Table 1.
Model | Dataset | Accuracy [Variance, (95%CI)] | Sensitivity [Variance, (95%CI)] | Specificity [Variance, (95%CI)] | AUC [Variance, (95%CI)] |
---|---|---|---|---|---|
ResNet50 | Training | 0.999 (0.000, [0.997–1.000]) | 0.998 (0.000, [0.996–1.000]) | 1.000 (0.000, [1.000–1.000]) | 1.000 (0.000, [1.000–1.000]) |
ResNet50 | Validation | 0.813 (0.004, [0.734–0.892]) | 0.829 (0.019, [0.769–0.890]) | 0.790 (0.007, [0.707–0.872]) | 0.876 (0.004, [0.813–0.936]) |
ConvNeXt-B | Training | 1.000 (0.000, [1.000–1.000]) | 1.000 (0.000, [1.000–1.000]) | 1.000 (0.000, [1.000–1.000]) | 1.000 (0.000, [1.000–1.000]) |
ConvNeXt-B | Validation | 0.834 (0.008, [0.762–0.905]) | 0.823 (0.010, [0.758–0.888]) | 0.845 (0.010, [0.778–0.911]) | 0.897 (0.005, [0.843–0.949]) |
ViT_B/16 | Training | 0.999 (0.000, [0.998–1.000]) | 0.999 (0.000, [0.998–1.000]) | 1.000 (0.000, [1.000–1.000]) | 0.999 (0.000, [0.998–1.000]) |
ViT_B/16 | Validation | 0.650 (0.006, [0.551–0.749]) | 0.706 (0.013, [0.614–0.797]) | 0.578 (0.006, [0.476–0.680]) | 0.664(0.011, [0.567–0.761]) |
Abbreviation: DL deep learning, 95%CI 95% confidence interval, AUC area under the curve