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Abstract

The adaptation to the daily 24-h light–dark cycle is ubiquitous across animal

species and is crucial for maintaining fitness. This free-running cycle occurs

innately within multiple bodily systems, such as endogenous circadian

rhythms in clock-gene expression and synaptic plasticity. These phenomena

are well studied; however, it is unknown if and how the 24-h clock affects elec-

trophysiologic network function in vivo. The hippocampus is a region of inter-

est for long timescale (>8 h) studies because it is critical for cognitive function

and exhibits time-of-day effects in learning. We recorded single cell spiking

activity and local field potentials (LFPs) in mouse hippocampus across the

24-h (12:12-h light/dark) cycle to quantify how electrophysiological network

function is modulated across the 24-h day. We found that while inhibitory

population firing rates and LFP oscillations exhibit modulation across the day,

average excitatory population firing is static. This excitatory stability, despite

inhibitory dynamism, may enable consistent around-the-clock function of neu-

ral circuits.
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1 | INTRODUCTION

A variety of brain-based functions, including activity
level, feeding, neurotransmitter-specific transmission,
and sleep–wake cycling, occur on timescales embedded
in the 24-h (circadian) 12 h:12 h light:dark cycle, which
dictates healthy brain baseline (Eckel-Mahan, 2012; Jilg
et al., 2010). Extensive work both in vivo and ex vivo has
demonstrated daily rhythmicity in the firing of neurons
of the brain’s central pacemaker, the suprachiasmatic
nucleus (SCN). The SCN is also the ‘master clock’, as it
electrically and molecularly synchronizes the brain as a
whole through 24-h molecular rhythms of clock-
associated proteins and transcripts (Brown &
Piggins, 2009; Ramkisoensing & Meijer, 2015; Schaap
et al., 2003).

Indeed, many 24-h studies in non-SCN brain regions
have focused on molecular or synaptic measures, and the
changes are often reported through metabolomic and
transcriptomic analysis across the day. However, no such
‘omic’ exists for electrical output across 24-h. Despite
action potential generation (‘firing’ or ‘spiking’) playing
a pivotal role in neural function—ultimately driving
behaviour and perception—hourly reports across 24-h
are not as frequent. Some high-quality reports do indeed
exist (Brecht et al., 2003; Delgado, 1952; Houben
et al., 2009; Mariscal et al., 2023; Miyawaki & Diba, 2016;
Thomas et al., 2020; van Oosterhout et al., 2012), but
these have focused most frequently on local field poten-
tial (LFP) rather than spiking data, or analyses have
centred frequently on non-circadian questions. One pos-
sible reason for the relatively few papers in this space is
the historical difficulty in recording and especially spike-
sorting long-duration recordings, but this barrier has
been significantly reduced with improved computer
capacities and spike-sorting algorithms. Relatedly, most
in vivo electrophysiologic studies are typically analysed
over much shorter (<8 h) durations, which does not lend
itself to 24-h contextual interpretation. Additionally,
in vitro preparations, even when carried out over circa-
dian timescales, lack some degree of interpretability
given the removal of behaviour, modulatory drive, and
other impacts on in vivo brain physiology (Bridi
et al., 2020; Paul et al., 2020). On the other hand, in vivo
freely behaving recordings and analyses are often tempo-
rally locked to experimenter-defined tasks, manipula-
tions, or units of perception (i.e., place or stimulus) or
focus on brain states such as sleep/wake (Skilling
et al., 2021; Watson et al., 2016). Such approaches have
been crucial in helping us understand many aspects of
neuroscience but do not lend themselves to changes in
ongoing background network status that might occur
across the day.

We know that an individual will react differentially to
the same stimulus at different times of day (Russell &
Lightman, 2019); therefore, given that network spiking
controls behaviour, we hypothesize that neural networks
adopt different configurations at different times of day. A
region of particular interest is the hippocampus because
it is critical for cognition and is an information integra-
tion centre for both social and spatial contexts (Maurer &
Nadel, 2021; Oliva et al., 2020; Terranova et al., 2022)
and shows circadian rhythmicity in both clock-gene
expression and synaptic plasticity (Eckel-Mahan, 2012;
Frank, 2021; Rawashdeh et al., 2018).

We quantify here for the first time what we call the
‘electrophysiologic background signature’ (EBS) in
the hippocampus over 24-h light/dark periods. We
define EBS as the ongoing spiking and oscillatory activi-
ties of circuits that are not task-specific but rather are a
‘network tone’ or a continuum of hourly snapshots,
analogous to a proteomic profile, that may mediate dif-
ferential behavioural reactivity. Here, we set out to
define daily rhythms in the hippocampus by recording
for 24-h periods from mouse hippocampal networks
using tetrodes. We find striking contrasts between excit-
atory and inhibitory neural populations around the clock
and consider the presented EBS metrics a necessary
baseline to note when conducting further long-term
studies.

2 | MATERIALS AND METHODS

2.1 | Animal use

The results here were originally recorded as part of data
sets for Ognjanovski et al., 2014 and Ognjanovski
et al., 2017 (all recordings used here were performed
prior to any behavioural interventions or learning), as
well as discarded baseline recordings of animals that did
not complete behavioural training (as in the reported
publications) and were thus discarded from those ana-
lyses. Revisiting old data with a new perspective, ‘circa-
dian’ or ‘time-of-day’, as presented here versus ‘response
to learning’, allowed us to collect recordings from the
10 animals without the use of new animals.

2.2 | Mouse handling

All animal husbandry and surgical/experimental proce-
dures were approved by the University of Michigan Insti-
tutional Animal Care and Use Committee
(PRO00003931—Sleep and Brain Plasticity in the Mouse
to SJA). Male C57BL/6J mice (n = 10;
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IMSR_JAX:000664, Jackson) were individually housed in
standard caging with environmental enrichment (nesting
material, tunnels, treats) throughout all pre- and post-
operative procedures. Environmental light was main-
tained on a 12:12 light:dark cycle (lights on at 8:00 AM,
zeitgeber time [ZT] 0) with food and water available ad
libitum consistently before and during recordings.

2.3 | Micro-drive fabrication

Tetrodes were created using a 40 cm long piece of insu-
lated nickel-chromium wire (20 μm diameter, California
Fine Wire) cut out from a roll and folded twice, creating
a bundle of four wires. Wires were twisted using a tetrode
twister (OpenEphys) with 80� clockwise spins and 30�
counterclockwise spins. A heat gun was used to melt the
polyamide insulation to the bundle into a single tetrode.
The tetrode was threaded through a 1 mm-wide custom-
bored screw attached to a custom-modified 32-channel
electronic interface board (EIB-36-PTB-Narrow, Neura-
lynx) with two of each micro-electrode from the tetrode
bundle coupled to one channel with connections secured
using gold pins. In total, seven tetrodes were affixed to
the board in addition to two reference wires. The EIB
and wires were covered with Diafil (Diadent) to prevent
damage. The tip of the tetrodes was bound, cut at a 45�

angle, and impedance was measured using Nano Z
(Neuralynx) hardware/software. Tetrodes were electro-
plated with Sifco 5355 gold plating solution (Neuralynx)
with a target of 350 kΩ as previously described
(Ognjanovski et al., 2014, 2017).

2.4 | Surgical procedures

At age 15–23 weeks, mice were implanted with custom-
built, drivable head stages with two bundles of tetrodes
(3–4 tetrodes each) threaded through two ferrules
spaced 4 mm apart under isofluroane anesthesia as pre-
viously published (Ognjanovski et al., 2014, 2017). Each
tetrode bundle was implanted within the dorsal part of
hippocampal region cornu ammonis 1 (CA1) (relative
to Bregma: 1.75–2.75 mm posterior, 1.5–2.5 mm lateral
and 1.0 mm ventral) in both right and left hemispheres.
In addition, two screws were attached above the
cerebellum in both the right and left cerebellum, to
which we attached an electroencephalographic (EEG)
and reference wire, respectively. We also placed electro-
myographic (EMG) wires in the nuchal muscle for addi-
tional characterization of sleep states and movement
artifacts.

2.5 | Single-cell recording

Mice were prepared for chronic recording 1 week after
implantation surgery as previously described
(Ognjanovski et al., 2014, 2017). Signals from each elec-
trode were split and differentially filtered to obtain spike
data (200 Hz–8 kHz) and LFP/EEG data (0–200 Hz) at
each recording site. Data were amplified at 20�, digi-
tized, further digitally amplified a t 40� and recorded
using OmniplexTM hardware and software (Plexon Inc.;
Dallas, TX). Following acclimation for 3 days, electrode
bundles were lowered into the hippocampus until stable
recording signals were achieved. Referencing of all tet-
rode bundles was done to an internal reference for the
Headstage and EIB interface (EIB-36 Neuralynx and
RHD-32ch Headstage Intan #C3314). When the internal
reference was unavailable, we used a tetrode channel
empty of neural signal (for example, on an unused bun-
dle) to set as an internal signal reference for the other
channels. We waited for waveforms to be continuously
present on the same channels for at least 24 h, after
which a continuous 24-h recording period began coinci-
dent with lights-on (ZT0) for use in the analysis
presented here.

Single neuron data were discriminated offline using
standard principal component analysis (PCA, Offline
Sorter; Plexon). Tetrode data was discriminated using a
stereotrode model (Plexon Offline sorter) to decrease
noise across channels. Individual neurons were discrimi-
nated based on spike waveform, relative spike amplitude
on the two stereotrode recording wires, relative position-
ing of spike waveform clusters in 3D principal compo-
nent space and neuronal subclass (i.e., pE-cells,
excitatory; pI-cells, inhibitory). Neurons with spike half-
width less or equal to 0.5 ms were classified as pI-cells.
Spike cluster discrimination in principal component
space was verified using MANOVA p values <0.05 and
Davies–Bouldin (DB) indices ≥0.25, as previously
described (Ognjanovski et al., 2017).

2.6 | Cosinor analysis

We iteratively fitted multiple sine waves to each of the
time series (with different period lengths) to quantify
which sinusoid had the best fit using the Cosinor Analy-
sis toolbox (https://www.mathworks.com/matlabcentral/
fileexchange/20329-cosinor-analysis, MATLAB Central
File Exchange, retrieved 19 August 2021). Cosinor analy-
sis uses the least squares method to fit a sine wave to a
time series, as outlined in Nelson et al. (1979). For our
analysis, we used the following inputs: t - time series time
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points (1 h bins 24 repetitions), y - value of series at time
t, which is raw power spectral density (PSD) for each
hour for each neuron independently, w - cycle length,
defined by the user based on prior knowledge of time
series (here using the basis of the 24-h cycle of 1 day),
and alpha-type I error used for confidence interval calcu-
lations (0.05, as indicated in the literature). Analysis then
yielded a degree of fit for each sinusoid with cells that fit
the 24-h cycle and sub-harmonics (6 and 12 Hz) charac-
terized as ‘rhythmic’. All cells were characterized, and a
percent of total for each cell type was calculated (p-I and
p-E).

2.7 | Sleep state and interval analysis

Intrahippocampal LFP and nuchal EMG signals were
used to manually categorize each 10-s interval of
recording as NREM, REM or wake across 24-h using
custom spectrograph presentation software as previously
described (Ognjanovski et al., 2014). The percentage of
time spent in NREM, REM, and wake was calculated
for each mouse on an hour per hour basis with the
total time (s) of each state (NREM, REM, wake) divided
by the 3600 s bin size. Noise artifacts were excluded,
therefore some hour bins had less than 3600 s in the
denominator. This ratio was then multiplied by 100 to
display the percentage of total time for each hour.
Bouts were measured as the length in seconds of each
uninterrupted occupation of state >10 s and averaged
within each hour for each state. For sleep state
interval analysis, the function ‘MakeSleepStates’ was
used to create three vectors categorized into sleep state
bouts (duration), inter-sleep state duration, and the
proportion of the time spent in the sleep. These states
were compared with the inter-sleep state duration that
followed for interval windows of wake, NREM
and REM.

2.8 | Firing rate analysis

State-specific analysis of cell firing was first assessed by
measuring cell spike frequency in sleep states within 1-h
time bins. For each reliably discriminated neuron (pE-
cells, n = 108; pI-cells, n = 21 across 10 animals), mean
firing frequency was calculated within each behavioural
state (REM, slow-wave sleep [SWS] and wakefulness)
across 24 h for each neuron. The rate was calculated as
spikes per second within that state within that hour. Data
is shown as average frequency across each 1-h bin for the
duration of the recording.

2.9 | LFP analyses

Recordings were low-pass filtered (0–1000 Hz) on each
tetrode channel as previously described in Ognjanovski
et al., 2014, 2017. Raw PSD from 0 to 100 Hz was gener-
ated via Fourier techniques every 0.1 s to create a spectro-
gram. For all animals and recordings, these bins begin at
zeitgeber time zero and are tiled without overlap thereaf-
ter for 24 h. This analysis was calculated on each channel
(�30/animal), where spike data was stably recorded
throughout the experiment.

For frequency band analysis, the following bands
were analysed: delta (0.5–3.9 Hz) during NREM and theta
(4–10 Hz) for REM and wake. To quantify band power,
we averaged the power for each frequency within the
respective band in 1-min bins within each hour and state.
The hour bins were locked to the zeitgeber time 0 and
minute bins tiled 1–60 within each hour. Within a given
hour, not all minutes will show each state, so when state
power is presented for a given hour of the day, we only
include minutes that include that particular state and
extract band power within those minutes. If any hour has
zero occupancy in a given state for a given animal, the
LFPs from that animal for that hour were not used. This
gave us power per hour in a given state in a single animal.
Then this power was averaged on an hourly bin-wise
basis for the power values obtained during periods of, for
example, REM sleep over the entire recording is then
used as reference, and we normalized our hourly average
by dividing each hour by this value. So for at any ZT time
(1-h) time bin. it is divided by that animal’s average daily
power across all 24 hours for that frequency band (say
REM theta). These hourly normalized values were aver-
aged to present full-dataset findings across animals.

LFP band power within each state was used to calcu-
late frequency band power vs. time using Neuroexplorer
software (NexTechnologies, Boulder, CO). Ripples were
additionally quantified within NREM sleep in 1-h win-
dows using previously described methods (Ognjanovski
et al., 2017). Briefly, LFPs were bandpass filtered (150–
250 Hz), and ripple events were automatically detected
using a threshold of six or more consecutive cycles of an
oscillation with a voltage ±2.5 S.D. from baseline signal
mean. Ripples were detected independently on each LFP
channel for each animal using the same (baseline) voltage
threshold. Each ripple detected was denoted as an event
with a start and stop time. Ripple power (PSD) was then
quantified within these time events for each hour and nor-
malized as LFPs above (divided each hour by daily aver-
age). All reliable LFP channels were treated equally,
independent of animal recording, as long as they were
active during the same state during the recording hour.
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2.10 | Spike-field coherence

Spike-field coherence (SFC) relies on the function made
by Timothy Olsen (2022): ‘Spike-signal coherence’
(https://www.mathworks.com/matlabcentral/
fileexchange/72755-spike-signal-coherence), MATLAB
Central File Exchange. Retrieved 10 June 2022. We began
by loading the LFP, spike trains and sleep states by run-
ning the script SpikeFieldCoherence.m. LFP is filtered to
the desired band with the Signal Processing Toolbox
‘bandpass’ function. Then the function MakeParent-
SleepSpkandLFP.m creates a cell array that holds the
coherence scores from 0 to 1.0 (1 being most coherent
and 0 being least coherent) for each frequency per spike
train (neuron). This iterated over a range of frequencies
1–500 Hz (via ‘Olsen’s function’). Per sleep state bout,
the median coherence value is taken and stored. Each of
these values is plotted over time over the midpoint of
their bouts to create a ‘coherence curve’. A filtered
(8-point, moving mean) coherence curve was used for
cross-neuron averaging. Each spike train is analysed to
produce a coherence curve, but spike trains with frequen-
cies <0.1 Hz in a sleep state bout for a given hour are not
used, and no coherence metric is output for that channel.
The spike trains that failed to return valid values for over
95% of assessed frequency bands were excluded from fur-
ther quantification and visualization.

2.11 | Statistical analysis

Statistical analysis was performed on data obtained by
individual electrodes (n = 16–28 channels per animal).
This includes both individual cell spike rates or SFC and
individual LFPs. These values were averaged across
10 sets of observations (each animal). To determine the
effect of time, a one-way ANOVA was conducted across
the 24 one-hour bins (each bin a group with multiple
samples per group coming from n = 10 animals).
Shapiro–Wilk tests for normality and Brown–Forsythe
equal variance showed the validity of using ANOVA. If
circadian effects were observed, differences between
hours were statistically analysed using pairwise multiple
comparison procedures (Holm–Sidak, Tukey’s, Dunn’s
method, as mentioned in individual figure legends). Cal-
culations were performed with Graphpad Prism (v.9,
Graphpad Software Inc., San Diego, CA, USA) and Sigma
plot (v.14.5, Systat Software, Palo Alto, CA, USA). Fur-
ther support was provided by CSCAR statistical services
at the University of Michigan (Ann Arbor, USA).
Measures with p values < 0.05 are defined as significant
relationships. Detailed statistics for Figures 2 and 3 are
shown in Tables S1–S3.

3 | RESULTS

Using tetrodes, we recorded spikes and LFP from hippo-
campal CA1 of C57BL/6 mice (Jackson Labs, n = 10),
unperturbed, in their home cages for 24-h under 12 h:12 h
light/dark conditions (Figure 1a). No animals had any
ongoing or prior experimenter-induced learning or experi-
ences. We were able to verify significant circadian period-
icity in actigraphy (Figure 1b) across all animals.

3.1 | Daily electrophysiologic rhythm of
the hippocampus shows ultradian
inhibitory rhythmicity but stable excitatory
activity

Individual cell activity within and across animals appeared
to show variation across the circadian day (Figure 1c,d).
This pattern was consistent when averaging between or
within animals (Figure 1e). To provide further resolution
on this and quantify effects, we separated spiking activity
from two types of neurons based on waveform shape:
putative excitatory (pE-, n = 108) and putative inhibitory
(pI-, n = 21) cells (Figure 1f,g) (Hu et al., 2014;
Ognjanovski et al., 2017). Firing rates of pE- and pI-cells
were quantified across 24 h using 1-h bins starting at
lights-on (Figure 1h, ZTX = X hours after lights-on). Based
on prior work showing behavioural, synaptic, neurochemi-
cal and molecular dynamism over the day, we expected to
see changes in spiking over the day. We found that pI-cells
do indeed show rhythmic daily activity (Figure 1h, top). At
ZT9 and ZT15–17, we observe troughs that had signifi-
cantly lower firing rates than the daily average (p < 0.05,
hour-by-hour statistics described in Section 2). We also
observe that before lights-off at ZT12, pI-cell firing fre-
quency begins to increase, implying a biological rhythm
not purely driven by environmental light changes.

Surprisingly, in contrast to pI-cell dynamics, per-hour
pE-cell firing rates showed no significant deviation from
the full-day mean (Figure 1h, bottom). Further support-
ing this difference between pE and pI dynamics, only
18.5% of pE-cells (n = 20) show statistically significantly
rhythmic activity when fitted within 24-h cycles via cosi-
nor analysis, while 90.5% of pI-cells (n = 19) show rhyth-
mic activity (Figure 1i). Thus, the daily rhythmicity in
CA1 is specific to pI-cells but not pE-cells.

3.2 | Stable pE-cell firing persists even
when controlling for sleep states

We next determined whether the observed firing rate
changes might be mediated by the varying sleep/
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F I GURE 1 Daily rhythm of hippocampal neuronal firing shows ultradian modulation of inhibitory activity but stable excitatory activity

(a) Schematic of experimental setup including habituation, implantation and recording. (b) Locomotor behaviour before implantation,

following tetrode craniotomy, recovery and during the recording period: double plotted actigraphy for representative mouse for 30 days.

Plotted with 12:12 light: dark cycle with greyed bars indicating dark phase. Periodograms to the right show the daily mouse behaviour period

of �24-h. (c) Example firing rate plots of all neurons recorded from two individual animals across 24-h of recording showing variation in

individual raster activity. (d) Left: radial plots of the peak firing times of each of the cells for individual animals (each animal is a radial plot

and colour). Each tick out from the centre on the radial plot is five neurons. Right: quantification of timings of peak firing for all individual

cells (n = 129) (e) Mean firing rate per hour shown averaged across all cells (top)—treating all animals as equal—and then summing firing

of all cells within an animal and averaging across animals (bottom, n = 10) (f) Distinguishing units into putative excitatory versus inhibitory

subtypes. Recording from one tetrode bundle implanted in dorsal cornu ammonis 1 (CA1). Left: two resulting spike waveforms from the

same tetrode at mid-light and mid-dark phase (ZT6 and ZT18, respectively). Right: principal component analysis (PCA) profile from the

same tetrode, showing location of each action potential in space. Putative excitatory (pE)-cell action potentials are shown in black and

putative inhibitory (pI)-cell action potentials are shown in green for circadian time shown at left. (g) After selecting for stable units, data

across all 24-h of recording for each cell type (pI-cells, green and pE-cells, black) was characterized on two additional metrics: distribution of

spike half-width across cells (top) and overall firing rate distribution of pI-cells (n = 21) and p-I cells (n = 108). (h) Average firing rate per

hour for 24-h recordings starting at ZT0 for pI-cells (green, top). Red bars indicate peaks above the 24-h mean based on pairwise multiple

comparisons (ZT1–3, Z12–13 and ZT21–23). Blue bars indicate significant troughs (ZT8–9 and ZT15–17). Graph is box and whisker with

outliers shown as black dots. Background shading indicates the 12:12 light/dark schedule: grey for dark. Average firing rate per hour for pE-

cells (black) did not reveal any hours significantly differing from the 24-h mean. (i) Pie chart indicating the number of arrhythmic (white)

and rhythmic (purple) cells for each of pE-cells (18.5%) and pI-cells (90.4%) as assessed by cosinor analysis (see Section 2). Statistical analysis

with Fisher’s exact test.
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wake-state occupancies across the day-night. We classi-
fied sleep states from behavioural EMG and LFP
(Figure 2a) and measured firing rates only within epochs
of wake, rapid eye movement (REM), and non-rapid eye
movement (NREM) sleep for each hour (Figure 2b). First,
the tendencies of each neuron to fire at their peak fre-
quency at a given time of day do show variance
(Figure 2b, black bars), but they do not clearly corre-
spond with sleep state occupancy (Figure 2b, coloured

dots). Sleep state bout duration and inter-bout intervals
were also analysed and shown in Figure 2c (see also
Figure S1).

Within each sleep state, the activity of pI-cells contin-
ued to exhibit rhythmicity across the day (Figure 2d–f),
qualitatively similar to the overall pattern without state
separation. We again observed two troughs: late-day
(ZT9) and early-night (ZT17) and two peaks in early
(ZT14) and late (ZT24) night across all states (p < 0.001

F I GURE 2 Stable excitatory signalling persists independent of sleep state, while p-I firing dynamics anticipate light change (a) Sleep

was characterized using combined behavioural and local field potential (LFP) data. Example spike raster for one animal shown for 40 s.

Coloured bars above traces indicate assigned state: wake (yellow), non-rapid eye movement (NREM) (blue) and rapid eye movement (REM)

(pink). (b) Sleep state does not dictate timing of peak firing rate for all neurons. Connected coloured dots on each plot are the percent

occupancy (right axis) of each state. Black bars: the number of total neurons (out of n = 129) having peak firing rate in that hour (left axis).

(c) Mean bout length (in seconds) plotted as mean across animals (coloured dots, representative of sleep states) and inter-state intervals for

each state type (black bars). (d–f) Average firing rate per hour of putative inhibitory (pI)-cells shows significant differences across the day
when analysing only data within each sleep/wake state. Individual hourly statistics are highlighted with symbols ^ and v representing values

above or below the mean, respectively, for each state. Means for each state are NREM = 5.106 Hz, REM = 7.012 Hz and wake = 5.446 Hz,

each annotated in graph as coloured horizontal line (complete statistics in Table S1). As an effect of zeitgeber time (ZT), regardless of state,

there is variability of pI-cell firing across time, p < 0.001, NREM (d), p < 0.001 for REM (e) and p < 0.001 for wake (f), one-way ANOVA.

Graphs are box and whisker plots with line representing mean and with Tukey analysis. Outliers are shown as black dots. Background

shows light/dark lighting. (g–i) Average firing rate per hour of putative excitatory (pE)-cells shows stable firing independent of both ZT and

sleep-state. Graphs and statistics as shown same as in (d–f).
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for NREM, REM and wake changes across 24 h (com-
plete statistics in Table S1). During REM, pI-cells demon-
strated significant increases from trough at ZT8–10 to
ZT11–12, just before lights-off, suggesting anticipation of
environmental change (Figure 2e, p < 0.001 for ZT8–10
compared with ZT11–12). pE-cell firing continued to
show no modulation across the day within each sleep
state (Figure 2g–i). Overall, this state-restricted analysis
yielded comparable results to analysis without state
restriction, demonstrating that state changes are not
causing the spike rate modulations we observed.

3.3 | Sleep-associated hippocampal
network oscillations peak during the
light phase

Sleep and wake states are often defined by LFP oscilla-
tory features such as NREM delta (0.1–3.9 Hz), REM
theta (4–10 Hz) and waking theta (4–10 Hz). These oscil-
lations play a role in coordinating neurons within each
state and are critical for the hippocampus’s role in infor-
mation acquisition and consolidation (Girardeau &
Lopes-Dos-Santos, 2021; Ognjanovski et al., 2017). There-
fore, we next measured whether these sleep state-specific
oscillations vary at different circadian times
(Figure 3a,b). The power of the LFP band most character-
istic of each state was divided by its mean power across
the day and then averaged across animals for quantifica-
tion (Figure 3c). NREM delta oscillations were found to
be significantly higher during the light phase when sleep
is more prominent in nocturnal mice (Figure 3c, top left,
light blue). This is also true for another signature of
NREM sleep in the hippocampus: sharp-wave ripples
(SPWRs, Figure 3c, bottom right, dark blue). These power
changes are also quantified and shown in the background
of Figure 3d–f (coloured bars—* and blue line indicate
difference between day and night in total NREM delta,
p < 0.001). REM theta exhibits increases in the early part
of the light phase and again in the middle of the dark
phase (Figure 3c, top right, pink). In REM, we observed
increases in theta power during the beginning of the light
phase, with significant enrichment at ZT3–4 (Figure 3e,
noted with *, p = 0.003 and p = 0.008, respectively,
Holm–Sidak multiple comparison). Intriguingly, the mid-
dark phase peaks (ZT18–22) of both NREM and REM
sleep oscillation enrichments are coincident with reports
showing mice often exhibit a ‘siesta’, or napping, period
in the middle of the dark period (active phase) (Collins
et al., 2020). Waking theta showed peaks in the middle of
the dark phase (ZT19) the middle of the mouse’s beha-
viourally active hours (Figure 3f, noted with *, p < 0.007,
complete statistics for LFP in Table S2). These results

suggest that despite the presumed similarity of each epi-
sode of a given sleep state, LFPs in each state are modu-
lated across 24 h.

Additionally, coupling between neuronal firing and
LFP oscillations is a signature of specific sleep states
(Ognjanovski et al., 2017; Watson et al., 2018). To mea-
sure communication between these, we measured SFC to
the frequency bands described in NREM, REM and wake.
We observe higher SFC of pE-cells compared with pI-
cells across all oscillations (Figure 3d–f, black lines). Dur-
ing NREM, pE firing-delta coherence was enriched
around light transitions (ZT1, 14 and 21–23, complete
analysis in Table S3), intriguingly when delta power is
lowest (Figure 3d, p < 0.020, delta is blue bars in back-
ground). Conversely, during REM, pE-cell coherence was
highest at ZT19 (p < 0.001), in conjunction with enrich-
ments in REM theta (Figure 3e, pink bars). During wake,
pE- and pI-cell coherence both decrease at ZT13–14, in
the initial stages in the mouse’s ‘active’ period (Figure 3f,
p < 0.04). This indicates that not only were the oscilla-
tions power-modulated as an effect of time, but so was
the interaction of pI- and pE-cells with these rhythms.

3.4 | Electrophysiologic background
signatures as a behavioural baseline

We summarize our overall findings in what we collec-
tively refer to as the EBS—in graphical format in
Figure 4. Data from previous figures presented are shown
here z-scored so they can be compared. These collective
metrics are indicative of fluctuating baseline signals of
animals that are unperturbed in their homecage. It is
visually evident that both LFP and pI-cell firing vary
across the 24-h cycle, and spike-field coupling shows
some variance too. But in this display, the pE population
behaviour is very apparent: strong consistency even in
the face of variance all around. This combined display of
multiple EBS metrics thus allows a clear picture of both
dynamism (ultradian patterns in LFP) and invariance
(static pE-cell firing) across a physiologic timescale, in
this case across the 24-h day.

4 | DISCUSSION

Here we reveal the endogenous rhythms of in vivo hippo-
campal network activity in unperturbed mice across 24-h
periods. We show that hippocampal electrophysiology has
temporally structured dynamics in the absence of intro-
duced stimuli or tasks. These new findings were made
using an EBS approach emphasizing measurement of the
long-term background and tone of the electrical network.
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4.1 | pI- versus pE-cell firing across 24-h

One finding of particular interest in this data is the stabil-
ity of the pE-cell population despite the 24-h variance in
both pI-cell firing and oscillations. The remarkable stabil-
ity of pE-cell firing despite such clear changes in the net-
work environment suggests regulation of excitatory cells
may be homeostatically maintained—perhaps due to the
import of pE neurons in encoding and action control
(Hengen et al., 2013). Of note, this stability is maintained
whether analysed across sleep/wake states or within
states.

Previous studies of hippocampal in vivo cell firing
showed modulation by a sinusoid of period 25 h
(Munn & Bilkey, 2012). However, these recordings were
not continuous, with animals recording 20 min every
hour, moving between recording chambers and showed
much variation with a limited sample size. The continu-
ous, freely-moving recordings presented here provide
important direct evidence of naturally occurring neuro-
nal patterns over the day.

In contrast to the pE population, our pI-cell popula-
tion shows ultradian (<24 h) modulation around the
clock with two prominent troughs in firing some hours

F I GURE 3 Oscillatory signatures of sleep states are differentially enriched across the day (a) Example 1-h spectrogram segments for

frequencies 0–10 Hz at ZT0, 6, 12 and 18. Coloured boxes correspond to instances of non-rapid eye movement (NREM) delta (0.5–3.9 Hz,

blue), rapid eye movement (REM) theta (4–10 Hz, pink) and waking theta (4–10 Hz, black). (b) Representative power spectral density graphs

for representative animal within each state (NREM delta - blue, REM theta - pink, waking theta - yellow, total power - black) for the same

zeitgeber times (ZTs) shown in (a). (c) Radial plots showing normalized power per hour within each state shown in colours corresponding to

(b). Sharp-wave ripples (SPWRs - 150–250 Hz, dark blue) were also characterized. Each ring on plot corresponds to a value of 1e-2 (NREM

and REM), 1e-3 (wake) and 1e-5 (NREM SPWRs) and each wedge represents an hour from ZT0/24. Darker line (white for SPWRs) is mean

spectral power. (d–f) Spectral band power (coloured bars, same as in c, left axis) and spike-field coherence (spike-field coherence [SFC] -

dots and lines, right axis) for putative excitatory (pE)-cells (black) and putative inhibitory (pI)-cells (green) within each state for each hour.

Local field potential (LFP) power per hour within each state shown (coloured bars, left axis, normalized by within-state mean). Dashed lines

(dark blue, deep pink, dark yellow) on each graph represent the mean daily LFP for the given frequency band. ^ indicates statistical peaks
and v statistical troughs in the SFC data, by multiple pairwise testing with Holm–Sidak correction. (d) NREM delta (blue bar and * above

graph) indicate significant difference between delta power during the light phase (ZT1–12) and dark phase (ZT13–24), p < 0.001. All error

bars are ±SEM. NREM delta coherence at ZT14 significantly greater relative to ZT4–6, 13–14 and 21–24 p < 0.02. Complete statistics in

Table S3. (e) Power and SFC as in (d) for REM theta (pink bars). p < 0.001 one-way ANOVA for time-of-day effects. Peak at ZT3–4, pairwise
multiple comparison, p < 0.05, Holm–Sidak post-hoc test; pE-cell SFC significantly peaks at ZT19 relative to ZT9 and ZT17, p < 0.001. ^
indicates increased compared with mean. (f) Power and SFC as in (d) for waking theta. Waking theta (yellow) p < 0.001 for ZT20–ZT24,
p = 0.002 for ZT16–ZT20 and p = 0.007 for ZT17–ZT20, and SPWRs (dark blue) p = 0.013 for ZT1–12 versus ZT13–24. pE-cell SFC shows a

statistical trough at ZT13–14, p < 0.04. Complete statistics are shown in Tables S2 and S3.
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F I GURE 4 Summary of normalized time-of-day effects on different electrophysiologic background signatures (EBSs). (a) Normalized

values per each metric across the day are plotted in hour bins (n = 10 mice). Values are z-scores per each animal for each feature, averaged

across all animals. Left labels denote type of EBS analysis: putative excitatory (pE)- and putative inhibitory (pI)-cell firing rates, local field

potential (LFP) powers and spike-field coherence (SFC). Sleep states labelled at right are shown as individual rows. Evident is pE stability

(top rows) which contrasts with pI-cell variance that includes peaks around zeitgeber time (ZT) hours 24/0 and troughs around hours 9 and

14–15 across all sleep states. For LFP level changes, non-rapid eye movement (NREM) and rapid eye movement (REM) sleep generally show

light-hours (inactive time) enrichment of oscillatory power, with secondary peak around ZT18, in the middle of the animals’ active period.
Waking theta remains elevated across the light period, before dropping after lights off, but also shows peak at ZT19. (b) Visual depiction of

the z-scores presented in (a). The pE- and pI-cell firing rates are shown graphically in black and green, respectively. The continuous LFP are

shown with blue, yellow and pink coloured lines for NREM-delta and REM and wake theta, respectively, as shown in Figure 3.

10 of 16 OGNJANOVSKI ET AL.



before and some hours after the light-to-dark transition.
Again, these pI-specific dynamics occur whether or not
sleep/wake states are used to confine data. These inhibi-
tory dynamics may be expected because inhibitory cells
are known to be more strongly linked to neuromodula-
tory systems than excitatory cells (Kepecs & Fishell, 2014;
Lee et al., 2010; Rudy et al., 2011; Wester &
McBain, 2014). This feature may render inhibitory cells
particularly responsive to a changing environmental con-
text, such as occurring around the 24-h clock (Avery &
Krichmar, 2017). Indeed, hippocampal interneuron mod-
ulation has been shown to expand dynamic range, aid
pattern separation and enable phase processing in sen-
sory responses (Ahnaou et al., 2017; Chamberland &
Topolnik, 2012; Kann et al., 2014; Varga et al., 2012).

Our recorded population could include several sub-
types of hippocampal GABAergic interneurons
(Klausberger & Somogyi, 2008), but is likely to be pre-
dominantly composed of parvalbumin (PV)-positive cells
based on the waveform-based selection we used (Hu
et al., 2014; Stark et al., 2013). Previous reports show the
necessity and sufficiency of PV-interneurons in learning,
as manipulations of these cells’ roles in memory in the
beginning of the light period resulted in loss of theta
rhythms and spontaneously occurring hippocampal rip-
ples (Ognjanovski et al., 2017; Roach et al., 2018; Stark
et al., 2014). The beginning of the light period is the time
at which we show naturally occurring enrichments in
sleep-specific oscillations and pI-cell firing. Furthermore,
the hours-timescale rhythmicity observed in pI-cell popu-
lation rates may be reflective of LFP involvement in hip-
pocampal functionality at different circadian times.

4.2 | Sleep LFPs and timing of sleep

Relatedly, we observe that delta oscillatory power was
higher during the day (normal inactivity hours) than the
night—even within NREM. This could imply that sleep is
deepened during the animal’s evolutionarily conserved
sleep time (days in mice)—compared with
opposite-phase NREM bouts. Complimentarily, the ele-
vated waking theta observed across the dark (active)
period suggests that awake attention may be greater dur-
ing the typical wake phase. This points to a phenomenon
of potentiation of ‘more wakeful wake’ during the night
and ‘more restful sleep’ in the day for these nocturnal
animals. Such synchronization between time of day and
oscillatory tendencies may have benefits because desyn-
chrony between light cycles and brain state cycles—such
as those observed in shift work—can worsen neuropsy-
chiatric disorders, suggesting that sleep and circadian
patterns should be aligned in the healthy state

(Kyriacou & Hastings, 2010; Walker et al., 2020). In fact,
one human study shows sleep state-independent modula-
tion of spectral power, suggesting this finding may be rel-
atively general (Gundel & Hilbig, 1983). This work
corroborates our findings in mice, suggesting the univer-
sality of this effect.

Interestingly, we find that REM sleep shows an inter-
mediate phenotype with the power of theta oscillations
increased during the beginning of the day as well as the
middle of the night. In fact, we observe during REM that
pE-cell SFC increases in coordination with theta power,
possibly due to acetylcholine-dynamics, which are gener-
ally up-modulated during active network engagement
(Minces et al., 2017; Vandecasteele et al., 2014). This sug-
gests that the time scales of molecular, cellular and
network-wide activity pattern modulation vary as a func-
tion of behavioural state. Alternatively, REM theta power
peaks during the dark period could be occurring within
‘siesta’ periods reported in mouse circadian studies
(Collins et al., 2020) and thought to be important in
longer-term roles the hippocampus plays in the context
of memory formation.

Akin to our observations in CA1 pI-cell firing rates,
previous circadian clock gene work in the dentate gyrus
(DG) region of the hippocampus has shown that core-
clock gene, per2, expression has a bimodal distribution of
peaks at light transitions (Curie et al., 2015). Because
CA1 receives inputs from DG, these pI-cells may be pro-
cessing environmental changes to support pyramidal cell
firing at the molecular level. This may be of import given
the role of DG in novelty detection, which is important in
learning (Hunsaker et al., 2008). Therefore, our analysis
of the daily rhythms of LFP power both aligns with previ-
ous behavioural and molecular learning and also pro-
vides a specific quantifiable in vivo biomarker of
circadian potential for timing of learning.

4.3 | Divergent modulation of various
EBS measures across 24-h

While LFP band powers, spike-field coupling and pI-cell
population firing rates show modulation by time of day,
pE-neurons show consistent firing in each hourly time
bin. It may be that pE-cells, as the primary mediators of
perception and motor output, are maintained at constant
population activity rates in healthy animals to provide
reliable sensorimotor interaction with the environment.
The remarkable stability of the mean activity of this pop-
ulation implies that pE-cells may be homeostatically
managed. Of note, this stability is in relation to the popu-
lation and at an hourly timescale, so there is no implica-
tion here that excitatory neurons are unresponsive to
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stimuli. In fact, we know that is not true at shorter time-
scales and with specific experiences (O’Keefe, 1976,
1979). An interpretation of the contrast between pE- and
pI-cell 24-h rhythms is that the pI-cell variation may be a
compensatory mechanism to enable homeostatic man-
agement of pE-cell firing rate.

The mechanisms of this maintenance of firing despite
fluctuation in LFP and pI rates need to be explored, but
pI- neurons, or particular sub-populations of inhibitory
cells, may modulate pE populations to broadly maintain
stability in compensation for changes in oscillations, neu-
romodulators and other factors. For example, it is known
that parvalbumin (PV)-positive interneurons, can feed-
back inhibit pyramidal populations if pyramidal firing
rates increase too much, preventing epilepsy (Trevelyan
et al., 2006). Similar mechanisms may be at work to main-
tain consistent function through the day. We have cer-
tainly not measured all factors potentially controlling pE
rates, and so the picture here, while novel, is incomplete.

Time-of-day modulation of LFP power may be created
by alterations in neuromodulator tone around the clock
or by alterations in responsiveness to those modulators
around the clock (Korshunov et al., 2017; Mochizuki
et al., 1992; Pontes et al., 2010; Trevelyan, 2009). The
impacts and mechanisms of this are not yet known.

4.4 | Limitations and directions for
future research

The results presented here have the limitation of being
from a single, 24-h cycle per animal because they were
funded via a European Union grant with an emphasis on
reduction of animals used. As a result, this data were
originally recorded as part of data sets for papers
Ognjanovski et al., 2014, 2017 using the 24-h recordings
either prior to learning or behavioural paradigms or in
animals who did not undergo any learning or beha-
vioural paradigms. We were thus able to revisit this data
using an EBS approach to time-of-day effects rather than
the original learning-oriented questions intended for
these recordings.

We are excited about the EBS approach because it
allows us to add dozens of metrics over time with the goal
of approaching network states as constantly evolving. In
the future, we plan to add more measures to EBS to more
completely quantify the network’s overall state. Measures
will include assembly activity strength, functional cou-
pling of pairs of neurons in E-E, I-I, E-I and I-E pairs of
neurons, power spectral slope, burst ratio, synchrony,
infra-slow power, firing rate distribution width and many
others generated from both theory and observation. This
is our first EBS-oriented paper we have published, and

future efforts with purpose-designed experiments will
have yet richer background network characterizations.

We note that the behaviour of these cohorts of
C57Bl6J mice is ‘atypical’ for an idealized nocturnal spe-
cies. However, there is clearly a modulation of sleep bouts
and inter-bout intervals by time of day with somewhat
more sleep in the day, as well as shorter times between
bouts (see Figure S1). Second, the observed pattern shows
crepuscular-like effects in this strain, and indeed, much
literature recently is pointing out the inbreeding and con-
stant conditions of laboratory settings show mice having
more crepuscular behaviour. Possibly relatedly, in other
species, the spectrum of light used in most laboratories
was found to induce crepuscular rhythms, whereas fuller-
spectrum light led to less crepuscular modulation (Kim
et al., 2023). Third, our sleep data is shown openly, and
despite this modulation of sleep state throughout the 24-h
cycle, it does not modulate the LFP and spiking data.
Indeed, LFP shows a strong modulation by circadian light
pattern. And in other analyses, spiking patterns are modu-
lated by time of day, despite analyses within a given sleep
state. Therefore, we show that time of day rather than
sleep state predicts LFP and spiking.

Furthermore, as the original data set was only males,
we are limited in our conclusions but acknowledge sex
differences between males and females (An et al., 2011;
Tsao et al., 2023). Lastly, the number of pI cells and the
ratio of pE:pI cells within each animal varied, with some
animals having no pI cells noted in our hippocampal
pyramidal layer recordings. This may limit some inter-
pretations of pI findings, although we are not aware of
particular directions in which this would bias our find-
ings. Further analysis with updated recording techniques
could address this.

Future experiments could thus include recoding of
(1) a broader range of hippocampal laminar electrode
placements, (2) multiple repeated 24-h cycles to address
theoretical sampling problems (though we are not aware
of any explicit problems here) and (3) experiments on
females including estrous cycle monitoring because
estrous phase modulates hippocampal structure and
physiology (Kundakovic & Rocks, 2022; Scharfman
et al., 2003).

Despite our limitations, this approach has provided
valuable new insights. In particular, as framed in
Figure 4, our EBS approach shows general time-of-day
trends across C57Bl6 mice given the common 12:12 envi-
ronmental cycles used by many labs and often do not
note in published studies. Considerations of such back-
ground dynamics are likely to benefit future work, con-
sidering that we show they impact network function.
Deepening future experiments will only improve that
understanding.
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4.5 | Conclusions

Because electrophysiology is the means by which neural
network structure and molecular state are translated into
perception, behaviour and cognition, we undertook an
approach of long-term baseline measurement of the elec-
trophysiologic network: the EBS approach. This manner
of quantification can link molecular and structural stud-
ies with network and behavioural findings because it has
the timescale to overlap with molecular and structural
methods but measures online network function.

Future work can focus on whether the findings here
are maintained in pathological or stress states, possibly
including those with abnormal circadian cycles. This
includes conditions that induce cognitive and mental
problems in humans, such as ‘shiftwork’ schedules or
chronic sleep deprivation. This can provide new network
function-level biomarkers or mechanistic insights into
pathological states.

Overall, our work quantifies, in vivo, natural varia-
tions in hippocampal network activity in freely behaving
animals. We show that excitatory neuron populations fire
stably at hours timescale despite changing sleep states,
spike-field coupling and interneuron population activity.
This data, demonstrating the contrast between excitatory
and inhibitory population activity and local oscillatory
dynamics, provides important new data about healthy
network function around the 24-h cycles that control
daily behaviour and cognition patterns.
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