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Abstract: In response to the increasing significance of artificial intelligence (AI) 
in healthcare, there has been increased attention – including a Presidential 
executive order to create an AI Safety Institute – to the potential threats posed 
by AI. While much attention has been given to the conventional risks AI poses to 
cybersecurity, and critical infrastructure, here we provide an overview of some 
unique challenges of AI for the medical community. Above and beyond obvious 
concerns about vetting algorithms that impact patient care, there are additional 
subtle yet equally important things to consider: the potential harm AI poses to 
its own integrity and the broader medical information ecosystem. Recognizing 
the role of healthcare professionals as both consumers and contributors to AI 
training data, this article advocates for a proactive approach in understanding 
and shaping the data that underpins AI systems, emphasizing the need for 
informed engagement to maximize the benefits of AI while mitigating the risks.
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1 Introduction

Just days after President Biden signed an executive order to protect against threats posed 
by AI, Vice President Harris announced the formation of an AI Safety Institute, noting that AI 
also has the potential to cause profound harm. So far, most of the discussion around AI safety 
has focused around the most obvious risks in areas of biotechnology, cybersecurity, and critical 
infrastructure (Biden, 2023). However, there are several risks of AI that are unique to the 
medical community. Cybersecurity threats are already an issue for health care delivery and 
have already negatively impacted patient care (Neprash et al., 2023). Even cyberattacks that 
do not adversely impact patient care are costly - for example, the Irish National Orthopedic 
Register was able to avoid impacting patient care by reverting to a paper-only system, but at a 
cost of 2,850 additional person-hours for data reconciliation (Russell et  al., 2023). The 
frequency and severity of data breaches are also escalating. In 2021, 45.9 million records were 
compromised, which increased to 51.9 million records in 2022 - and 2023 set a new and 
alarming precedent, with 133 million records being exposed, stolen, or otherwise leaked 
(HIPAA Statistics, 2024). Medical imaging in particular can be  vulnerable to malware 
embedded in common file formats such as DICOM as well as falsification of records 
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(Eichelberg et al., 2020). The US Department of Health and Human 
Services estimated that vulnerabilities in medical imaging servers were 
responsible for over 275 million unsecured images across 130 health 
systems (Bowers et al., 2022).

As AI-driven systems become increasingly integral to medical 
imaging – from analyzing X-rays and CT scans to diagnosing diseases 
through dermatoscopic images – the integrity and security of these 
systems are paramount. An additional challenge is making sure that 
any algorithm that impacts patient health is thoroughly vetted. Both 
will have to be addressed to ensure that we can enjoy the benefits of 
AI while mitigating the risks. Toward this end, ANSI, for example, has 
designed a new international standard to help organizations use AI 
systems responsibly, providing a framework for managing AI risks 
and opportunities across all sectors. The standard outlines a “Plan-
Do-Check-Act” approach to ensure the quality, security, transparency, 
and reliability of AI systems and address concerns, making AI 
adoption a continuous process (American National Standards 
Institute, 2023).

While the overall reliability and security of AI systems are 
obviously a concern, a more subtle threat exists that demands equal 
attention: the threat that AI poses to itself and the data integrity of our 
medical image data systems, as well as our broader medical 
information ecosystem.

It is critical for everyone in the healthcare field to begin thinking 
about their roles as consumers of AI and as potential creators and 
curators of the training data that makes AI possible. When confronted 
with AI approaches, many physicians may envision opaque algorithms 
beyond their comprehension or critique. However, the most common 
problems that arise in AI are typically not the result of the algorithm 
but are instead due to problems with bias in the training data or 
extrapolation beyond what the training data justifies. Therefore, 
thinking about how AI training data is generated over time, and how 
it is used, allows a clinician to be an informed user (versus a passive 
and potentially dangerous user).

The need to guard against both bias in data sets as well as 
documenting data sources is addressed by the ANSI CTA-2090 aimed 
at medical devices (American National Standards Institute, 2021; Nist, 
2024). Here, we discuss why data set integrity is particularly critical 
for medical imaging and the need for physicians to understand the 
broader issues at stake. We focus on a few key issues - the challenge of 
ensuring our data sets are both secure and comprehensive; the need 
to think carefully about the proliferation of medical images captured 
on diverse devices outside of a clinical settings, such as smart phones; 
how data gathering can lead to bias, and lastly the challenges 
generative AI will pose to the integrity of our data sets as well as the 
already significant problem of medical mis- and dis- information.

2 Implications for practice

2.1 Data sets are as critical to developing 
robust AI as algorithms

While most advances in AI are discussed in terms of improved 
algorithms, such as a deep learning, the reason artificial Intelligence 
systems can achieve such a high success rate in the prediction and 
diagnosis of cancer and other diseases is due to the size and quality of 

their training data. A fundamental requirement for training an 
effective algorithm is a set of verified training data large enough to 
accurately represent the population of interest (Chan et al., 2020).

Sun et al. (2017) found that performance on vision tasks (e.g., 
identifying whether an object is a dog or cat, etc.) increased linearly 
with orders of magnitude of training data size, continuing to increase 
even as the training set grew to over 300 million images. The greater 
the number of images, the better coverage of the problem space. In a 
2016 study, Wissner-Gross argued that datasets were likely the limiting 
factor inhibiting the development of artificial general intelligence 
(AGI)—not algorithms; over the past few decades, the average elapsed 
time between key algorithmic advances was about 18 years, versus less 
than 3 years between key dataset availabilities and advances. In other 
words, AI breakthroughs were constrained not by algorithmic 
advances, but by the availability of high-quality training data 
(Wissner-Gross, 2016). While LLMs (large language models) and 
transformer models in general have indeed been a significant 
breakthrough in what AI can do, the fact remains that they depend 
upon very large data sets.

While vision tasks have benefited from the ImageNet dataset, 
which can scrape an infinite variety of images from the Web. In 
contrast, medical images are a limited resource that cannot 
be produced in the same abundance. Ensuring they are accurately 
labeled is intrinsically more difficult; ensuring they are “representative” 
is both more challenging and more important – images of breast 
cancer, for example, need to include adequate samples of dense tissue 
and rare tumors. As a result, we are witnessing a gold rush of training-
data collection in the race to produce the largest dataset possible, and 
especially fresh training data (Mah, 2023). This need stands in contrast 
to the stated desires of patients, 63 percent of whom object to having 
their data used for AI. Zahlan et al. (2023) some of this reluctance no 
doubt coming from previous use of personal data for behavioral 
manipulation by private and public organizations.

Countless image datasets of pathologic and radiologic AI-training 
data, both public and private, are available online, as seen in Table 1.

As shown in Table 1, open-source medical dataset repositories are 
diverse in their data sources, their approach, and their execution. They 
range from neglected sites that contain dead and insecure pages to 
robust (even gamified) platforms that provide manuals, tutorials, and 
supplementary materials, that crowdsource new algorithms via a 
programmatic interface (REST API), and that require a submission 
process that takes months to complete (NIH National Cancer Institute 
CIP Cancer Imaging Archive, 2024). In some cases, viewing and 
downloading images and metadata (clinical data, DICOM tags, 
pathology reports) are immediately available to anyone, while other 
repositories require accounts not just for submission but also for data 
access. Some collections are static while others are updated. The vast 
abundance of medical imagery comes at a cost to accuracy, 
standardization, and security. The most obvious problem occurs when 
cross-pollination of disparately pre-processed data between platforms, 
which typically results in AI inaccuracies, while inadvertent 
duplication of training data leads to AI bias and inflated accuracies. 
Data sets for other areas of precision medicine are equally diverse in 
terms of sources, curation, and scope, making benchmarking a 
challenge (Abbaoui et al., 2024; Nist, 2024). The gold standard for 
training data sets is manual annotations, however these can have 
significant variability between physicians. This has been mitigated by 
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TABLE 1 Main medical imaging repositories, data availability and submission and download process.

Repository 
category / name

Contents Data provided Data sources Security & 
integration

Submission process Download 
process

NIH databases

NIH clinical center CXR8 45GB of chest x-rays Labels, annotation, and diagnoses National Institutes of Health Clinical 

Center

Box repository - Publicly downloadable 

data

The cancer imaging 

archive (TCIA)

Large archive of radiology 

cancer images.

Related supporting data (e.g., 

patient outcomes, treatment 

details, genomics, analyses.)

NIH National Cancer Institute De-identification scripts 

leverage the DICOM PS 3.15 

standard, removes protected 

info while preserving 

metadata.

TCIA Advisory Group 

experts curate, quality 

control, and de-identify 

every image collection.

Publicly available archive 

used for developing and 

validating algorithms

Genomic data commons 

(GDC) data portal

A robust platform for cancer 

researchers and 

bioinformaticians.

Pathology and radiology images, 

metadata, and pathology reports

NIH National Cancer Institute Cancer 

Genome Atlas (TCGA), Emory U. Cancer 

Digital Slide Archive (CDSA), and TCGA

- - CDSA allows browsing of 

TCGA images, metadata, 

and reports without login 

or account.

NIH deepLesion Diverse repository of over 

32,000 CT images.

Medical data from 4,400 patients. 

Critical radiology findings 

enhances lesion detection.

The National Institutes of Health (NIH) 

Clinical Center

Box repository of 

“thoroughly anonymized” 

images.

- Publicly available 

repository

NIH medical imaging and 

data resource center 

(MIDRC)

Over 165,000 medical images to 

foster AI development around 

COVID-19.

Imaging studies with clinical data 

and DICOM tags. Plus, tutorials, 

performance metrics decision tree, 

bias awareness tool, and user 

portal.

National Institute of Biomedical Imaging 

and Bioengineering (NIBIB). Imaging data 

and metadata from medical centers, 

hospitals, and others via the Radiological 

Society of North America (RSNA), the 

American College of Radiology (ACR), and 

via a Data Commons Portal on the Gen3 

Data Ecosystem.

Public open data commons 

created at scale to 

be interoperable with other 

data commons via a 

common query 

infrastructure.

MIDRC coordinates data 

access and management at 

three stages: (1) intake 

(curation, de-identification, 

abstraction, and quality 

assessment) (2) semi-

automated image annotation 

and labeling, and (3) 

distributed access and query 

methods.

Free, open-access 

repository.

National library of 

medicine MedPix

Over 12,000 patient case 

scenarios, 9,000 topics, and 

nearly 59,000 images.

Medical images, teaching cases, 

and clinical topics, integrating 

images and textual metadata.

Hosted by the NLM at the Lister Hill 

National Center for Biomedical 

Communications in Bethesda, MD

- - Free open-access database 

for health professionals, 

students, and “anyone 

seeking medical image 

data”

Federal interagency 

traumatic brain injury 

research informatics 

system (FITBIR)

An extensible, scalable 

informatics platform for TBI-

relevant data.

MRI and PET TBI images with 

clinical assessment, environmental 

and behavioral history, 

demographics, and biomarkers.

FITBIR contains data records from studies 

funded by the DoD and NIH.

Subject-level de-identified 

TBI research data. Facilitates 

collaboration with labs and 

informatics platforms.

Two-tiered submission 

strategy maximizes quality 

and benefit for investigators.

Researchers request access 

to data stored in FITBIR.

(Continued)
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TABLE 1 (Continued)

Repository 
category / name

Contents Data provided Data sources Security & 
integration

Submission process Download 
process

University databases

The open access series of 

imaging studies (OASIS)

Over 2,157 raw imaging scans 

for data analyses, 

neuroanatomical atlases, and 

segmentation algorithms.

Cross-sectional, longitudinal 

multimodal imaging MRI data. 

Neuroimaging data sets. PET 

imaging from tracers, PIB, AV45, 

FDG.

Accompanying post-processed files from 

the Pet Unified Pipeline (PUP)

- - Freely available to the 

scientific community.

Stanford artificial 

intelligence in medicine / 

medical imagenet.

A petabyte-scale repository of 

clinical images linked to 

genomic data and electronic 

medical record information.

Annotated, de-identified radiology 

and pathology images.

- De-identified images. 

Stanford shares data to foster 

transparent and reproducible 

collaboration to advance AI 

in medicine.

Provides a Review Process 

Map and a Guide for Sharing 

Health Data.

Datasets are available to 

the public to view and use 

without charge for non-

commercial research 

purposes.

USC stevens 

neuroimaging and 

informatics institute 

image and data archive 

(IDA)

Neuroscience data on 

development, aging, and disease 

progression.

Data collected from 97,128 

subjects for 151 studies in 165 

countries.

The Laboratory of Neuro Imaging (LONI) Provides tools for de-

identifying, integrating, 

searching, visualizing and 

sharing neuroscience data

Investigators maintain data 

control. Robust, reliable 

infrastructure protects and 

preserves research data.

40-page user manual 

explains the upload and 

download process.

Johns hopkins diffusion 

tensor imaging (DTI) / 

Laboratory of brain 

anatomical MRI

High resolution MRI scans to 

facilitate research in DTI data 

processing and analysis or as 

control data.

Raw and processed normal 

population DTI data. Basic 

imaging parameters provided, with 

details available.

- Outdated website with dead 

links. Embedded 

unsupported Adobe Flash 

elements make it vulnerable 

to attack

- Open to the public once a 

user is registered

Hospital-run databases

Medical information mart 

for intensive care-CXR 

(MIMIC-CXR)

227,835 imaging studies from 

64,588 Beth Israel Deaconess 

Medical center patients (2011–

2016).

377,110 total images. Includes 

radiology reports by radiologists 

during routine clinical care.

Hospital picture archiving and 

communication system (PACS) in DICOM 

format.

De-identified images and 

reports. X-ray analysis 

linking with clinical data 

from MIMIC-IV modules.

- -

Gamified platforms

Grand challenge Gamified platform for machine 

learning solutions in biomedical 

imaging and algorithm 

assessment.

Data from 180 medical imaging 

challenges along with 113 

algorithms.

- - Users may easily and securely 

upload medical imaging 

data.

Users may easily and 

securely manage data 

access.

(Continued)
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attempting to use multiple raters or other types of quality control, yet 
inaccuracies can remain  - a review of two neurosurgical datasets 
(RESECT and BITE) identified inconsistencies which would likely 
impact the validity of algorithm evaluations (Luo et al., 2022).

One example comes from the early days of the pandemic when a 
COVID-19 study from University of Cambridge researchers achieved 
less-than-ideal results. Roberts and Driggs set out to explore deep-
learning models for diagnosing COVID-19 and predicting patient risk 
by analyzing CXR and CT scans (Roberts et  al., 2021). But after 
reviewing over 400 tools, they concluded none reached the thresholds 
necessary to support clinical use—primarily due to poor-quality 
(garbage-in) datasets, methodological flaws, and risk of underlying 
bias. Approximately half of the data came from public datasets. The 
most common reason for exclusion was the lack of adequate data 
description and poor documentation of pre-processing, as the study’s 
inclusion/exclusion criteria included requiring documentation of any 
resizing, cropping, and normalization of images that occurred prior 
to model input.

Many public datasets contain pre-processed, low-resolution, 
or compressed preprints (e.g., JPEG, PNG, or similar versus 
DICOM format). This leads to quality loss while impacting 
consistency and comparability. Resolution loss is a particular 
concern when it is not uniform across classes. The lack of DICOM 
metadata inhibits our understanding of the impact of image-
acquisition parameters (e.g., scanner manufacturer, slice 
thickness, etc.) (Roberts et al., 2021). At the same time, DICOM 
data may not be ideally suited for the large-scale and ubiquitous 
use of AI as it was recently found that the meta-data did not 
adequately protect patient privacy (Bushey, 2023).

Recently, Holste et al. (2023) offered similar words of caution 
about the risks that preprocessing, specifically “pruning,” poses on 
the integrity of images stored in medical repositories and on the 
accuracy of diagnoses derived from pruned images. Though 
pruning is a powerful compression method that reduces memory 
use and inference time without significantly impacting the overall 
performance of a deep neural network, Holste et al. (2023) warn 
that the nuances of how pruning impacts model behavior are not 
completely understood, especially when it comes to the long-tailed, 
multi-label datasets common to clinical settings. Further, they 
predict this knowledge gap might yield unexpected model behavior 
that impacts patient well-being should a pruned model be used for 
diagnosis (Holste et al., 2023). In the first analysis of pruning’s 
effect on neural networks trained to diagnose thorax diseases from 
chest X-rays (CXRs), Holste et al. (2023) examined which diseases 
are most affected by pruning on two large CXR datasets. They 
identified CXRs where uncompressed and heavily pruned models 
disagreed (known as ‘pruning-identified exemplars (PIEs)’) and 
found that radiologists perceived PIEs as having increased label 
noise, poorer quality images, and greater diagnosis difficulty 
(Holste et al., 2023). Similarly, as seen earlier in the study from 
Roberts et al. (2021), pre-processing and compressing images into 
non-DICOM formats resulted in losses in quality, consistency, and 
comparability. This issue is most obviously a concern for radiology 
where data-rich images create high demands for data storage 
infrastructure as well as data processing, but as AI seeks to use 
disparate sources of data, some thought will have to be given to the 
costs and benefits of different types of data compression 
and pruning.T
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2.2 The challenge of filters and other 
sources of bias

As AI is democratized into handheld devices, there is another 
potential concern that is especially acute for dermatology but will 
likely be an issue for other fields going forward. Scientists have already 
devised a deep learning model that may be used with smartphones as 
a decision support mechanism for dermatologists and clinicians 
(Yilmaz et al., 2022). This is vital as more and more patients interact 
with caregivers via telehealth, and these interactions will only increase 
as our smartphones will be equipped with more and more sensors, 
providing data that will be used for AI training purposes. However, 
there is an additional concern about the integration of AI filters into 
smartphone cameras (computational photography) - Samsung Galaxy 
owners have complained their AI-enabled cameras are swapping out 
zoomed shots of the moon with a canned image and giving their 
babies teeth (Kritsonis, 2023; Schneider, 2023). Apple’s new Smart 
HDR (high dynamic range) features are less reality-distorting but still 
matter (perhaps even more so, since the effects are less obvious) 
(Smith, 2021). The ubiquity of these new tools may also pose a threat 
to the integrity of images submitted to care providers, especially if 
these images are used for training data. And chances are they already 
have—since these tools have been manipulating our phone images 
longer than many realize (Lu, 2019). Unfortunately, the variation of 
effects across brand, and the evolution of these filters over time could 
also change our AI’s ability to correctly identify and diagnose lesions 
and other skin conditions, especially since manufacturers likely 
update their algorithms regularly but do not make this information 
public. There is, however, an easy fix – imaging data used for both 
diagnostics and training data should always be made with an app that 
specifically does not use filters, AI or otherwise, in essence creating a 
“medical mode “for the devices, and training data should be curated 
to ensure it features only unfiltered data.

In conclusion, the Roberts et al. (2021) study advises caution over 
the use of public repositories moving forward, both because of source 
issues and ‘Frankenstein’ datasets (datasets assembled from other 
datasets and redistributed under a new name) which can compound 
the risk of bias and dataset “peaking” caused by the duplication of 
data. Dataset repackaging inevitably results in the training and testing 
of algorithms on overlapping or identical datasets which are 
incorrectly assumed to be  derived from unique sources (Roberts 
et al., 2021).

Subtle biases can creep in as well. For example, AI algorithms may 
exhibit bias when interpreting CXRs by associating more severe 
disease with specific chest radiograph views (e.g., an anteroposterior 
view is commonly used for immobile patients versus a standard 
posteroanterior projection). Overrepresentation of severe disease also 
impacts clinical utility since diagnosis of disease in its early stages 
offers greater benefit. Finally, the regular updating of publicly available 
datasets has the potential to create further ambiguity by inhibiting 
replication of published results. Going forward, any clinical AI 
applications should have a cached version of the dataset or at the very 
least, documented the date/version of data used.

To facilitate adoption into clinical practice, Roberts et al. (2021) 
also stressed the necessity of enabling interpretability of the model by 
describing features that influenced the model, by overlaying a saliency 
map on the image to indicate those features, by linking prognosis to 
underlying biology, and by identifying patients with similar clinical 

pathways – clinically useful AI must be  anchored in biological 
mechanisms in a way that tasks such as image recognition do not. 
While there may always be a trade-off between explainability and 
performance, explainable AI is essential to understand the reasoning 
behind model decisions and to facilitate generalizability across diverse 
patient populations and clinical settings (Markus et al., 2021). The 
authors concluded that existing models designed for diagnosing 
radiological imaging data are hampered by the quality of their training 
data, that current public datasets are inadequate in terms of size and 
quality for training reliable models, and that any studies leveraging 
these datasets will exhibit a high (or unclear) bias risk. In the end, 
none of the machine learning models in their review were identified 
as candidates for clinical translation for the diagnosis/prognosis of 
COVID-19. The authors of the study call on researchers worldwide to 
improve the size and quality of these datasets by submitting their data 
for public review (Bachtiger et al., 2020). The authors of this article 
suggest that in addition to public review, the data’s origin must also 
be made known to ensure its authenticity and integrity, whether via a 
digital signature or via the use of blockchain technologies. This is 
consistent with the National Institute of Standards and Technology 
(NIST) initial statement on global standards for AI, which included a 
mechanism for enhancing awareness and transparency about the 
origins of digital content (Nist, 2024).

While Roberts et al. (2021) assert that many papers used in their 
study failed to note the original source of their images, they state that 
about one-third of the public-repository data came from mainland 
China, with additional data coming from France, Iran, the US, 
Belgium, Brazil, Hong Kong, and the Netherlands. The openness of 
public datasets made it impossible to determine if patients were truly 
COVID-19 positive or had underlying selection biases – in other 
words, the models were potentially being trained on inaccurately 
labeled data. Many public repositories allow anyone to contribute 
images, with no restrictions (Roberts et  al., 2021). This openness 
comes with risks, however – from carelessness or intentional disruption.

2.3 Datasets needs to be guarded against 
generative AI and nightshade

It would not be difficult for a bad actor to taint a set of images 
(even DICOM images) with non-visual alterations that cause a trained 
diagnostic model to misbehave, influencing a public dataset to have a 
downstream impact on the networks trained on that data.

One potential threat comes because of our attempts at rights 
protection using techniques such as Nightshade, a tool meant to 
empower artists and protect their work from being harvested by AI 
without their permission (Drost, 2023). There is concern that 
Nightshade could seriously damage image-generating AI models by 
altering training data through the insertion of invisible pixel changes 
(Heikkilä, 2023). According to one study, the ingestion of just 50 
corrupted images is enough to cause distorted results; 300 Nightshade 
images will corrupt an image generator entirely (Shan et al., 2023). The 
effect of Nightshade on generative models is instructive since these 
techniques will have a similar detrimental effect on the efficacy of an 
otherwise useful model trained for diagnostic purposes.

Optimized, prompt-specific data poisoning corrupts the AI 
training data. In other words, Nightshade circumvents the problem of 
large AI datasets by targeting the prompt. According to Decrypt, the 
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easiest way to deceive an AI model into thinking a cat is a dog is 
simply by mislabeling a few hundred images of a cat as a dog; a 
sufficient number of attacks will render a model worthless, meaning 
that one route of attack on our medical image repositories could be the 
use of Nightshade to destroy the AI’s ability to accurately identify, 
categorize, diagnose, and understand diseases (Nelson, 2023).

In theory, Nightshade could also be used by medical imaging 
device manufacturers to introduce a specific type of artifact, like 
Nightshade, into public image sets or surreptitiously into clinical 
images. While not affecting the clinician’s ability to make a human 
diagnosis, such artifacts would cause a competitor’s AI solution to fail, 
which could lock customers into licensing a corporation’s diagnostic 
agent. Given the centrality and importance of high quality, accurate 
data for the future, it is important to start thinking about how we want 
to manage the ways in which corporations control and profit from 
such data.

Generative AI poses another threat. There are several ways to 
weaponize generative AI. Not only could it be used to spoof a single 
sample, it could potentially also be used to spoof entire data sets, 
repositories, or even scientific organizations. Despite attempts to 
implement guardrails, several popular LLMs will fabricate fake 
scientific references in support of dubious health claims (Menz 
et al., 2024).

Thus, AI models used clinically must be strongly protected from 
end to end, above and beyond the normal cybersecurity concerns. The 
AI’s training data, ingestion pipeline, inter-stage pipelines, and the 
model itself must all be protected.

In fact, it is a significant problem when AI is trained on its own 
data. As larger and more complex models require more data, there 
is a temptation to use synthetic data or to use AI to make human 
annotation (currently the gold standard by which models are 
judged) more efficient and productive. However, this can form an 
echo-chamber, magnifying the bias of an algorithm. It’s been 
shown that data precision and diversity progressively degrade over 
generations when an autophagous (Greek for “self-devouring”) 
loop fails to be supplied with adequate fresh real data. This has 
been coined Model Autophagy Disorder (MAD) (Alemohammad 
et al., 2023). We’ve already witnessed several real-world examples 
of bad AI-generated answers forming online feedback loops of 
misinformation. First, because AI models lacks constraints that 
limit possible outcomes, they sometimes “hallucinate” facts, being 
led astray by its probability-based language models into coherent 
but incorrect statement (AI hallucinations?, 2022). When 
hallucinated content gets indexed by Google, AI-generated 
misinformation can even pollute search engine results – as 
happened when ChatGPT hallucinated that eggs can be melted, 
and the result was indexed on Google search (Edwards, 2023). 
When Microsoft replaced news editors with AI, the results were 
disastrous. Suddenly, the default Microsoft start page featured false 
news stories from dubious sources (Breen, 2023). If AI feedback 
loops and disinformation can prove problematic for Google and 
Microsoft, consider the damage that intentionally false metadata, 
misleading saliency maps, and erroneous pathology/radiology 
reports could cause to the accuracy of our AI training.

However, somewhat contradictory, synthetic training data can 
improve the performance of large language models (LLMs) in various 
tasks. Research has shown that while models trained on human-
labeled data often exhibit superior performance, synthetic 

augmentation can be beneficial, especially in enhancing performance 
on rare classes within multi-class tasks (Møller et al., 2023), and this 
could certainly be  useful for diagnostic algorithms. Additionally, 
synthetic data generation through fine-tuning of teacher LLMs has 
been found to significantly enhance downstream model performance 
in text classification and text generation tasks, sometimes requiring 
only a small fraction of the original training dataset (Kaddour and 
Liu, 2023).

2.4 AI can contribute to misinformation 
and disinformation

Despite AI’s impressive success rate at interpreting radiological 
and pathological images, the type of AI that people are most aware of 
is Large Language Model (LLM) systems such as ChatGPT. Patients 
will increasingly depend on them for quick searches about medical 
information and treatment options. Clinicians will, in the future, 
depend on them for literature searches, will use AI-enabled systematic 
reviews to guide clinical practice, and AI-facilitated note taking for 
clinical reports. As foundational models become more elaborate, they 
can extend beyond text-prompts to much more complicated decision-
making support based on a combination of both text and image inputs 
(Azad et al., 2023).

Despite their impressive achievements, LLMs and other foundation 
models do not make great substitutes for humans when it comes to 
offering cancer treatment information. A recent study found the AI 
hallucinated incorrect suggestions for localized treatment of advanced 
disease, targeted therapy, or immunotherapy in 13 of 104 (12.5%) of 
cases (Chen et  al., 2023). A full one-third of AI-recommended 
treatments were non-concordant with National Comprehensive Cancer 
Network (NCCN) guidelines. The study confirmed that while LLMs 
can provide better diagnoses than the average person, the chatbot failed 
to provide accurate cancer treatment recommendations and tended to 
combine false recommendations with correct ones—making discerning 
the truth difficult—even for experts. Here, too, data sabotage or simply 
a flood of misinformation can prove damaging if more patients turn to 
LLMs or their extensions to interpret their medical data. It has been 
recommended that clinicians make sure their patients understand that 
LLM chatbots are not reliable sources of treatment data (Chen et al., 
2023). This implies the authors believe AI will pose an increasingly 
greater risk as more patients turn to LLMs for medical advice. Thus, 
data sabotage could also become a more significant risk. The idea of 
intentionally flooding our LLMs with false medical information to 
harm a population is not out of the realm of possibility; disinformation 
about AIDS was deliberately spread by the former Soviet Union and 
significantly hampered the public health response in many countries 
(Geissler, 2016). Given the known attempts on the part of many state 
and non-state actors to manipulate the information ecosystem, it’s not 
a far cry to assume similar disinformation campaigns might attempt to 
target and corrupt our AI training data or, alternatively, AI generated 
text and images can begin to subtly subvert LLMs (O’Sullivan et al., 
2023). Some LLMs, when prompted, will concoct convincing sounding 
health misinformation [i.e., that sunscreens cause cancer (Menz et al., 
2024)]. In this respect LLMs, have been termed weapons of mass health 
disinformation. Generative AI can now produce convincing patients, 
radiology images with generative AI tumors, and clinical data in the 
service of disinformation.
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People are, for better or worse, inclined to be strongly influenced 
by appearances, which may not accurately reflect reliability or risk. This 
can result in a side effect of technology known as “overtrust,” where 
individuals habitually accept software recommendations without 
critically evaluating the situation (Hardré, 2016) and physicians are not 
immune to this risk (American National Standards Institute, 2023).

Ultimately, our LLMs merely distill our collective research output 
– which should give us pause about current trends in the biomedical 
literature The number of papers retracted has grown substantially as 
a portion of published literature, with more than 10,000 research 
papers retracted in 2023 - and this likely does not include the many 
papers published (often assisted by AI) in paper mills, nor the 
extensive preprints that can contribute substantially to misinformation 
(Brierley, 2021; Noorden, 2023). Therefore, in addition to image 
datasets, the larger body of clinical literature will also likely serve as 
training data for clinically impactful LLMs going forward, and 
we must give some thought about how we ensure this process does not 
go awry.

2.5 Actionable recommendations

Datasets require standardization and documentation: this will 
include the standardization of data formats and documentation 
across medical dataset repositories, including the standardization of 
language used to describe all image pre-processing, resizing, 
cropping, and normalization techniques, as well as the use of AI 
image filters, and the standardized formatting and encoding of this 
information in the image metadata. Guidelines should require 
comprehensive documentation of diagnostic labels. Quality assurance 
should include ensuring the data set does not include products of 
generative AI.

Data sets from computational photography in mobile devices 
should use a medical mode or app that ensures filters are by-passed. 
Additionally, the appropriate metadata for submission to a health care 
provider or medical image repository would be appended to the image 
to provide the most consistently formatted results possible across all 
brands and devices.

Security is critical: this can include access controls for sensitive 
medical data, the use of blockchain for authentication, and balancing 
the trade-off between immediate access and controlled access for 
some data sets. Steps should be taken to ensure watermarks such as 
Nightshade do not poison a dataset.

Datasets must be representative: this means including as wide a 
range of patients and clinical scenarios as possible –this includes 
considerations of age, gender, and other obvious factors that can lead 
to bias. However, it should also include a commitment to gathering 
data in real-world clinical settings to capture natural variability and 
complexity. Active bias mitigation measures must be ongoing.

AI will be part of everyone’s information ecosystem, and it must 
be  guarded against misinformation and disinformation. This will 
require implementing safeguards against the intentional flooding of 
LLMs or other models with false medical information and enhancing 
the resilience of AI models against adversarial attacks.

Cross-analysis of image data with all other image repositories will 
need to occur to ensure data has not been duplicated elsewhere and 
does not include the products of generative AI. The most effective way 
to accomplish this may be  via the creation of secure national 
centralized storage centers, or, at least, the creation of a centralized 

platform for searching, submitting, and accessing all existing medical 
image data. Absent of this, the global standardization of medical 
image data could be  achieved by private enterprise—as a service 
offering by a company that specializes in medical image data 
processing for the generation of AI training data.

All stakeholders should be  educated about AI. Standardized 
training programs, offered in science programs and medical and 
nursing schools around the world would help ensure all stakeholders 
are sufficiently educated about AI. A formal legal consent system 
should be put in place for the use of medical images as training data—
not just x-rays and MRIs, but published case reports and notes in 
electronic health records. Scientists and physicians need to be mindful 
that they are actively producing training data – not just with each 
chest x-ray, but with their published case reports and notes in 
electronic health records. Even their own questions posed to ChatGPT 
or other LLMs will be used to train future algorithms. Therefore, 
everyone in the medical community has a responsibility to be an 
informed participant in the development and use of AI. Future work 
should include surveying physicians to ascertain understanding of 
how AI training data is generated and their role in this process, 
research into understanding how physicians can be alert to problems 
in AI generated recommendations, how data security can 
be  implemented at every level  - research oversight committee 
including IRBs should consider monitoring data generation, data 
integrity, and data use for routine clinical trials as well as registry.

3 Discussion

The benefits of AI are obvious: as early as 2017, machine learning 
algorithms used in the prognosis of skin cancer were found to have an 
accuracy rate equal to a dermatologist (Esteva et al., 2017). One recent 
study found that AI models are now able to classify brain tumors in 
MRI images with an accuracy rate of 98.56% (Chan et al., 2020). AI 
applications in oncology now include risk assessment, early diagnosis, 
patient prognosis estimation, and treatment selection. AI has 
enormous potential for boosting accuracy and improving outcomes 
when it comes to predicting certain types of breast, brain, lung, liver, 
and prostate cancer and has proven highly accurate at predicting 
recurrence and, for colorectal cancer, risk stratification with higher 
accuracy than current guidelines (Liu et al., 2019; Nartowt et al., 2019; 
Bębas et al., 2021; Zhang et al., 2023).

AI promises faster, less expensive, and more accurate processing 
than humans are capable of, a more detailed analysis of tumors, 
facilitated exploration of potential therapies, and better -informed 
decision-making. The medical community increasingly relies on AI as 
a diagnostic partner for interpreting pathology and radiology images. 
AI therefore has the potential to be a ‘force-multiplier’ for physicians, 
although whether this is implemented equitably to increase medical 
access for all, or whether it evolves into a two-tier system where only 
the wealthy have access to ‘helpful AI’ with input from a ‘non-AI’ 
doctor will depend on what are sure to be difficult policy decisions. 
One small but critical step in this process is thinking through the 
implications of how medical image data is collected, how the data is 
maintained, curated, and authenticated—and most importantly, who 
controls the access to that data.

As a result of being built-up piecemeal over the years by 
independent parties with little intercommunication, our medical 
image repository ecosystem has become a mottled sea populated by 
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siloed islands. The disparate methods each repository follows for 
accepting, processing, formatting, storing, indexing, interpreting, and 
providing image data (along with any accompanying metadata) can 
lead to unnecessary AI inaccuracies and bias. Additionally, the lack of 
standardized methods leaves our repositories vulnerable to infiltration 
with Nightshade, generative AI, or general disinformation, any of 
which could corrupt our AI training data and impact the AI’s ability 
to function properly. Further, the lack of standards makes it impossible 
for a user to distinguish between a highly vetted, curated repository 
and one created haphazardly or using generative AI.

Although we focused in this paper primarily on issues of data set 
quality and infrastructure, it should be noted that AI will present 
significant legal challenges - for example, in the US, data privacy is 
regulated under HIPAA; FDA regulates AI as both a device and a 
product; while the FTC would be  responsible for fraud or unfair 
business practices, which would include bias in outcomes or faulty 
medical advice from an LLM (American National Standards Institute, 
2021). The EUs GPDR has more explicit protection for patients to opt 
out of having their data used, but the EU’s AI Act only grants 
individuals the right to explanation of decision-making (Article 86) - 
but this excludes AI medical devices (van Kolfschooten, 2024). 
Overlaid upon this in many jurisdictions will be the regulatory bodies 
of medical societies as well as licensing boards. Despite this, there are 
many aspects of AI that should be  addressed both legally and by 
stakeholders. HIPAA was not intended to safeguard patients from 
being used as training data unknowingly, nor does any professional 
medical body have standards for the terms under which physicians are 
expected or required to produce training data. No legislation currently 
specifically targets data poisoning or AI-assisted disinformation.

However, there are steps that can be taken to ensure we have high 
quality, publicly available data in the future. We  call for the 
establishment of strict universal guidelines and standards to secure 
our medical image repositories, to formulate consistency of all input 
and output data, and to control the methods with which the 
repositories function. Additionally, to help protect the integrity of our 
AI training data we call for watermarking, not just of all material 
generated by AI, but also of material that has been treated with 
Nightshade (or like technologies).

Fundamentally, if algorithms are going to impact clinical care in 
any meaningful way, it is crucial that the training data used to develop 
them undergo a much higher level of scrutiny and security than has 
hitherto been applied. In place of haphazard datasets, there needs to 
be an investment in large, high quality, and accurately labeled data 
sets, and this effort should be seen as crucial scientific infrastructure. 
As data for AI is generated in a more distributed manner – through 
smartphones and other sensors – it is equally crucial to ensure that 
this data is as high quality and unbiased as possible. Lastly, ensuring 
that these data sets are diverse, representative, and available for the 

public good is critical for enabling AI to deliver on its promise of 
providing more efficient health care for everyone. Misinformation and 
disinformation have been a long-standing problem in medicine, as 
have (to a lesser extent) insufficiently representative datasets and 
models. AI, however, will present new challenges that differ both in 
kind and scale. While it is challenging to regulate AI or hold its 
progress (Thomas, 2023), best practices and standards as suggested 
here can limit these threats. The time to start addressing these 
challenges is now - an ounce of prevention will be worth a pound 
of cure.
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