Skip to main content
. 2024 Dec 23;24:347. doi: 10.1186/s12880-024-01507-x

Table 3.

Discriminative performance of case-based DL models according to 5-fold cross-validation

Model Dataset Accuracy [Variance, (95%CI)] Sensitivity [Variance, (95%CI)] Specificity [Variance, (95%CI)] AUC [Variance, (95%CI)]
ResNet50 Training 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000])
ResNet50 Validation 0.772 (0.005, [0.534–0.988]) 0.808 (0.030, [0.631–0.960]) 0.709 (0.041, [0.505–0.905]) 0.842 (0.004, [0.639–0.997])
ConvNeXt-B Training 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000])
ConvNeXt-B Validation 0.817 (0.004, [0.598–0.994]) 0.817 (0.016, [0.632–0.984]) 0.811 (0.017, [0.622–0.979]) 0.897 (0.004, [0.734–1.000])
ViT_B/16 Training 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000]) 1.000 (0.000, [1.000–1.000])
ViT_B/16 Validation 0.668 (0.014, [0.407–0.920]) 0.725 (0.040, [0.522–0.925]) 0.572 (0.024, [0.304–0.831]) 0.681 (0.030, [0.434–0.908])

Abbreviation: DL deep learning, 95%CI 95% confidence interval, AUC area under the curve