Together, the
computational and spectroscopic results indicate that complex
4 is formally a dicopper(II,II) complex possessing one OH−,

one NO−, and two NTf2− counterions completing the charge
balance.
DFT computations (B3LYP/def2-TZVPP/CPCM-THF)

were also employed to gain insight into the mechanism of
protonation and nitrite cleavage from the model complex
[Cu2(μ-κ1:κ1-O2N)DPFN]+ (2*) to yield [Cu2(μ-NO)(μ-
OH)DPFN]2+ (4*). The calculations suggest that protonation
initially occurs at one of the oxygen atoms of the μ-κ1:κ1
bridging nitrite, which requires 8.4 kcal mol− of free energy
and forms a transient [Cu2(μ-κ1:κ1-HONO)DPFN]2+ complex,
intermediate A, analogous to those spectroscopically observed
during nitrite reduction by functional mimics of the CuNiR.56

The following step involves an exergonic linkage isomerism of
the HONO ligand to intermediate B with a nitro binding
mode (μ-NO2H). This is in good agreement with calculations
showing that 2*″ possesses a more negative free energy of
protonation compared to the other two linkage isomers of the
nitrite complex (−2.46 kcal mol−1 for 2*″ vs 8.43 kcal mol−1
for 2*, Figure S35). Intermediate B then undergoes an
oxidative addition of the N−OH bond at the dicopper core to
yield 4*. Cleavage of the N−O bond of intermediate B is
accompanied by a moderate release of energy (11.1 kcal
mol−1) which drives the process forward (Figure 6). Another

possible reaction pathway involves cleaving one N−O bond in
μ-κ1:κ1-NO2

− prior to protonation. However, to form a
[Cu2(μ-NO)(μ-O)DPFN]+ species from complex 2*, the
system must overcome a significant energetic barrier of 45 kcal
mol−1 (Figure S36). Similar calculations conducted on the
CuNiR active site have attributed the large energetic cost to
the destabilizing charge that develops on the O2− atom as the
N−O bond of the nitrite ligand is being cleaved.9 Thus,
reminiscent of the CuNiR mechanism, the protonation-
induced N−O cleavage pathway is more accessible.
Nitrosyl complex 4 bears an unusual level of thermal stability

given that, to our knowledge, only one other reported dicopper
nitrosyl-bridged compound is stable at ambient temperature.51

Under an inert atmosphere, complex 4 is stable for several days
in THF solution or over months in the solid state without signs
of decomposition. Interestingly, DFT analysis reveals that
there is a 18.9 kcal mol−1 barrier to the thermoneutral
dissociation of NO from 4 (ΔG of −0.25 kcal mol−1, Figure
S38). Treatment of 4 with stoichiometric amounts of CoTPP

Figure 5. Solid-state structure of 4 as determined by single-crystal X-
ray diffraction. The NTf2− counterions and hydrogens are omitted for
clarity. Thermal ellipsoids are set at the 50% probability level.

Figure 6. Reaction coordinate diagram for the formation of 4*
derived by DFT at the B3LYP/def2-TZVPP/CPCM-THF level of
theory.
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resulted in immediate formation of the {CoNO}8 species
(97%) along with [Cu3(DPFN)2][NTf2]3 (17%) and [Cu2(μ-
OH)2DPFN][NTf2]2 (37%) (5), as determined by 1H and
19F{1H} NMR spectroscopy. Both copper complexes have
been isolated and fully characterized in this laboratory, and the
tricationic helical complex is known to result from loss of the
bridging ligand at the dicopper core.53,57 This indicates a
dissociative loss of the nitrosyl ligand from the dicopper center,
followed by reaction with CoTPP to yield {CoNO}8.
Nonetheless, a bimolecular reaction between both metal
complexes resulting in NO transfer cannot be completely
ruled out. A proposed pathway involves an initial trapping of
NO by Co(TPP), followed by disproportionation of the
resulting [CuICuII(μ-OH)]2+ core to form the stable
complexes [CuII2(μ-OH)2]2+ and [Cu3(DPFN)2][NTf2]3
(Scheme 4).

To further probe the lability of the nitrosyl ligand, 4 was
exposed to excess carbon monoxide, leading to a gradual color
change from dark green to light blue over the course of 30 min
(Figure S18). The 19F NMR spectrum of the crude mixture
shows the formation of [Cu2(μ-CO)DPFN][NTf2]2 and 5 in
35 and 41% yield, respectively (Scheme 4).54 These results
suggest that, while CO can competently displace NO, the
proposed [CuICuII(μ-OH)(μ-CO)DPFN]2+ species is suscep-
tible to disproportionation. Interestingly, CO is not the only
ligand that promotes this type of disproportionation. Treat-
ment of 4 with half an equivalent of [nBu4N][NO2] results in a
darkening of the solution to dark red in under 5 min.
Multinuclear NMR spectroscopic analysis reveals the for-
mation of 2 (31%), 5 (33%), and the salt metathesis product
[nBu4N][NTf2] (95%) (Scheme 4). This reaction also likely
proceeds through a mixed-valent intermediate [CuICuII(μ-
OH)(μ-κ1:κ1-NO2)DPFN]+, which could further react to
ultimately yield 2. Not only do these results establish novel
reactivity pathways for a μ-nitrosyl, μ-hydroxy dicopper core,
they are also of potential relevance to current interest in nitric
oxide releasing systems.58

Given the observed stability of Cu2(μ-κ1:κ1-O2N)DPFN]-
[NTf2], it was hypothesized that deprotonation of the hydroxy
ligand of 4 would result in N−O bond formation and reductive

elimination of NO2
−. Indeed, addition of a stoichiometric

amount of KOtBu to a THF solution of 4 gave an instant color
change to dark red along with a noticeable exotherm evidenced
by warming of the reaction flask. The 1H and 19F NMR spectra
of the crude reaction mixture confirmed successful deproto-
nation of the hydroxy ligand of 4 to yield 2 (72%), tert-butanol
(98%), and potassium bistriflimide (Figure 4). Computational
modeling (B3LYP/def2-SVP/CPCM-THF) of a likely initial
product of deprotonation [Cu2(μ-NO)(μ-O)DPFN][NTf2],
suggests a similar electronic structure to 4. The optimized
structure of this intermediate shares similar Cu−Cu (2.756 Å)
and Cu(II)−O (1.859 Å) distances to those observed in
[Cu2(μ-NO)(μ-O)Py4DMB]2+. The Cu−Nμ distances (2.104
Å), however, are longer than that of [Cu2(μ-NO)(μ-
O)Py4DMB]2+(Cu(II)−Nμ = 2.03(1) Å) and those in the
nitrosyl-bridged dicopper complex (Figure 4). This inter-
mediate is significantly destabilized relative to nitrite-bridged
dicopper complex 2 by 29.6 kcal mol−1 and overcomes a 13.9
kcal mol−1 barrier to N−O bond formation (Figure S37).

■ CONCLUSIONS
Mononuclear copper coordination compounds have been
extensively studied in the context of biomimetic nitrite
reduction. Meanwhile, nitrite bond activation at dicopper
cores has only recently garnered attention, despite the valuable
information these systems can offer. These results demonstrate
that two copper(I) centers in proximity can work in concert to
stabilize what historically has been an unstable linkage for
mononuclear complexes. Moreover, this cooperativity allows
the nitrito ligand to be reversibly cleaved by a proton, a process
permitted by nitrosyl retention at the dicopper core. To our
knowledge, this is the first instance of a stoichiometric cycle
reminiscent of the CuNiR’s pH-dependent, bidirectional
catalysis occurring on a dicopper platform. Computational
and spectroscopic methods were used to describe a rare
antiferromagnetically coupled dicopper(II,II) nitrosyl hydroxy
complex that possesses unusual thermal stability. The lability of
the nitrosyl ligand provides a new avenue for the formation
and study of other reactive bimetallic species and possesses
relevance toward the study of NO-releasing systems.
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