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Predicting sarcopenia risk in
stroke patients: a comprehensive
nomogram incorporating
demographic, anthropometric,
and biochemical indicators

Yufan Pu, Ying Wang, Huihuang Wang, Hong Liu, Xingxing Dou,

Jiang Xu and Xuejing Li*

The A�liated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China

Objective: Although there is a strong correlation between stroke and sarcopenia,

there has been a lack of research into the potential risks associated with

post-stroke sarcopenia. Predictors of sarcopenia are yet to be identified. We

aimed at developing a nomogram able to predict sarcopenia in patients

with stroke.

Methods: The National Health and Nutrition Examination Survey (NHANES)

cycle year of 2011 to 2018 was divided into two groups of 209 participants—

one receiving training and the other validation—in a random manner. The Lasso

regression analysis was used to identify the risk factors of sarcopenia, and a

nomogram model was created to forecast sarcopenia in the stroke population.

The model was assessed based on its discrimination area under the receiver

operating characteristic curve, calibration curves, and clinical utility decision

curve analysis curves.

Results: In this study, we identified several predictive factors for sarcopenia:

Gender, Body Mass Index (kg/m2), Standing Height (cm), Alkaline Phosphatase

(ALP) (IU/L), Total Calcium (mg/dL), Creatine Phosphokinase (CPK) (IU/L),

Hemoglobin (g/dL), andWaist Circumference (cm). Notably, female patients with

stroke exhibited a higher risk of sarcopenia. The variables positively associated

with increasing risk included Alkaline Phosphatase, Body Mass Index, Waist

Circumference, and Hemoglobin, while those negatively associated with risk

included Height, Total Calcium, and Creatine Phosphokinase. The nomogram

model demonstrated remarkable accuracy in distinguishing between training

and validation sets, with areas under the curve of 0.97 and 0.90, respectively.

The calibration curve showcased outstanding calibration, and the analysis of the

decision curve revealed a broad spectrum of beneficial clinical outcomes.

Conclusion: This study creates a new nomogram which can be used to predict

pre-sarcopenia in stroke. The new screening device is accurate, precise, and

cost-e�ective, enabling medical personnel to identify patients at an early stage

and take action to prevent and treat illnesses.
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Introduction

Sarcopenia, a musculoskeletal condition defined by the

progressive loss of muscle mass and strength (1), particularly

in elderly populations, is a phenomenon that has established

itself as a significant medical issue (2). This disorder results in

adverse consequences, including falls, functional decline, frailty,

and mortality (3). Therefore, it is pivotal to understand sarcopenia’s

risk factors, strategies to cope, and potential treatments, thereby

intensifying the importance of extensive research on this topic.

To comprehend the significance of sarcopenia research, one must

view this condition not merely as an individual health concern

but indeed as a global issue (4). The diagnosis of sarcopenia

encompasses decreased levels of muscle strength, muscle quantity

or quality, and physical performance. Such musculoskeletal

degeneration impairs daily activities and poses a real threat to

individual autonomy. However, the disorder’s full scope extends

beyond the personal level, potentially straining healthcare systems

due to the increased burden of care for the elderly (5). Hence,

sarcopenia research is vital in mitigating these issues. Stroke and

sarcopenia constitute two significant health issues with substantial

impacts on older adults’ health and quality of life (6). Dynamic is

the relationship between stroke and sarcopenia—the loss of muscle

mass and strength—commonly seen in the elderly population (7).

Despite the growing body of scientific literature exploring these

two conditions separately, comprehensive research examining their

interplay is needed to fully grasp how they influence one another

(8–10). Stroke often leads to varying degrees of disability due to

motor impairments and can interfere with a patient’s functional

ability, both of which can exacerbate sarcopenia’s progression (11).

This sarcopenic progression following stroke has been associated

with poorer recovery outcomes and increased disability (12).

Substantial attention should be directed toward the stroke and

sarcopenia relationship to fully understand and effectively address

these underlying mechanisms (11). Patients who experienced

stroke often exhibit significant muscle changes, including muscle

atrophy and increased intramuscular fat on the side of the body

affected by the stroke (13). Research by Aydin et al. (14) indicates

that these muscle alterations might serve as a link to post-stroke

sarcopenia and reinforces the importance of further research.

Given that sarcopenia is characterized by functional deficits, it can

substantially interfere with post-stroke rehabilitation (8). Limited

muscle strength and mass may negatively influence a patient’s

ability to participate in rehabilitation activities, ultimately affecting

recovery outcomes (15).

Recent research has indicated that sarcopenia can be reversed or

prevented, implying that stroke patients suffering from sarcopenia

are likely to experience positive outcomes from timely diagnosis

and intervention, particularly during the initial phase of sarcopenia

(16). Nevertheless, the assessment of skeletal muscle mass is

exceedingly restricted, necessitating the utilization of specialized

apparatus like dual-energy X-ray absorptiometry (DXA), bio-

impedance analysis (BIA), X-ray computed tomography (CT), or

magnetic resonance imaging (MRI) (17).

In recent years, predictive models have been developed to assess

the risk of sarcopenia in general populations, often leveraging

demographic, biochemical, and hematological parameters (18).

Nomograms, for instance, have become increasingly valuable

as visual prediction tools, translating complex statistical models

into practical applications for clinicians (19). These models have

demonstrated accuracy in estimating sarcopenia risk and guiding

early interventions in general healthcare settings (20, 21).

However, in the context of stroke patients, research on

sarcopenia prediction is relatively sparse, despite the high

prevalence and impact of sarcopenia in this population. Stroke

survivors are at particular risk due to the compounded effects of

neurological impairments and prolonged immobility, which

can accelerate muscle atrophy (22). While some studies

have examined predictors of functional decline post-stroke

(23), few have applied predictive modeling approaches, such

as nomograms, specifically tailored to forecast sarcopenia

risk in this group (24, 25). This gap indicates a need for

targeted tools that could support timely interventions in stroke

recovery settings.

In light of this, our study aimed to develop and validate a

nomogram to predict sarcopenia risk in stroke patients using

data from the National Health and Nutrition Examination Survey

(NHANES). This tool incorporates key predictors identified

through Lasso regression analysis, enabling clinicians to assess

sarcopenia risk more effectively and personalize care in post-stroke

management. The hypothesis of this study is that in stroke patients,

sarcopenia risk can be effectively predicted based on specific

demographic and biochemical indicators using a constructed

nomogram model.

Methods

Data source and study population

In this study, we gathered data from NHANES, a

comprehensive survey conducted by the esteemed National

Center for Health Statistics (NCHS), which falls under the Centers

for Disease Control and Prevention (CDC). It aims to assess

the health and nutritional status of adults and children in the

United States. NHANES uses a complex, multistage, probability

sampling design to select a representative sample of about 5,000

participants each year from 15 counties across the country. The

flowchart for the research is shown in Figure 1. From 2011 to 2018,

the NHANES data encompassed a total of 29,902 individuals. With

the exception of individuals who did not experience a stroke, a

total of 913 individuals remained. The number of people linked

using Respondent sequence number (SEQN) is 238 because there

are fewer people with laboratory examinations in the NHANES

database than those with questionnaires. After removing samples

with a missing rate of more than 10%, 209 individuals were still

present. Due to the fact that removing all samples with missing

values will render the research unfeasible, multiple imputation

techniques are employed to complete missing values for samples

with fewer missing values. The effectiveness of random forests

in multiple imputation methods has been confirmed by studies

(26, 27), so this article uses multiple imputation methods. Utilizing

a random forest methodology for interpolation. The process is

shown in Figure 1.
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FIGURE 1

Flow chart for screening research samples. NHANES, National Health and Nutrition Examination Survey; DXA, Dual energy x-ray absorptiometry;

SEQN, Respondent sequence number.

Measurements and definition of sarcopenia

The NHANES dataset utilized DXA to measure body

composition, employing the Hologic QDR-4500A fan beam

densitometer, a dependable device produced by Hologic, Inc.,

situated in Bedford, MA, USA. To acquire a thorough collection

of DXA findings, we amassed data files encompassing the period

from 2011 to 2018 within NHANES. The metric of appendicular

skeletal muscle mass (ASM), which measures the combined lean

mass of the arms and legs, is widely accepted in clinical practice. In

order to carry out our analysis, we utilized the skeletal muscle mass

index (SMI), a metric endorsed by the Foundation for the National

Institutes of Health (FNIH) Sarcopenia. SMI entails modifying

ASM based on body mass index (BMI) (28). Our research revealed

that men with a SMI of<0.789 or women with a SMI of<0.512 had

a low muscle mass, thus satisfying the criteria for sarcopenia (29).

Procedure

The dataset was partitioned into training and validation sets

using a random allocationmethod, ensuring an equitable split of 5:5

proportions. The judgment of stroke in patients in this study comes

from a questionnaire in the NHANES database. The question is

“Has a doctor or other health professional ever told {you/SP} that

{you/s/he}...had a stroke?” Additional variables include gender, age,

BMI, height, weight, waist circumference, race, complete blood

cytology, and biochemical tests. Race is divided into four categories:

Mexican American; non-Hispanic white; non-Hispanic black, and

others. BMI is defined as body weight (kilograms) divided by height

(meters) squared.

Statistical analysis

The descriptive statistics included both continuous and

categorical variables. The continuous variables were subjected

to group comparisons using either the t-test or the Wilcoxon

rank-sum test. The chi-square test and Fisher’s exact test were

used to compare the categorical variables. Initially, the predictors

underwent preliminary screening using LASSO regression in the

development set. The LASSO analysis reduced the regression

coefficient of variables to zero through the implementation of

a penalized coefficient of Lambda. It disregarded variables that

had no regression coefficients and chose variables that had no

regression coefficients. The variables that were chosen were found

to have the strongest association with post-stroke sarcopenia.

Subsequently, the training set was used to create a prediction

model through multivariate logistic regression analysis. The model

was used to determine the score of each predictor. The model

was visualized through the use of a nomogram. Lastly, the

receiver operating characteristic (ROC) curve analysis was used

to assess model discrimination. Area under the curve (AUC)

values of 0.75 or higher were indicative of strong discrimination
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TABLE 1 Baseline characteristics of study patients with stroke.

Variable Non sarcopenia Sarcopenia P

N = 176 N = 33

Gender 1.000

Male 73 (41.5%) 14 (42.4%)

Female 103 (58.5%) 19 (57.6%)

Age 48.7 (9.54) 51.4 (7.69) 0.074

Race 0.003

Mexican American 18 (10.2%) 5 (15.2%)

Other Hispanic 9 (5.11%) 6 (18.2%)

Non-Hispanic White 62 (35.2%) 16 (48.5%)

Non-Hispanic Black 69 (39.2%) 4 (12.1%)

Other race 18 (10.2%) 2 (6.06%)

BMI 30.1 (7.07) 37.7 (9.44) <0.001

Weight 85.6 (22.8) 97.3 (27.1) 0.025

Height 168 (8.59) 161 (9.54) <0.001

WAIST 103 (17.2) 116 (16.7) <0.001

(30). The accuracy of the prediction was evaluated through

the use of calibration plots. Calibration plots are a valuable

tool for evaluating the accuracy of predictive models, including

nomograms. They help determine how well predicted probabilities

align with actual observed outcomes. A well-calibrated model

will provide predicted probabilities that closely match the actual

incidence of the event of interest (31). Decision curve analysis

(DCA) was utilized to estimate the clinical utility (32). The test

set was used to validate the nomogram. All tests employed a two-

tailed approach, with a p-value of 0.05 or less indicating statistical

significance. We used R statistical software (version 4.3.2) to carry

out statistical analysis, and the nomogram was created with the

help of the “nomogramFormula” package, authored by Zhi, J

and Jing, Z.

Results

Patient characteristics

In this study, 209 people were included, with 33 having

sarcopenia after stroke and 176 having non-sarcopenia after stroke,

making up 15.8% of the total. The mean age of patients without

sarcopenia (48.7 + 9.54) and those with sarcopenia (51.4 + 7.69)

exhibited no significant statistical difference. Out of the non-

sarcopenic population, 41.5% were female and 58.5% were male,

whereas in the sarcopenic population, 42.2%were female and 57.6%

were male. The sarcopenic and non-sarcopenic groups significant

statistical differences in other demographic attributes such as race,

BMI, weight, height, andwaist circumference. Furthermore, Table 1

displays Baseline characteristics, and the biochemical analysis and

a comprehensive array of blood test markers showed in the

Supplementary material.

Predictors of post-stroke sarcopenia

This study established a LASSO regression model for 68

variables screened from the NHANES database. Variables were

centralized and normalized by 10-fold cross-validation. According

to Figure 1, we filter variables based on the binomial deviance

of log (λ). Selected predictors were Gender, Race, Body Mass

Index (kg/m∗∗
2), Standing Height (cm), Alkaline Phosphatase

(ALP) (IU/L), Total Calcium (mg/dL), Creatine Phosphokinase

(CPK) (IU/L), Hemoglobin (g/dL), andWaist Circumference (cm).

Secondly, to avoid the curse of dimensionality in the model, we

eliminated the race variable and included the remaining eight

variables to build a multiple logistic regression model (Figure 2).

Nomogram in patients with post-stroke
sarcopenia

A nomogram was constructed to predict the risk of sarcopenia

in patients with stroke. This model contained eight predictors:

Gender, Body Mass Index (kg/m∗∗2), Standing Height (cm),

Alkaline Phosphatase (ALP) (IU/L), Total Calcium (mg/dL),

Creatine Phosphokinase (CPK) (IU/L), Hemoglobin (g/dL), and

Waist Circumference (cm) (Figure 3). For example, A man who

is 1.55 meters tall has a BMI of 27 and a waist circumference of

110 centimeters. His blood laboratory tests were Total Calcium 8.9

mg/dL, Hemoglobin 16 g/dL, Alkaline Phosphatase 300 IU/L, and

Creatine Phosphokinase 600 IU/L. The corresponding score of each

predictor was 10 points, 15 points, 29 points, 40 points, 30 points,

78 points, 25 points, and 13 points respectively. His total score

was 250 points. It indicated that the risk of sarcopenia was 70% in

patients with stroke.

Performance and validation of the
nomogram

The findings indicated that the anticipated results closely

aligned with the observed outcomes. The ROC curve in the training

set exhibited a strong ability to distinguish (AUC: 0.97; 95%

CI: 0.94–0.99) (Figure 4A). The model’s ability to discriminate

was confirmed in the test set (0.90; 0.82–0.98) (Figure 4B).

Additionally, the calibration curve analysis revealed a strong

correlation between the anticipated probabilities and the observed

sarcopenia after stroke in both the training and test sets (Figure 5).

DCA demonstrated the clinical usefulness of this model (Figure 6).

Discussion

This study aimed to develop a nomogram to predict sarcopenia

risk in post-stroke patients using demographic and biochemical

factors. Key findings identified eight predictive factors: Gender,

BMI, Standing Height, ALP, Total Calcium, CPK, Hemoglobin,

andWaist Circumference. The model demonstrated high accuracy,

with AUC values of 0.97 and 0.90 for the training and validation

sets, respectively, showing strong predictive power. Calibration and
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FIGURE 2

LASSO regression model for 64 variables. (A) The figure illustrates the variation in coe�cient for each variable. The coe�cient value is represented by

the ordinate, while the lower abscissa corresponds to log (λ), and the upper abscissa signifies the count of non-zero coe�cients in the current

model. (B) After performing a 10-fold cross-cross validation fitting, the model was chosen. The best option is to select the lowest value with a

standard deviation of one.

FIGURE 3

Nomogram for predicting sarcopenia in stroke patients. A certain score is indicated by each level of predictor. The score of each predictor was

summarized to generate a total score. The overall score aligns with the likelihood of sarcopenia.

decision curve analyses further supported the model’s reliability

and clinical utility, suggesting it can aid in early sarcopenia

intervention for stroke patients.

Personalized patient management in post-stroke care

represents a core aspect of modern healthcare, particularly in

the context of comorbidities such as sarcopenia, a progressive

skeletal muscle disorder involving the accelerated loss of muscle

mass and function (33). Current research on the development of a

nomogram prediction model for sarcopenia risk in hemodialysis

patients indicates promising avenues for post-stroke patients

(34). The development of a nomogram predicting the risk of

sarcopenia introduces a mathematical model than enhances

clinical decision-making (35). This prediction model incorporates

variables such as age, C-reactive protein, serum phosphorus,

BMI, and mid-upper arm muscle circumference, thus offering a

multidimensional risk assessment for sarcopenia in post-stroke

patients (34). Such comprehensive data can aid in the early

identification of high-risk patients, thus enhancing proactive

patient management and potentially mitigating adverse outcomes.

The introduction of a nomogram prediction model for post-

stroke sarcopenia presents a potential paradigm shift in patient

management. Early risk stratification and identification of

sarcopenia can lead to early interventions, reducing the major

complications associated with sarcopenia and improving stroke

recovery outcomes (36). Further empirical research examining the

statistical and clinical validity of the nomogram prediction model

for post-stroke sarcopenia will offer significant contributions to

stroke management. By aligning clinical practice with personalized
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FIGURE 4

ROC curve and AUC of the predictive model. (A) The ROC in the development set. (B) The ROC in the validation set. ROC, receiver operating

characteristic; AUC, area under the curve.

FIGURE 5

(A) The nomogram for sarcopenia in the training set was calibrated using a curve. (B) The nomogram for sarcopenia in the validation set was

calibrated using a curve. The X-axis depicts the anticipated likelihood, while the Y-axis signifies the factual ratio. The ideal model’s best prediction is

denoted by the diagonal dotted line. The nomogram’s uncorrected performance is depicted by the apparent line, whereas the bias-corrected

performance is depicted by the solid line.

medicine insights, we can optimize post-stroke patient outcomes,

particularly concerning comorbid sarcopenia.

These Asian studies have often found high rates of sarcopenia

linked to lower physical activity levels, malnutrition, and metabolic

factors, such as low serum albumin and hemoglobin, particularly

among post-stroke patients. This aligns with our findings where

factors like Hemoglobin and biochemical markers (e.g., ALP,

CPK) were significant predictors of sarcopenia. Asian research

has also identified sarcopenic obesity, which reflects the complex

interaction between high BMI and muscle loss—similarly seen in

our study where BMI was a predictor despite obesity traditionally

being a protective factor (37).

However, specific gender-related factors influencing the

development or progress of this condition remain a topic of

interest. Due to gender-based differences in muscle mass and

hormonal influences, the overall natural history of sarcopenia may

vary (33). This discrepancy emphasizes the necessity to examine

gender-based differences in the incidence and progression of post-

stroke sarcopenia. To address gender-based hormonal differences

in sarcopenia, researchers and clinicians should adopt gender-

specific approaches. Prediction models should use gender-specific

baselines for muscle mass and strength, and clinical evaluations

may include hormone monitoring to understand individual

risk better. Tailored exercise and nutrition programs—resistance

training for men and estrogen-supportive interventions for

postmenopausal women—can address these differences effectively.

Additionally, more gender-specific longitudinal studies are needed,

and clinician education should focus on recognizing and

addressing these disparities, ensuring more personalized and

effective sarcopenia management. Recognizing these differences

can potentially foster enhanced rehabilitation strategies, promoting

improved outcomes in stroke patients. This study confirms that
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FIGURE 6

DCA of the nomogram. (A) The train set was occupied by the DCA. (B) The validation set includes DCA. The patient refrains from applying the

nomogram, resulting in no net benefit, as depicted by the black-solid line; conversely, the gray-solid line indicates that all patients receive treatment

based on the nomogram. The three lines enclosing the area demonstrate the practicality of the nomogram. Examining the Decision Curve of the

Decision-Making Process.

gender is the main factor influencing the occurrence of sarcopenia

in post-stroke patients.

Contrary to the notion that higher BMI corresponds to

a lower risk of sarcopenia, findings propose the existence of

sarcopenic obesity, suggesting the complex interplay between BMI

and sarcopenia (38). The concept of sarcopenic obesity highlights

a paradox where individuals have both high body mass index

(BMI) and low muscle mass (39). This can be explained by the fact

that BMI does not differentiate between muscle and fat, meaning

a person can appear to have adequate or excess weight while

actually experiencing muscle depletion (40). Sarcopenic obesity

often involves a high proportion of body fat with reduced muscle

mass and quality, impacting physical function and metabolic

health (41). In stroke patients, sarcopenic obesity is particularly

relevant (42). Stroke survivors often experience decreased mobility,

leading to muscle wasting and increased fat accumulation due to

prolonged physical inactivity and metabolic disruptions (43, 44).

Additionally, neurological impairments can hinder rehabilitation

efforts, compounding muscle atrophy while promoting weight gain

if caloric intake remains the same or increases due to stress-related

eating patterns (45, 46). This combination may contribute to poor

outcomes, as muscle loss impairs mobility and recovery, while

excess fat increases the risk of cardiovascular complications and

insulin resistance. These findings have implications for interpreting

our results, as BMI alone may mask the underlying muscle loss in

post-stroke patients. In our study, higher BMI was a predictor of

sarcopenia, likely reflecting sarcopenic obesity. This reinforces the

need to assess both muscle and fat composition in clinical settings

to accurately evaluate sarcopenia risk in stroke patients, as BMI

alone could misclassify at-risk individuals. Recognizing sarcopenic

obesity allows for a more comprehensive approach to managing

post-stroke recovery by targeting both muscle preservation and

body composition improvements through tailored interventions.

While height’s influence on post-stroke sarcopenia remains

unclear, it forms part of the sarcopenia diagnosis, with height-based

cut-off points established for muscle mass (47).

Waist Circumference, a proxy for abdominal adiposity,

seems contradictory in the context of sarcopenia, with some

research showing no significant association (38). Recognizing the

associations between these physiological parameters and post-

stroke sarcopenia may enhance our understanding of sarcopenia’s

multifaceted nature and broaden the horizon for therapeutic

interventions. Future research should address these variables in a

combined or sequential manner to uncover the overlapping and

unique contributions each makes toward post-stroke sarcopenia.

The regulation of ALP, Total Calcium, CPK, and Hemoglobin

within the body may influence post-stroke sarcopenia

development. While aberrant ALP levels mark liver damage or

bone disorders (48), their role in sarcopenia remains unexplored.

Studies indicate that calcium signaling has a key role in muscle

function (49), potentially influencing sarcopenic progression.

Similarly, CPK, a measure of muscle destruction, may correlate

with post-stroke sarcopenia (50). Lastly, Hemoglobin, indicative

of anemia status, may affect sarcopenia as muscle oxygenation can

impact muscle function (51).

This study presents several notable strengths. Firstly, the

development of a nomogram for predicting sarcopenia in stroke

patients fills a critical gap in the existing literature, addressing

the correlation between these two conditions. The use of the

NHANES dataset enhances the generalizability of the findings,

as it reflects a diverse population. The employment of Lasso

regression analysis allows for the identification of key predictive

factors, ensuring a robust selection of variables. The model’s

high discrimination ability, indicated by area under the curve

(AUC) values of 0.97 and 0.90 for training and validation sets

respectively, demonstrates its potential clinical utility. Additionally,

the study’s calibration and decision curve analysis suggest that

the nomogram could lead to significant improvements in clinical

outcomes, making it a valuable tool for early identification and

intervention in at-risk patients. Despite these advantages, the

study does have some limitations. The reliance on a secondary

data source may introduce biases associated with the dataset,
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including potential confounding variables that were not accounted

for. Furthermore, the study’s cross-sectional design limits the ability

to infer causation between the identified predictors and the onset

of sarcopenia. The sample size, while adequate for a preliminary

analysis, may not fully capture the complexity of the relationship

between stroke and sarcopenia across different demographic

groups, particularly in underrepresented populations. Additionally,

the clinical applicability of the nomogram in real-world settings

requires further validation through prospective studies.

Future research should focus on several key areas. Longitudinal

studies are needed to establish causative relationships between

the identified risk factors and sarcopenia in stroke patients.

Expanding the research to include diverse populations

will enhance the nomogram’s applicability across different

demographics. Investigating the biological mechanisms underlying

the relationship between stroke and sarcopenia could provide

deeper insights into effective prevention and treatment strategies.

Finally, exploring the integration of the nomogram into clinical

practice, alongside patient outcomes, would be essential for

assessing its real-world impact on healthcare delivery, and

patient management.

Conclusion

This study successfully developed and validated a nomogram

for predicting sarcopenia risk in stroke patients based on key

demographic and biochemical factors. The findings indicate that

factors such as gender, BMI, and biochemical markers like ALP

and hemoglobin significantly contribute to sarcopenia risk. By

implementing this model in clinical practice, healthcare providers

can identify at-risk patients earlier and tailor interventions to

prevent or manage sarcopenia, thus enhancing overall recovery and

quality of life for stroke survivors.
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