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Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an
irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various
neurological deficits including developmental delays, intellectual disability, epilepsy, and language and
motor issues. The presentation of PMG varies and is often found in conjunction with other congenital
anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its
classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little
is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case
study is presented where an elderly individual with a medical history of unspecified PMG was examined
postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological,
and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The
genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS)
platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none
of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants
revealed that a significant number of affected genes were associated with most of the biological processes
known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the
notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes
(ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling
potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2
warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has
also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its
compound heterozygous mutations.
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Introduction
Polymicrogyria (PMG) is a malformation of cortical development (MCD) characterized primarily by
overfolding of the cortical surface, producing an irregular pattern with numerous small gyri and shallow
sulci [1]. With an incidence of 2.3 per 10,000 births [2], PMG is the most common form of MCD, accounting
for 20% of all cases [1,3]. PMG has a remarkably heterogeneous phenotype [4] where common clinical
presentations may include epilepsy, intellectual disabilities, and deficits in language and/or motor skills. To
complicate this matter even further, these symptoms are often observed in conjunction with syndromes
bearing multiple congenital anomalies, as well as symptoms specific to the affected cortical areas [1,4]. The
phenotypical heterogeneity of PMG could be partially explained by its etiological diversity that in addition
to variable genetic underpinnings [4-6] could also include environmental factors such as maternal infection
during pregnancy, hypoxia/ischemia, and trauma [5]. Genetic PMG causes are diverse and could include
chromosomal aberrations, copy number variations, or mutations involving a single or multiple genes [6].
The most common single-gene mutations target genes encoding cytoskeletal proteins (TUBA1A, TUBB2B,
TUBB3, and TUBA8), genes regulating cell growth (PIK3R2 and FIG4) and extracellular matrix (COL18A1 and
LAMC3), as well as neuronal proliferation and migration (WDR62) [4,6]. Such remarkable phenotypical and
etiological diversity makes the study of addressing molecular mechanism(s) of PMG in humans extremely
difficult and could explain the paucity of the available respective information.

Therefore, the main objective of this study was to gain additional insights into the mechanism(s) governing
PMG development through a postmortem study with a multifaceted approach including magnetic resonance
imaging (MRI), gross anatomical examination and dissection, histopathological examination, as well as
genetic screening by the whole exome sequencing (WES) on the next-generation sequencing (NGS) platform.
A clearer understanding of the nature of the above pathology may further advance our understanding of the
mechanism(s) regulating brain development in humans.

These data were presented in part as an abstract at the Anatomy Connected Meeting on March 24, 2024.
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Case Presentation
Anatomical characterization
An 81-year-old female body was received through the Saint Louis University (SLU) Gift Body Program with
signed informed consent. Reported medical history included PMG, intellectual disability, static
encephalopathy, moderately oral pharyngeal dysphagia, osteoporosis, cerebral palsy, irritable bowel
syndrome, deafness, aphasia, ptyalism, and edentia. The cause of death for this individual was acute
respiratory failure from acquired pneumonia, leading to hypoxia and severe sepsis. External examination of
the donor revealed no external deformities as the extremities were normal with 10 fingers and toes. Body
measurements revealed a height of 155 cm or (5’1”) and a head circumference of 50.15 cm. The distinct
external characteristic of the donor was a protruding tongue. MRI revealed bifrontal PMG limited to the
frontal lobes with small gyri, abnormal gyral patterns, and an irregular gray-white interface (Figure 1). The
subcortical areas, brainstem, and cerebellum appeared normally formed with no notable absences or
hypoplasia. 

FIGURE 1: Magnetic resonance imaging of the donor head
demonstrating the presence of polymicrogyria (PMG).
Parasagittal image of a T2‐weighted MRI is shown. Note the aberrant boundary of the polymicrogyric cortex
(depicted by stippled yellow lines) compared to the smooth gray‐white boundary in normal cortical areas.

The gross brain examination confirmed the presence of bifrontal PMG (Figure 2A). Aberrant patterning of
the small gyri of the frontal lobes was well defined, in addition to some asymmetrical aberrant patterning in
the left parietal and right perisylvian regions, with the apparent absence of the central sulcus of Rolando
and precentral gyrus. Coronal sections showed small cortical folds and shallow sulci over the frontal lobes
(Figure 2B). Subcortical structures were normally present, and the lateral ventricles showed mild to
moderate enlargement, indicative of age-related hydrocephalus ex-vacuo. The cortex of the right frontal
lobe showed a stippled grey-white matter boundary in the anterior cingulate gyrus, extending posteriorly in
the superior and inferior frontal gyri (Figure 2B).
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FIGURE 2: Superior and coronal views of the polymicrogyria (PMG)
brain.
A. Superior view of the removed brain. Polymicrogyria (PMG) is evident in the outlined area when compared to
the typical gyration of the more posterior brain. B. Coronal brain section at the level of the substantia nigra. The
intact and fully developed corpus callosum is evident in this section; also of note is the stippled gray matter of the
right hemisphere, as indicated by the arrows.  Mild to moderate enlargement of the lateral ventricles was
observed.

Examination of the histological images detailed multiple areas of true gyral fusion between adjacent
molecular layers, with evidence of entrapped but otherwise normal, leptomeningeal blood vessels (Figure 3).
Additionally, a mild decrease in cortical thickness, with focal neuronal loss in the superficial layers and
neuronal dyslamination of the neocortex, was noted. No neuronal heterotopias or dysplastic neurons were
noted, and pial surfaces demonstrated no specific abnormalities.

FIGURE 3: Hematoxylin and eosin (H&E)-stained sections of the right
frontal lobe.
A. Right cingulate gyrus. The black arrows indicate areas of fused molecular layers between adjacent gyri.
Leptomeningeal tissue and intracortical vessels are also evident in the upper part of this image. B. Right middle
frontal gyrus. The microscopic image shows the cortical surface with fusion of the molecular layers (black arrows)
which appears to extend into the underlying sulcus and includes entrapped leptomeningeal vessels.

Genetic screening
The post-mortem genetic screening by WES on the Illumina NGS platform and the respective bioinformatics
analysis were performed as previously described [7]. The genetic screening revealed rare
pathological/deleterious variants in 83 genes (Table 1) with none of the genes listed in the table being
previously linked to PMG [6]. Interestingly, among the genes listed in Table 1, there was a group of five
pleiotropic genes known to be involved in both neurogenesis and angiogenesis: ADGRA2 [8,9], JAG2 [10,11],
LAMA1 [12,13], SEMA3D [14,15], and SYNM [16]. These data were consistent with a recent hypothesis linking
an aberrant hypersprouting angiogenesis to PMG development [17]. To test this hypothesis in the current
setting, the histopathological examination of cerebral vasculature was performed but the outcomes were
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unremarkable (data not shown).

Gene Protein function

A1BG Alpha-1-B glycoprotein

ABCA3
ATP binding cassette subfamily A member 3; brain development [18]; progenitor cell regulation; neurogenesis [19]; vesicle
transport [20]

ABHD5 Abhydrolase domain containing 5, lysophosphatidic acid acyltransferase; skin barrier defect [21]

ACSS1 Acyl-CoA synthetase short chain family member 1

ADGRA2
Adhesion G protein-coupled receptor A2; brain development [8]; cerebral angiogenesis [9]; Wnt signaling [22,23]; bifrontal
PMG with  multiple congenital anomalies [24]

ADPRHL1 ADP-ribosylhydrolase-like 1 ROCK signaling [25]

BIRC7 Baculoviral IAP repeat containing 7

C19orf57 Break repair meiotic recombinase recruitment factor 1

CAPN12 Calpain 12; angiogenesis [26]; intellectual disability [27]

CARMIL3 Capping protein regulator and myosin 1 linker 3; brain ischemia [28]; cell migration [29]

CCDC198 Coiled-coil domain containing 198. Neurogenesis; progenitor cell regulation; cell migration [30]

CHAF1A Chromatin assembly factor 1 subunit A. Neurogenesis [31,32]

CHRND Cholinergic receptor nicotinic delta subunit. Neuromuscular junction formation [33]

CMPK2 Cytidine/uridine monophosphate kinase 2

CYP17A1 Cytochrome P450 family 17 subfamily A member 1; angiogenesis [34]

DENND1B DENN domain containing 1B; vesicle transport [35]

DHRS2 Dehydrogenase/reductase 2

DNAH3 Dynein axonemal heavy chain 3; motile cilia regulation [36]

FLG2 Filaggrin 2; brain development [37]; skin disease [38]

GCC2 GRIP and coiled-coil domain containing 2

GLYATL3 Glycine-N-acyltransferase like 3

GUSB Glucuronidase beta

HLA-
DRB1

Major histocompatibility complex, class II, DR beta 1

HLA-
DRB5

Major histocompatibility complex, class II, DR beta 5

HLTF Helicase-like transcription factor; neurogenesis/brain development [39]; neuronal cell death [40]

IFI30 IFI30 lysosomal thiol reductase; angiogenesis [41]; neuronal cells death [42]

JAG2 Jagged canonical notch ligand 2; progenitor cell regulation [11]; angiogenesis [10]

KMT2C Lysine methyltransferase 2C; neurogenesis/brain development [43,44]

KRT19 Keratin 19

KRT86 Keratin 86

KRTAP3-
2

Keratin associated protein 3-2

LAMA1 Laminin subunit alpha 1. Neurogenesis/brain development [12]; angiogenesis [13]

LONP1 Lon Peptidase 1, mitochondrial. Mitochondrial encephalopathy [45]; neuronal cell death [46]

LRGUK Leucine-rich repeats and guanylate kinase domain containing. Motile cilia regulation [47]
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LRRC58 Leucine-rich repeat containing 58. Neuroinflammation [48,49]

MDH1 Malate dehydrogenase 1. Energy metabolism [50]; neuronal cell death [51]

MGST2 Microsomal glutathione S-transferase 2. Neuronal cell death [52]; angiogenesis [53]

MLXIP MLX interacting protein. Brain development/neurogenesis; progenitor cell regulation; energy metabolism [54]

MPEG1 Macrophage expressed 1

MRPL57 Mitochondrial ribosomal protein L57. Energy metabolism [55]

MS4A15 Membrane spanning 4-domains A15. Brain development/neurogenesis [56]

MTUS1 Microtubule-associated scaffold protein 1. Rac signaling [57]

MYO7B Myosin VIIB. Vesicle transport [58]. Possibly linked to brain development/neurogenesis [59]

NGLY1 N-glycanase 1. Brain development/neurogenesis [60,61]; neuronal cell death [62]

NMU Neuromedin U

OBSCN Obscurin, cytoskeletal calmodulin, and titin-interacting. Brain development/neurogenesis [63]

OPN3 Opsin 3

OR2S2 Olfactory receptor family 2 subfamily S member 2. BBB** regulation [64]

PAH Phenylalanine hydroxylase

PCDHA1 Protocadherin alpha 1. Brain development/neurogenesis [65,66]; Wnt signaling [67]

PCDHA12 Protocadherin alpha 12. Brain development/neurogenesis [68]; Wnt signaling [69,70]

PGK2 Phosphoglycerate kinase 2

PHKB Phosphorylase kinase regulatory subunit beta

PI15 Peptidase inhibitor 15

PLEKHG3
Pleckstrin homology and RhoGEF domain containing G3. Brain development/neurogenesis [71,72]; Rho signaling [72]; linked
to mild intellectual disability [73]

PSG6 Pregnancy-specific beta-1-glycoprotein 6. Brain development/neurogenesis [74]

PTK7 Protein tyrosine kinase 7 (Inactive). Brain development/neurogenesis [75,76]; Wnt signaling [75,77]; cell migration [77]

PTPRN2 Protein tyrosine phosphatase receptor type N2. TGFβ signaling [78]; cerebral vasculature remodeling [79]

RGR Retinal G protein coupled receptor

RIT2 Ras like without CAAX 2. Brain development/neurogenesis; Ras signaling [80]

RSL1D1
Ribosomal L1 domain containing 1 (cellular senescence-inhibited gene protein, CSIG). Cell proliferation and senescence [81];
linked to child cognitive development [82]

SEMA3D Semaphorin 3D. Signaling [83]; linked to cognitive impairment [14]; angiogenesis [15]

SKIV2L SKI2 subunit of superkiller complex

SLC26A1 Solute carrier family 26 member 1

SLC9C1 Solute carrier family 9 member C1. Sperm-specific component of motile cilia [84]

SYNM Synemin. Neurogenesis; progenitor cell regulation; cell migration [16]

TIAM2 TIAM Rac1 associated GEF 2. Brain development/neurogenesis; Rho signaling [85]

TLN2 Talin 2

TMEM43 Transmembrane protein 43

TPGS1 Tubulin polyglutamylase complex Subunit 1. Cilia regulation [86]

TTN Titin

TUT1 Terminal uridylyl transferase 1, U6 SnRNA-specific. Brain development/neurogenesis [87]; neuronal cell death [88]
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TYK2 Tyrosine kinase 2. Brain development/neurogenesis [89]. Jak/Stat signaling; neuronal cell death [90]

UBE4B
Ubiquitination factor E4B. Brain development/neurogenesis; progenitor cell regulation; mTOR signaling [91]; neuronal cell
death [92]

UGT1A7 UDP glucuronosyltransferase family 1 member A7; BBB regulation [93]

UNKL Unk like zinc finger. Neurogenesis [94]

UPK1A Uroplakin 1A

USP4 Ubiquitin specific peptidase 4. Brain development/neurogenesis [95,96]; neuronal cell death [97]; Wnt signaling [98,99]

ZBED9 SCAN domain containing 3 (SCAND3). Potential biomarker for mild cognitive impairment [100]

ZC3H3 Zinc finger CCCH-type containing 3

ZNF227 Zinc finger protein 227

ZNF540 Zinc finger protein 540

ZYX Zyxin. Brain development/neurogenesis [101]; tight junction/BBB regulation [102]; Shh signaling [103]; cell migration [104]

TABLE 1: Complete list of genes with rare pathological/deleterious variants associated with the
present case*.
* Gene-to-protein name conversion was performed using the GeneCards database; **BBB: blood brain barrier.

Discussion
The current report provides additional insights into the molecular mechanism(s) underlining PMG
development. The examination of the individual’s brain by anatomical, MRI, and histological techniques
allowed the classification of the observed MCD as bifrontal PMG with an absence of visible musculoskeletal
defects often associated with PMG [1]. The performed genetic analysis provided several important insights
into its development.

First, there was a plethora of genes linked to the biological processes that could be perturbed in PMG (Table
1) [1,105] thereby being consistent with the polygenic underlining of the present case. Second, there were
several genes involved in the regulation of cilia function including both of its types, primary and motile
(Table 1). Given the crucial role of motile cilia in neurodevelopment through regulation of cerebrospinal
fluid (CSF) fluid flow [106,107] and ventricular development [108,109], as well as the absence of non-age
related hydrocephalus pathology in the donor’s brain (Figure 2), one may conclude that PMG in the present
case was not mediated by motile cilia but was rather associated with an input from the aberrant primary
cilia-mediated signaling [110,111]. Such signaling aberration could be explained, at least in part, by the
abnormal primary cilia formation driven by the mutated TPGS1 (Table 1) [86] and by impaired Wnt signaling,
due to mutations in ADGRA2, PCDHA1, PCDHA12, PTK7, and USP4 (Table 1), which use primary cilia as a
signaling platform [112].

Third, ADGRA2, also known as GPR124, was a very interesting gene because it not only positively regulates
canonical Wnt signaling by increasing Wnt7 availability for Frizzled [22, 23], but by virtue of its compound
heterozygous mutations, it has also been recently linked to two bifrontal PMG cases with multiple
congenital anomalies [24]. It should also be noted that the other member of the same gene family, ADGRG1
(GPR56) with an autosomal recessive variant, was reported to be associated with bilateral frontoparietal
PMG [113, 114]. Therefore, the results of the current report and the data presented in [24] merit a closer look
at AGDRA2 as a potentially causative gene in bifrontal PMG.

Fourth, the other notable feature of the genetic screening dataset was the presence of the biallelic FLG2
variant (NM_001014342:exon3:c.C2606T:p.S869F; MAF = 4.21x10-6). FLG2 is known for its association with
skin diseases including atopic dermatitis [38], as well as for its link to neurodevelopmental aberrations,
leading to autism spectrum disorder (ASD) with a prenatal excessive cortical expansion frequently seen in
ASD children [37]. Such a link between neuro- and ectodermal development supports a hypothesis regarding
the existence of the skin-brain axis, which could interdependently regulate both processes [37].
Unfortunately, due to the condition of cadaveric tissue subjected to the embalming solution, it was
impossible to correctly assess the putative epidermal pathology in the donor and, therefore, evaluate the
involvement of the skin-brain axis in the current case of bifrontal PMG. However, probing similar PMG cases
for the autosomal recessive FLG2 mutations and atopic syndromes antemortem would be worth pursuing.

Conclusions
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The current rare case of bifrontal PMG in an elderly individual provided a unique opportunity to gain
additional insights into the molecular mechanism(s) of PMG. Our results highlight the polygenic nature of
PMG and the potential involvement of impaired Wnt signaling with the involvement of primary cilia
deregulation and a direct Wnt signaling disruption. Our results also warrant additional studies on the
ADGRA2 gene as well as probing the skin-brain axis for their participation in the development of the
cerebral cortex in humans.
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