
Benchmarking and performance evaluation of a novel deformable image 
registration software for radiotherapy CT images

Shorug S. Alshammari a,b,1, Sridhar Yaddanapudi a,*,1, Blaž Kušnik c, Rok Ivančič c,  
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A B S T R A C T

Purpose: We evaluated and benchmarked a novel deformable image registration (DIR) software functionality 
(DirOne, Cosylab d.d., Ljubljana, Slovenia) by comparing it to two commercial systems, MIM and VelocityAI, 
following AAPM task group 132 (TG-132) guidelines.
Methods: Three publicly available datasets were used for evaluation. The first dataset includes primary and 
deformed phantom images for a male pelvis. The second, from DIR-Lab, contains ten sets of 4D CT thoracic scans. 
The third dataset, from the DIR Evaluation Project (DIREP), includes ten head and neck CTs. VelocityAI and MIM 
served as benchmarks to assess DirOne’s performance. Target registration error (TRE), dice similarity coefficient 
(DSC), and mean distance to agreement (MDA) were the evaluation metrics.
Results: For TRE, the average results for DirOne, MIM, and VelocityAI were 3.3 ± 3.1 mm, 2.7 ± 3.7 mm, and 3.4 
± 2.4 mm, respectively. For DSC, DirOne achieved 0.96 ± 0.02, MIM 0.98 ± 0.02, and VelocityAI 0.98 ± 0.01 
across the first and second datasets. In the DIREP dataset, DirOne achieved 0.73 ± 0.34 for MDA and 0.91 ± 0.03 
for DSC; MIM achieved 0.54 ± 0.36 and 0.93 ± 0.02, and VelocityAI 0.93 ± 0.38 and 0.90 ± 0.03.
Conclusion: The novel DIR software demonstrated clinically acceptable accuracy compared to other commercial 
systems, supporting its potential use in radiotherapy treatment planning applications such as automatic image 
segmentation, 4D segmentation propagation, and dose warping.

Introduction

In modern radiotherapy, CT is central to treatment planning, 
providing a detailed 3D model of the patient’s anatomy. However, as 
treatment progresses, changes such as tumor shrinkage, organ move
ment, or weight loss can affect the accuracy of the original plan. 
Deformable image registration (DIR) between CT scans is essential for 
tracking these changes, enabling adaptive replanning, accurate dose 
accumulation, and automatic contour propagation [1–3]. By accom
modating anatomical shifts, DIR ensures precise targeting and effective 
treatment throughout the course of therapy.

To implement DIR in a clinical environment, it is important to 
thoroughly test and evaluate any new DIR software to ensure high 
precision in radiotherapy [4]. Multi-institutional studies have validated 
DIR algorithms but revealed performance variations across institutions 

due to differences in clinical workflows, making DIR accuracy specific to 
each site [5–8]. A recent study by Viergever et al. emphasized the 
importance of validating DIR algorithms, reinforcing this need [9].

The American Association of Physicists in Medicine (AAPM) Task 
Group 132 (TG-132) report provides guidelines for quality assurance 
(QA) and quality control of image registration in clinical practice [10]. 
TG-132 recommends assessing DIR accuracy using the target registra
tion error (TRE) metric, which measures the difference between land
mark positions in the deformed and reference images calculated through 
the deformation vector field (DVF). Additionally, for evaluating auto- 
contouring accuracy, TG-132 recommends using the dice similarity co
efficient (DSC) and mean distance to agreement (MDA) as key metrics to 
assess how well anatomical structures align between deformed images 
and reference images.

In this study, we evaluated the performance of DirOne - a new DIR 
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functionality of the OncologyOne software suite (Cosylab d.d., Ljubl
jana, Slovenia) - following the recommendations of AAPM TG-132. 
Additionally, we benchmarked the performance of the new DIR algo
rithm with two commercially available platforms: MIM (MIM Software 
Inc., Cleveland, OH) and VelocityAI (Varian Medical Systems, Palo Alto, 
CA). The original CT datasets for a male pelvis phantom, as provided by 
AAPM TG-132, were used for testing. We also employed publicly 
available CT datasets of the thoracic region from DIR-Lab (https://www. 
DIR-lab.com) [11,12] and head and neck region from DIREP (htt 
ps://sites.google.com/site/dirphantoms) [13] to further assess the al
gorithm’s performance.

Methods and materials

Original datasets and contour generation

In this study, three CT datasets were utilized. The first dataset from 
AAPM TG-132 [10] includes two CTs of a male pelvis phantom, the 
primary dataset (CT 1), and its derived counterpart (CT 2). CT 1 serves as 
the original CT image, while CT 2 represents the reference image for DIR 
assessment. CT 2 was generated from CT 1 through deformation, arti
ficial noise enhancement, and minor rigid shifts. The resolution of the 
CT images is 0.91 × 0.91 × 3 mm3. Three fiducial markers located in the 
bladder, rectum, and prostate were used as landmarks for DIR accuracy 
evaluation.

The second dataset consists of thoracic CT images from ten patients 
diagnosed with esophageal and lung cancers, obtained from DIR-Lab 
[11,12]. These patients underwent a 4-dimensional CT (4DCT) scan, 
which was used for their treatment planning. The image resolution is 
1.16 × 1.16 × 3 mm3. For this study, only two phases from the 4DCT set, 
the extreme inhale and exhale phases, were utilized. The dataset in
cludes 300 anatomical landmarks per case, identified and registered in 
both phases of the original dataset, serving as references for assessing 
DIR algorithm accuracy.

The third dataset is from the Deformable Image Registration Evalu
ation Project (DIREP) [13] and consists of CT images from 10 head-and- 
neck cancer patients with voxel dimensions of 0.97 × 0.97 × 3 mm3. 
These images were acquired at two distinct time points during radiation 
therapy for each patient: at the start (pre-treatment, SOT) and the end 
(post-treatment, EOT) of the treatment course. The dataset captures 
anatomical changes due to tumor shrinkage, tissue deformation, and 
variations in patient positioning throughout treatment. Since fiducial 
markers were not available, this dataset was used exclusively to assess 
the accuracy of deformed contour propagation rather than to evaluate 
landmark DVF accuracy.

The original DIREP datasets, SOT and EOT, were initially processed 
through the AutoContour tool (Radformation, New York, NY) to 
generate contours on both the primary and secondary image datasets. 
The generated contours were then reviewed and adjusted by board- 
certified clinicians. These finalized contours were used as the gold 
standard for evaluating contour propagation.

DIR algorithm

The datasets mentioned above were imported into each system for 
registration. Various metrics were utilized to evaluate the performance 
of each software. A brief description of the DIR algorithm for each 
software is provided below. 

• DirOne

DirOne DIR algorithm utilizes a global minimum spanning tree 
(MST) optimization approach [14,15], combined with a self-similarity 
measure, to achieve robust and accurate image alignment. This 
method effectively maps image similarities at discrete locations and 
compares these maps between the fixed and moving images to compute 

the optimization cost function. The MST optimization ensures that the 
registration process is global, accounting for the entire image rather 
than just local regions, minimizing total dissimilarity across all feature 
points, and avoiding local minima. Feature points are extracted based on 
intrinsic characteristics, and edge weights between them are calculated 
using a self-similarity measure, which relies on internal structural pat
terns rather than absolute intensity values. This makes the DIR algo
rithm particularly effective for registering images with varying intensity 
ranges and contrasts. To ensure smooth and accurate transformations, 
the algorithm employs a B-spline method for image interpolation [16]. 
This approach is particularly advantageous for adaptive radiotherapy 
[17], allowing for dynamic adjustments of treatment plans in response 
to anatomical changes over time. Furthermore, it supports the propa
gation of planning structures onto different phases of 4DCT images and 
enables predictive extrapolation of tissue movement and deformation. 

• MIM

In MIM (version 7.3.6), deformable registration was performed using 
the VoxAlign Deformation Engine®, an intensity-based, free-form DIR 
algorithm for CT-CT registration [18,19]. The similarity metric is 
calculated by summing the squared differences of normalized in
tensities, which is minimized using a modified gradient descent method. 
The process began with an initial rigid registration, followed by 
deformable registration. This algorithm enables the deformable trans
formation of contours, making it useful for applications such as adaptive 
recontouring for replanning and propagating contours across different 
phases in 4DCT. 

• VelocityAI

VelocityAI (version 4.1) utilizes an intensity-based DIR algorithm 
with a B-spline model, chosen for its simplicity and efficiency, based on 
Mattes formulation of mutual information [20,21]. VelocityAI imple
mented two DIR strategies: Deformable and Deformable multipass [22]. 
The Deformable approach performs a single-stage image deformation at 
a user-specified resolution, while the Deformable multipass approach 
conducts DIR sequentially, progressing from low to high resolution, with 
each stage’s resolution determined automatically. The output from one 
stage serves as the initial condition for the next. Since the vendor rec
ommends Deformable multipass for clinical use, we adopted this 
approach in our study.

Evaluation metrics

Following TG-132 guidelines for algorithm evaluation, two cate
gories were assessed for accuracy: spatial and segmentation propagation 
accuracy. For spatial accuracy, the TRE metric was used to measure the 
accuracy of landmark positions in the deformed image compared to the 
gold standard. For segmentation propagation accuracy, both the DSC 
and MDA metrics were employed. DSC quantifies the overlap between 
segmented structures in the deformed images and the gold standard, 
while MDA calculates the average distance between corresponding 
surfaces in the deformed and reference images, focusing on how well the 
structure surfaces, such as organ boundaries, align after registration. 
Detailed mathematical descriptions for TRE, DSC, and MDA are pro
vided below for better understanding. 

• Target Registration Error (TRE)

The TRE was defined as the Euclidean distance (vector error) be
tween the corresponding landmark locations in the deformed images 
(xdef , ydef , zdef) and the ground truth in the reference images (xtrue, ytrue, 
ztrue), as shown in Eq. (1). 
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TRE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xdef − xtrue

)2
+
(

ydef − ytrue

)2
+
(
zdef − ztrue

)2
√

(1) 

The coordinates (xdef , ydef , zdef) were calculated using the DVF (u, v, w)

acquired from the deformation process, from the primary image marker 
location (xprim,yprim,zprim), listed as Eq. (2) 

xdef = xprim + u, ydef = yprim + v, and zdef = zprim + w (2) 

When multiple landmarks are used, the average TRE is calculated by 
averaging the TRE values for all landmarks, shown in Eq. (3) 

Average TRE =

∑n
i=1TREi

n
(3) 

• Dice Similarity Coefficient (DSC)

The DSC is calculated by determining the number of overlapping 
voxels between two volumes and normalizing this count by half the sum 
of the non-zero voxels in both volumes. Mathematically, the DSC is 
expressed as: 

DSC =
2*(A ∩ B)
|A| + |B|

(4) 

where (A ∩ B) represents the number of voxels common to both volumes 
A and B, and |A| +|B| is the sum of the voxels in each volume. The DSC 
value ranges from 0 to 1, with 0 indicating no overlap and 1 representing 
perfect overlap between the two volumes. 

• Mean Distance to Agreement (MDA)

The MDA is calculated as the average of the shortest distances from 
each point on a contour in one image to the nearest point on the cor
responding contour in another image. This involves a point-by-point 
analysis, where each point on a contour in the deformed image is 
matched to the nearest point on the corresponding contour in the 
reference image, as described in Eq. (5). 

MDA =
1
N

∑N

i=1
min

j

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xj

)2
+
(

yi − yj

)2
+
(
zi − zj

)2
√

(5) 

where N represents the number of points on the contour of the deformed 
image.(xi, yi, zi) are the coordinates of a point i in the deformed image 
while (xj, yj, zj) are the coordinates of point j in the reference image. The 
min function finds the point j in the reference image closest to point i in 
the registered image.

Evaluation methods

TRE was calculated on the first (male pelvic phantom) and second 
datasets (4D thoracic cases). The DVFs for the registered landmarks were 
obtained from all three DIR software, and the TRE calculation, which 
was depicted in Eqs. 1, 2, and 3. was performed using MATLAB 
(MathWorks Inc., Natick, MA) codes. The extraction of DVF from com
mercial software was done using a code written in Python (version 
3.12).

DSC and MDA were calculated for all three datasets (AAPM TG-132 
male pelvic phantom, DIR-Lab 4D thoracic case, and the DIREP Head 
and Neck cases) across various organ contours for all three DIR software. 
To assess deformation consistency, registration between the start of 
treatment (SOT) and the end of treatment (EOT) images was performed 
in both directions for the third dataset (DIREP Head and Neck). The DSC 
and MDA values from both directions were evaluated and compared.

Results

Tables 1 and 2 present the TRE results for datasets 1 and 2, respec
tively. Table 1 lists the TRE values for three fiducial markers, one in each 
of the bladder, rectum, and prostate, across all three software. In 
Table 2, the mean and standard deviation of TRE for all 300 landmarks 
across the 10 cases are provided.

To visually demonstrate the deformation effects of all three software, 
we present 2D slice images and contours of sample cases from each 
dataset in Fig. 1. The three rows in Fig. 1 correspond to sample cases 
from three different datasets. The first column shows the primary images 
and contours before deformation, while the second, third, and fourth 
columns display the deformed images and contours produced by DirOne, 
MIM, and VelocityAI, respectively.

Table 3 lists the DSC and MDA values of dataset 1, which quantify the 
similarity between the deformed organ contours and the reference 
contours across all three software.

Table 4 presents the mean and standard deviation of DSC and MDA 
values across all 10 cases in dataset 2 for four different organ contours.

For dataset 3, due to the large amount of data, results are presented 
in separate tables and figures. Table 5 shows the mean and standard 
deviation values of DSC and MDA for 6 deformed contours across 10 
head and neck cases for all three software.

Fig. 2 shows the differences in DSC and MDA between the defor
mation processes in the two opposite directions (SOT → EOT and EOT → 
SOT).

Table 6 lists the two-sample t-test results (EOT → SOT and SOT → 
EOT), including t-statistic values and associated p-values for DSC and 
MDA metrics in dataset 3.

Discussion

In this study, we performed a comprehensive evaluation and 
benchmarking of the new DIR algorithm, DirOne, against established 
commercial platforms, including MIM and VelocityAI. DirOne employs 
an advanced deformation model and optimization strategy, called MST, 
setting it apart from traditional methods and enabling enhanced regis
tration accuracy in specific clinical scenarios. While previous evalua
tions of DIR algorithms have typically focused on single anatomical sites 
[5,6], our study expands this scope by assessing DirOne’s performance 
across multiple anatomical regions, including the pelvis, thoracic, and 
head and neck areas. Adhering to the AAPM TG-132 guidelines, our 
methodology offers a robust and standardized framework for evaluating 
DIR performance in diverse clinical applications. This study not only 
highlights DirOne’s strengths relative to existing tools but also provides 
a template for the systematic evaluation of future DIR software, offering 
valuable insights into their clinical utility.

First dataset evaluation: male pelvic phantom

The first dataset included the basic anatomical and deformation 
datasets, which introduced controlled deformations and noise to the CT 
images. All three software platforms—DirOne, MIM, and Veloc
ityAI—performed well in this initial test, achieving TRE that were within 
the acceptable range set by TG-132. Specifically, bladder TREs were 0.6 
mm for DirOne, 0.4 mm for MIM, and 0.7 mm for VelocityAI. Similarly, 
rectal and prostate TREs showed minor discrepancies among the three 
software, with DirOne exhibiting slightly higher values in some cases, 

Table 1 
Target registration error (mm) statistics for the first dataset.

Structure DirOne MIM VelocityAI

Bladder 0.60 0.40 0.70
Rectum 1.40 1.30 1.20
Prostate 0.94 0.81 1.10
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but overall maintaining accuracy comparable to the other platforms.
The comparison of DSC values further confirmed the efficacy of 

DirOne in contour propagation. With average DSC values exceeding 
0.95, the results indicated high anatomical overlap between the 
deformed and reference images, matching the performance of MIM and 
VelocityAI. This outcome underscores the reliability of DirOne DIR al
gorithm for handling basic deformations and ensuring accurate contour 
alignment.

Second dataset evaluation: thoracic 4DCT cases

The second dataset comprised imaging data from ten thoracic cancer 
patients, a more complex dataset due to respiratory-induced de
formations. All three software platforms exhibited good performance, 
with average TREs of 3.34 ± 3.08 mm for DirOne, 2.69 ± 3.73 mm for 
MIM, and 3.36 ± 2.40 mm for VelocityAI. While DirOne had slightly 
higher TREs than MIM and VelocityAI in terms of mean values, the 
differences were minor and within clinically acceptable limits.

One notable outlier was Case 8, where all three software platforms 
struggled, showing increased TRE, with reported values exceeding 7 
mm. This case presented significant anatomical changes due to large 
respiratory motion and potential artifacts in the 4DCT scan. These fac
tors likely contributed to the difficulty in accurately registering the 
anatomical structures, even with advanced DIR algorithms. Such cases 
highlight the challenges of handling extreme deformations and 
emphasize the need for continued refinement of DIR algorithms to 

improve performance in highly variable anatomical regions.

Third dataset evaluation: head and neck cases

The third dataset, involving head and neck phantoms from the DIREP 
collection, was used to assess the consistency of DIR performance in both 
deformation directions: from SOT to EOT and vice versa. The evaluation 
focused on DSC and MDA metrics, demonstrating that all three software 
platforms maintained strong consistency between the two registration 
directions. For DirOne, the mean DSC was 0.91 ± 0.03, and the MDA 
was well within the acceptable range, indicating robust contour 
alignment.

Table 2 
Target registration error (mm) statistics for the second dataset.

Case DirOne MIM VelocityAI

1 1.75 ± 1.12 1.20 ± 0.73 1.78 ± 0.91
2 2.07 ± 1.35 1.30 ± 2.16 1.97 ± 1.56
3 3.07 ± 2.31 1.80 ± 1.33 2.88 ± 1.87
4 2.95 ± 1.95 2.43 ± 1.73 3.82 ± 3.22
5 3.34 ± 2.62 2.67 ± 1.62 3.30 ± 2.47
6 3.81 ± 2.73 3.36 ± 3.10 3.62 ± 2.40
7 3.73 ± 2.05 2.78 ± 5.00 3.10 ± 1.70
8 7.21 ± 6.65 7.56 ± 8.80 7.52 ± 3.40
9 2.03 ± 3.30 1.25 ± 1.90 2.94 ± 2.10
10 3.43 ± 3.02 2.53 ± 3.29 2.63 ± 3.10

Average 3.34 ± 3.08 2.69 ± 3.73 3.36 ± 2.40

Fig. 1. Example cases from three different datasets.

Table 3 
The DSC and MDA between the directly drawn and deformably propagated 
contours for the first dataset.

Structure DSC MDA (mm)

DirOne MIM VelocityAI DirOne MIM VelocityAI

Bladder 0.96 0.95 0.96 0.90 0.93 0.68
Rectum 0.92 0.90 0.91 1.42 1.51 1.17
Prostate 0.86 0.88 0.94 1.10 1.11 0.87

Table 4 
The Average DSC and MDA between the directly drawn and deformably prop
agated contours for the second dataset.

Structure DSC MDA (mm)

DirOne MIM VelocityAI DirOne MIM VelocityAI

Lung-LT 0.97 ±
0.01

0.98 
±

0.01

0.98 ±
0.01

0.74 ±
0.32

0.71 
±

0.76

0.73 ±
0.51

Lung-RT 0.98 ±
0.01

0.99 
±

0.01

0.99 ±
0.01

0.76 ±
0.30

0.74 
±

0.67

0.75 ±
0.34

Heart 0.93 ±
0.02

0.95 
±

0.02

0.96 ±
0.02

2.44 ±
1.15

2.11 
±

1.10

2.27 ±
1.19

Spinal 
Cord

0.98 ±
0.01

0.99 
±

0.01

0.98 ±
0.01

0.28 ±
0.11

0.24 
±

0.18

0.26 ±
0.22
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Statistical analysis, including paired t-tests for DSC and MDA be
tween the two directions, further reinforced the reliability of the soft
ware. DirOne’s t-test results for DSC (t = 0.91, p = 0.392) and MDA (t =
0.64, p = 0.541) showed no significant differences between the SOT-to- 
EOT and EOT-to-SOT directions, confirming its directional consistency. 
Similar results were observed for MIM and VelocityAI, suggesting that 
all three software platforms are equally effective at handling bidirec
tional deformations. This level of consistency is crucial for clinical ap
plications that require accurate registration in both directions, such as 
adaptive radiotherapy and dose accumulation.

Clinical implications and future work

The successful benchmarking of DirOne against MIM and VelocityAI 
demonstrates its clinical viability. As radiotherapy increasingly relies on 
DIR for accurate dose delivery, contour propagation, and adaptive 
planning, the need for reliable and efficient DIR systems becomes even 
more critical. DirOne performance, particularly in maintaining accuracy 
and consistency across different datasets, supports its integration into 
clinical workflows.

However, there are areas where further optimization is needed. For 
example, the increased TRE observed in Case 8 of the thoracic dataset 
points to challenges in cases involving large deformations and artifacts. 
These limitations suggest the potential for further refinement of the DIR 
algorithm, particularly for cases involving significant respiratory motion 
or anatomical variability.

Additional testing of DirOne with other imaging modalities, such as 
MRI and PET, will be essential to validate its versatility and robustness. 
Given the increasing integration of multimodality imaging in radio
therapy, the ability to accurately register images from different modal
ities is important. Future work will also explore the use of DirOne in 
adaptive radiotherapy workflow, assessing its impact on treatment ac
curacy, efficiency, and clinical outcomes.

Conclusion

In conclusion, the new DIR functionality, DirOne from Cosylab’s 
software suite OncologyOne, has demonstrated performance compara
ble to that of MIM and VelocityAI, meeting the accuracy standards of 
AAPM TG-132 across multiple datasets. Its high accuracy in spatial 
registration and consistent performance in both deformation directions 
suggest it is well-suited for clinical applications in radiotherapy. While 
some challenges remain, such as handling extreme anatomical de
formations, DirOne holds promise as a valuable addition to the radio
therapy toolkit. Future studies will focus on validating its performance 
with additional imaging modalities and integrating it into adaptive 
treatment workflow to enhance patient care.

Table 5 
Average DSC and MDA across all patients for all software.

Structure Direction Average DSC Average MDA (mm)

DirOne MIM VelocityAI DirOne MIM VelocityAI

Parotid-RT EOT → SOT 0.87 ± 0.08 0.89 ± 0.07 0.88 ± 0.07 1.22 ± 0.77 1.05 ± 0.76 1.21 ± 0.86
SOT → EOT 0.88 ± 0.08 0.89 ± 0.07 0.87 ± 0.07 1.00 ± 0.60 0.94 ± 0.62 1.45 ± 0.93

Parotid-LT EOT → SOT 0.88 ± 0.07 0.90 ± 0.05 0.88 ± 0.06 1.03 ± 0.53 0.87 ± 0.44 1.13 ± 0.50
SOT → EOT 0.88 ± 0.08 0.90 ± 0.05 0.88 ± 0.05 0.99 ± 0.55 0.78 ± 0.36 1.18 ± 0.51

Mandible EOT → SOT 0.92 ± 0.01 0.94 ± 0.01 0.91 ± 0.01 0.57 ± 0.07 0.38 ± 0.05 0.67 ± 0.17
SOT → EOT 0.92 ± 0.01 0.94 ± 0.01 0.91 ± 0.03 0.53 ± 0.06 0.36 ± 0.04 0.71 ± 0.17

Eye-RT EOT → SOT 0.91 ± 0.02 0.95 ± 0.03 0.89 ± 0.02 0.57 ± 0.13 0.33 ± 0.15 0.72 ± 0.18
SOT → EOT 0.91 ± 0.04 0.95 ± 0.02 0.90 ± 0.04 0.55 ± 0.22 0.31 ± 0.13 0.77 ± 0.40

Eye-LT EOT → SOT 0.91 ± 0.01 0.95 ± 0.02 0.89 ± 0.03 0.59 ± 0.09 0.37 ± 0.11 0.83 ± 0.22
SOT → EOT 0.91 ± 0.03 0.95 ± 0.02 0.90 ± 0.03 0.56 ± 0.17 0.35 ± 0.10 0.67 ± 0.27

Spinal Cord EOT → SOT 0.92 ± 0.02 0.94 ± 0.01 0.90 ± 0.02 0.46 ± 0.16 0.31 ± 0.08 0.73 ± 0.22
SOT → EOT 0.91 ± 0.04 0.94 ± 0.02 0.90 ± 0.02 0.54 ± 0.25 0.35 ± 0.19 0.67 ± 0.17

Fig. 2. The differences in DSC and MDA between the deformation processes in 
the two opposite directions.

Table 6 
The consistency Statistics of DIR performance in both deformation directions.

Metric Statistics DirOne MIM VelocityAI

MDA t-statistic 0.64 0.92 0.39
p-value 0.54 0.39 0.71

DSC t-statistic 0.91 0.59 1.31
p-value 0.39 0.58 0.23
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