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Simultaneously estimating the kinematic state and extent of extended targets is a nonlinear and 
high-dimensional problem. While the extended Kalman filter (EKF) is widely employed to achieve 
this goal, it may not be sufficient for mobility targets. To address this issue, this paper first 
proposes to embed unscented Kalman filter (UKF) into Gaussian process regression (GPR) since 
the superiority of UKF to high nonlinear. Furthermore, given the widely-existed environment with 
time-varying noise, it is crucial to study the change of measurement noise covariance caused by 
time-varying noise for high-precision tracking of extended targets. However, traditional UKF filter 
considers measurement noise covariance as constant value. To this end, an adaptive unscented 
Kalman filter (AUKF) algorithm combining with GPR model (GPR-AUKF) is proposed to address 
the issue. Specifically, the GPR-AUKF algorithm is built based on expectation maximization (EM) 
algorithm to track the target state and covariance, and which updates the measurement noise 
covariance in real-time. Experimental results show that GPR-AUKF is more accurate and robust 
than other methods for tracking extended targets.

1. Introduction

Traditional target tracking algorithms are typically based on the point target model, where a target produces only a single measure-
ment at each scan. However, with advancements in sensor technology, the resolution accuracy of sensors has significantly improved 
[1–3]. Consequently, the target that could be returned a set of measurements by one sensor [4,5] is referred to as an extended target 
(ET). Extended target tracking (ETT) problems [6] have gained widespread applications, including maritime monitoring and surveil-
lance [7,8], autonomous driving [9,10], etc. By using a series of measurements, we can simultaneously track the state of target and 
identify its extent information.

K. Granström et al. [11–13] proposed simple shape model, which predefined shapes such as circles, rectangles, and lines based 
on the contours of extended targets. Koch et al. [14–16] introduced the random matrix model (RMM) to describe the shape of the 
extended target. The RMM is simple and effective in tracking extended target with basic geometric shapes, such as ellipse, star-convex, 
etc. Based on the RMM, Baum et al. [17–19] suggested a random hyper surface model (RHM) that employs the curve fitting method 
to parameterize shape boundary, making it suitable for basic geometric shapes, such as ellipse, star-convex, and three-dimensional 
graphics. In the RHM, shape parameters are estimated using Gaussian estimator, which provides high flexibility, but comes with the 
downsides of requiring extensive computation and complex calculations. However, those targets with irregular shape are commonly-
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existed in practical applications, and this is where Gaussian Process (GP) comes in. GP is a random process that consists of infinite 
dimensional normal distribution functions and is widely used in machine learning [20,21]. Wahlström et al. [22] presumed that the 
values of the target radial function under different angles follow a multidimensional normal distribution, and integrated Gaussian 
process regression (GPR) into the Bayes formula for the first time. Hence, the extended Kalman filter (EKF) algorithm combined with 
GPR for single extended target tracking is proposed under ideal environment. Lee et al. [23] applied the GP measurement model 
for extended target tracking with LiDAR measurement, which was combined with positive and negative information fusion to track 
vehicle targets on the road. The GPR model is capable of tracking not only convex extended targets, but also a variety of targets with 
different shapes within the scanning region. Therefore, this paper applies the GPR to model the extent of the extended target.

Although EKF in combination with GPR can effectively track the kinematic state and extent of extended targets [22], it may 
produce unsatisfactory estimation results with respect to targets with mobility due to issue of nonlinearity and dimensionality. To 
address this issue, the unscented Kalman filter (UKF) is a more appropriate solution for tracking extended targets. Therefore, in this 
paper, we focus on deducing derivatives by combining UKF and GPR to track maneuverable extended target. However, in practical 
target tracking environments, measurement noise may be time-varying [24]. However, current filters used to deal with variable 
measurement noise are applied to navigation systems of point targets [25–27]. Therefore, this paper proposes an adaptive unscented 
Kalman filter (AUKF) algorithm, which is based on the GPR to tackle the problem of time-varying measurement noise in extended 
target tracking. By incorporating expectation maximization (EM) algorithm, AUKF computes the optimal solution for the unknown 
noise in the model. Compared with traditional methods, the proposed algorithm has superior robustness and estimation accuracy.

In this paper, we model the extended target based on GPR and propose AUKF to update the state and covariance of the target in 
real-time. Therefore, the theory proposed in this paper is called GPR-AUKF.

The contributions of this paper can be summarized as follows: 1) To solve the problem of extended target tracking with mobility, 
we propose GPR-UKF by combining UKF with GPR, which has better robustness and adaptability for maneuverable target tracking; 2) 
To alleviate the problem of variable measurement covariance caused by time-varying measurement noise, we further propose GPR-
AUKF based on EM algorithm to simultaneously track the state of the extended target and update the measurement noise covariance in 
real-time; 3) We conduct extensive simulation experiments to compare the proposed GPR-UKF and GPR-AUKF with another competing 
method, i.e., GPR-EKF. Experimental results demonstrate the superior performance of both GPR-UKF and GPR-AUKF.

This paper is structured as follows: The next section introduces the dynamic model and measurement model with GPR. The fol-
lowing Section 3 is devoted to the derivation of the GPR-UKF algorithm and GPR-AUKF algorithm. Section 4 discusses the advantages 
and disadvantages of the proposed algorithm through experimental simulations. Subsequently, the paper concludes in Section 5.

2. Extended target model based on GPR

In this section, we will derive the state space model based on GPR [22], which includes dynamic and measurement equations as 
Eq. (1) ∼ Eq. (2).

𝑥𝑘+1 = 𝑓 (𝑥𝑘) +𝑤𝑘,𝑤𝑘 ∼𝑁(0,𝑄𝑘) (1)

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘, 𝑣𝑘 ∼𝑁(0,𝑅𝑘) (2)

where 𝑤𝑘 is process noise and 𝑄𝑘 is process noise covariance, 𝑣𝑘 is measurement noise and 𝑅𝑘 is measurement noise covariance. 𝑥𝑘
is target state, it includes the kinematic state 𝑥𝑘𝑖,𝑘 and extent state 𝑥𝑒,𝑘.

𝑥𝑘 = [(𝑥𝑘𝑖,𝑘)T, (𝑥𝑒,𝑘)T]T (3)

𝑥𝑘𝑖,𝑘 = [(𝑥𝑐,𝑘)T, 𝑥𝜑,𝑘, (𝑥∗,𝑘)T]T (4)

The target kinematic state and the target extent state are jointly estimated, we define the target position 𝑥𝑐,𝑘, orientation 𝑥𝜑,𝑘, 
and any additional optional state (𝑥∗,𝑘)T separately within the 𝑥𝑘𝑖,𝑘. The optional additional state (𝑥∗,𝑘)T represents the remaining 
state variables. In this work, it denotes the kinematic state (velocity and angular velocity) of the target.

2.1. Dynamic model

The target state 𝑥𝑘 = [𝑥𝑐,𝑘; 𝑥𝜑,𝑘; 𝑥′𝑐,𝑘; 𝑥
′
𝜑,𝑘

; 𝑥𝑒,𝑘] is described in dynamic equation.

𝑥𝑘+1 = 𝐹 ∗ 𝑥𝑘 +𝑤𝑘,𝑤𝑘 ∼𝑁(0,𝑄𝑘) (5)

where 𝐹 =
[
𝐹𝑘𝑖,𝑘 0
0 𝐹𝑒,𝑘

]
, 𝑤𝑘 =

[
𝑤𝑘𝑖,𝑘
𝑤𝑒,𝑘

]
,

𝑄 =
[
𝑄𝑘𝑖,𝑘 0
0 𝑄𝑒,𝑘

]
.

The dynamic equation of extended target consists of two parts: kinematic state transition equation and extent state transition 
equation. The kinematic state transition equation is:
2

𝑥𝑘𝑖,𝑘+1 = 𝐹𝑘𝑖,𝑘𝑥𝑘𝑖,𝑘 +𝑤𝑘𝑖,𝑘,𝑤𝑘𝑖,𝑘 ∼𝑁(0,𝑄𝑘𝑖,𝑘) (6)
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where 𝐹𝑘𝑖,𝑘 and 𝑄𝑘𝑖,𝑘 are the kinematic state transition matrix and the process noise covariance matrix respectively. The extent state 
transition equation is:

𝑥𝑒,𝑘+1 = 𝐹𝑒,𝑘𝑥𝑒,𝑘 +𝑤𝑒,𝑘,𝑤𝑒,𝑘 ∼𝑁(0,𝑄𝑒,𝑘) (7)

𝐹𝑒,𝑘 and 𝑄𝑒,𝑘 are the extent state transition matrix and the process noise covariance matrix respectively, which could be expressed 
as follows:

𝐹𝑒,𝑘 = 𝑒−𝛼𝑇 𝐼𝑀 (8)

𝑄𝑒,𝑘 = (1 − 𝑒−2𝛼𝑇 )𝑘(𝜃, 𝜃) (9)

where 𝐼𝑀 is the unit matrix of dimension 𝑀 and 𝑀 denotes dimension of the extent, the parameter 𝛼 ≥ 0 will determine the speed 
of the dynamics and can be considered as a forgetting factor. With 𝛼 = 0, all measurements that have been collected will be of 
equal importance, and older measurements will be given less weight as time increases; 𝑘(𝜃, 𝜃) is the Gaussian process covariance 
function. The Gaussian process covariance function determines the relationship between different function values, thereby decisively 
influencing the results of GPR. Currently, the most commonly used Gaussian process covariance function is with a period of 2𝜋:

𝑘2𝜋(𝜃, 𝜃′) = 𝜎2𝑓 𝑒
−

2sin2(
|||𝜃−𝜃′|||

2 )

𝑙2 + 𝜎2𝑟 (10)

where 𝜎2
𝑓

is the prior variance of the signal amplitude and 𝑙 is the length scale of the function that we want to learn. 𝜎2𝑟 is Gaussian 
prior covariance, and the 2𝜋 periodic covariance function is that it satisfies the characteristics of arbitrary target radial function, and 
for any 𝜃 value, 𝑓 (𝜃) and 𝑓 (𝜃 + 2𝜋) are completely positive correlation.

2.2. Measurement model

Under the measurement, the 𝑖 − 𝑡ℎ measurement at time 𝑘 can be expressed as follows:

𝑦
(𝑖)
𝑘

= 𝑥𝑐,𝑘 + 𝑠
(𝑖)
𝑘
𝑝
(𝑖)
𝑘
𝑓
(
𝜃
(𝑖)
𝐿,𝑘

)
+ 𝑒(𝑖)

𝑘
=∶ 𝑔(𝑥𝑘, 𝑒

(𝑖)
𝑘
), 𝑒𝑘 ∼𝑁(0,𝑅𝑘) (11)

the radial function 𝑓 (∙) represents the distance between the center and the contour at each angle. So 𝑓
(
𝜃
(𝑖)
𝐿,𝑘

)
represents the radial 

function at 𝜃(𝑖)
𝐿,𝑘

= 𝜃(𝑖)
𝐺,𝑘

−𝑥𝜑,𝑘 under the prior condition; 𝜃(𝑖)
𝐺,𝑘

is an angle in the global coordinate system, which is between the straight 
line from predicted position of the target to the measurement 𝑦(𝑖)

𝑘
and the positive direction of the axis; 𝜃(𝑖)

𝐿,𝑘
is in the local coordinate 

system. 𝑥𝑐,𝑘 is the position of the target (see Fig. 1), 𝑒(𝑖)
𝑘

is the sensor noise, and its covariance matrix 𝑅𝑘 is the zero mean noise; 

𝑝
(𝑖)
𝑘

=
[
cos(𝜃(𝑖)

𝐺,𝑘
) sin(𝜃(𝑖)

𝐺,𝑘
)
]𝑇

is an orientation vector; 𝑠(𝑖)
𝑘

is the scaling factor, 𝑠 ∈
[
0 1

]
, when 𝑠(𝑖)

𝑘
= 1, 𝑦(𝑖)

𝑘
is the target contour 

measurement; when 0 ≤ 𝑠(𝑖)
𝑘
< 1, 𝑦(𝑖)

𝑘
represents surface measurement. Through GPR, the distribution function of 𝑓

(
𝜃
(𝑖)
𝐿,𝑘

)
under the 

prior condition of the target extent can be calculated as:

𝑓 (𝜃(𝑖)
𝐿,𝑘

) ∼𝑁(𝐻 (𝑖)
𝑝,𝑘
𝑥𝑒,𝑘,𝑅

(𝑖)
𝑝,𝑘

) (12)

where

𝐻
(𝑖)
𝑝,𝑘

= 𝑘(𝜃(𝑖)
𝐿,𝑘
, 𝜃)[𝑘(𝜃, 𝜃)]−1 (13)

𝑅
(𝑖)
𝑝,𝑘

= 𝑘(𝜃(𝑖)
𝐿,𝑘
, 𝜃

(𝑖)
𝐿,𝑘

) −𝐻 (𝑖)
𝑝,𝑘
𝑘(𝜃, 𝜃(𝑖)

𝐿,𝑘
) (14)

If Eq. (12) is brought into Eq. (11), measurement equation of extended target based on GPR can be obtained:

𝑦
(𝑖)
𝑘

= 𝑥𝑐,𝑘 + 𝑠
(𝑖)
𝑘
𝑝
(𝑖)
𝑘
𝐻

(𝑖)
𝑝,𝑘
𝑥𝑒,𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐻
(𝑖)
𝑘
𝑥𝑘

+ 𝑠(𝑖)
𝑘
𝑝
(𝑖)
𝑘
[𝑓 (𝜃(𝑖)

𝐿,𝑘
) −𝐻 (𝑖)

𝑝.𝑘
𝑥𝑒,𝑘] + 𝑒

(𝑖)
𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑒
(𝑖)
𝑡𝑟,𝑘

∼𝑁(0,𝑅(𝑖)
𝑡𝑟,𝑘

)

(15)

the covariance 𝑅𝑘 of the pole diameter is determined by the measurement noise of the sensor; 𝐻 (𝑖)
𝑝,𝑘

is the measurement matrix 
of target state to 𝑦(𝑖)

𝑘
; 𝑒(𝑖)
𝑡𝑟,𝑘

is the zero mean Gaussian noise in the measurement equation. When the noise in GPR and the sensor 
measurement noise are assumed to be independent of each other, the covariance matrix of 𝑒(𝑖)

𝑡𝑟,𝑘
is:

𝑅
(𝑖)
𝐺𝑃 ,𝑘

= (𝑠(𝑖)
𝑘
𝑝
(𝑖)
𝑘
)𝑅(𝑖)
𝑝,𝑘

(𝑠(𝑖)
𝑘
𝑝
(𝑖)
𝑘
)𝑇 =∶𝑅(𝑠(𝑖)

𝑘
, 𝑥𝑘) (16)
3

𝑅
(𝑖)
𝑡𝑟,𝑘

=𝑅(𝑖)
𝐺𝑃 ,𝑘

+𝑅𝑘 (17)
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Fig. 1. Illustration of the parameterization and measurement model. We omit the time index 𝑘. The location of the object is 𝑥𝑐,𝑘. 𝑦𝑘 is measurement source corrupted 
with measurement noise 𝑒𝑘 . By anticlockwise rotating coordinates system x-y through an angle of 𝑥𝜑,𝑘, we have the depicted ellipse axes-aligned in reference frame 
[22].

3. Inference

In this section, we first derive the time and measurement update step utilizing the UKF. By leveraging the recursive estimation of 
kinematic parameters and extent information of the extended target, we propose GPR-AUKF combining EM algorithm with GPR-UKF 
to achieve real-time online tracking for time-varying measurement noise covariance. Since multiple measurements are generated at 
each time step, we are able to process each one independently and in any order we choose.

3.1. GPR-UKF algorithm

3.1.1. Time update

Since the time update of kinematic state and extent state follows a linear model, the time update can be performed with the 
standard UKF [28]. Let 𝜒𝑘 be the set of sigma points for the 𝑥𝑘 , these sigma points 𝜒𝑘 are positioned at the mean of the target state 
𝑥𝑘 and are symmetrically along the main axes of the covariance 𝑃𝑥𝑥,𝑘 . The 2𝑛 + 1 sigma points should be chosen as:

𝜒𝑘 =
[
𝑥𝑘, 𝑥𝑘 +

√
𝑚𝑃𝑥𝑥,𝑘, 𝑥𝑘 −

√
𝑚𝑃𝑥𝑥,𝑘

]
(18)

where 𝑚 is the weight coefficient, 𝑚 = 𝑛 + 𝜆, and 𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛 is a scaling parameter, which is used to reduce the total predicted 
error, and 𝑛 is the dimension of variables 𝑥𝑘 . The selection of 𝛼 controls the distribution state of sampling points. Generally, 𝛼 = 1, 
𝜅 is the parameter to be selected, and there is no limit on its specific value. To find the predicted state, the state transition function 
Eq. (5) is applied to the sigma points 𝜒𝑘, generating a new set of sigma points 𝑋𝑘 . The predicted state 𝑥−

𝑘+1, and the predicted 
covariance 𝑃−

𝑥𝑥,𝑘+1 are the weighted sample statistics of 𝑋𝑘 .

𝑋𝑘 = 𝐹𝜒𝑘 (19)

𝑥−
𝑘+1 =

2𝑛∑
𝑖=0
𝑤𝑚𝑋𝑘 (20)

𝑃−
𝑥𝑥,𝑘+1 =

2𝑛∑
𝑖=0
𝑤𝑐(𝑋𝑘 − 𝑥𝑘)(𝑋𝑘 − 𝑥𝑘)𝑇 +𝑄𝑘 (21)

⎧⎪⎨⎪⎩
𝑤𝑚(0) =

𝜆

𝑛+𝜆
𝑤𝑐(0) =

𝜆

𝑛+𝜆 + (1 − 𝛼2 + 𝛽)
𝑤𝑚(ℎ) =𝑤𝑐(ℎ) =

𝜆

2(𝑛+𝜆) , ℎ = 1 ∼ 2𝑛
(22)

where 𝑤𝑚 is the weight coefficient of the mean, and 𝑤𝑐 is the weight coefficient of covariance. The parameter of 𝛽 ≥ 0 is a non-
negative weight coefficient, which can combine the dynamic difference of higher-order terms in the equation, so that the influence 
of higher-order terms can be included, generally, 𝛽 = 2.

3.1.2. Measurement update

The measurements 𝑦𝑘 =
{
𝑦
(𝑗)
𝑘

}𝑛𝑘
𝑗=1

from time step 𝑘 are incorporated sequentially in the measurement update, where 𝑛𝑘 is the 

number of measurements generated at each time. For this purpose, let 𝑥(𝑖−1)
𝑘+1 and 𝑃 (𝑖−1)

𝑥𝑥,𝑘+1 denote the estimates for the state 𝑥𝑘 and 
covariance matrix 𝑃𝑥𝑥,𝑘, which have incorporated all measurements up to time 𝑘 and the measurements {𝑦(𝑗)

𝑘+1}
𝑖−1
𝑗=1 from time 𝑘 +1. In 
4

the measurement update, the next measurement 𝑦(𝑖)
𝑘+1 is incorporated in order to obtain the updated estimates 𝑥(𝑖)

𝑘+1 and 𝑃 (𝑖)
𝑥𝑥,𝑘+1. Note 
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that the predicted estimate of time is recorded as (∙)(0)
𝑘

. The measurements of a single scan are combined in any order, and slightly 
different results may be obtained for different orderings.

In our approach, we utilize a UKF to update the predicted state 𝑥−
𝑘+1 and covariance 𝑃−

𝑥𝑥,𝑘+1. When 𝑖 = 1, 𝑥(𝑖−1)
𝑘+1 = 𝑥−

𝑘+1, 𝑃
(𝑖−1)
𝑥𝑥,𝑘+1 =

𝑃−
𝑥𝑥,𝑘+1. We apply the unscented transform (UT) to take Υ(𝑖)

𝑘+1 into Eq. (15) and Eq. (16), which generate a set sigma points 𝑌 (𝑖)
𝑘+1 to 

represent the predicted observation 𝑌 (𝑖)
𝑘+1 and GPR model error �̄�(𝑖)

𝐺𝑃 ,𝑘+1.

Υ(𝑖)
𝑘+1 =

⎡⎢⎢⎢⎢⎣
(𝑥(𝑖−1)
𝑘+1 )𝑇

(𝑥(𝑖−1)
𝑘+1 +

√
𝑚𝑃

(𝑖−1)
𝑥𝑥,𝑘+1)

𝑇

(𝑥(𝑖−1)
𝑘+1 −

√
𝑚𝑃

(𝑖−1)
𝑥𝑥,𝑘+1)

𝑇

⎤⎥⎥⎥⎥⎦
𝑇 (23)

𝑌
(𝑖)
𝑘+1 = 𝑔(Υ

(𝑖)
𝑘+1, 𝑒

(𝑖)
𝑘
) (24)

𝑌
(𝑖)
𝑘+1 =

2𝑛∑
𝑖=0
𝑤𝑚𝑌

(𝑖)
𝑘+1 (25)

It is important to note that when using the GPR model, the difference from the measurement update of standard UKF is the noise 
error which includes both GPR model error and measurement noise (see Eq. (17)). Therefore, when calculating the covariance of the 
error, including the covariance of the GPR model error �̄�(𝑖)

𝐺𝑃 ,𝑘+1 and the measurement noise 𝑅𝑘.

𝑅
(𝑖)
𝐺𝑃 ,𝑘+1 = (𝑠(𝑖)

𝑘
𝑝
(𝑖)
𝑘
)𝑅(𝑖)
𝑝,𝑘

(𝑠(𝑖)
𝑘
𝑝
(𝑖)
𝑘
)𝑇 =∶𝑅(𝑠(𝑖)

𝑘
,Υ(𝑖)
𝑘+1) (26)

�̄�
(𝑖)
𝐺𝑃 ,𝑘+1 =

2𝑛∑
𝑖=0
𝑤𝑐𝑅

(𝑖)
𝐺𝑃 ,𝑘+1 (27)

𝑅
(𝑖)
𝑡𝑟,𝑘+1 = �̄�

(𝑖)
𝐺𝑃 ,𝑘+1 +𝑅𝑘 (28)

The weighted sample statistics of 𝑌 (𝑖)
𝑘+1 , i.e., is given by

𝑃
(𝑖)
𝑌 𝑌 ,𝑘+1 =

2𝑛+1∑
𝑖=0
𝑤𝑐(𝑌

(𝑖)
𝑘+1 − 𝑌

(𝑖)
𝑘+1)(𝑌

(𝑖)
𝑘+1 − 𝑌

(𝑖)
𝑘+1)

𝑇 +𝑅(𝑖)
𝑡𝑟,𝑘+1 (29)

The predicted cross correlation 𝑃 (𝑖)
𝑥𝑌 ,𝑘+1 is the sample cross correlation of 𝑋(𝑖)

𝑘+1 and 𝑌 (𝑖)
𝑘+1.

𝑃
(𝑖)
𝑥𝑌 ,𝑘+1 =

2𝑛+1∑
𝑖=0
𝑤𝑐(𝑋

(𝑖)
𝑘+1 − 𝑥

−
𝑘+1)(𝑌

(𝑖)
𝑘+1 − 𝑌

(𝑖)
𝑘+1)

𝑇 (30)

The Kalman filter gain is

𝐾
(𝑖)
𝑘+1 = 𝑃

(𝑖)
𝑥𝑌 ,𝑘+1𝑃

(𝑖)−1
𝑌 𝑌 ,𝑘+1 (31)

and the estimates of the state and covariance are{
𝑥
(𝑖)
𝑘+1 = 𝑥

(𝑖−1)
𝑘+1 +𝐾 (𝑖)

𝑘+1(𝑦
(𝑖)
𝑘+1 − 𝑌

(𝑖)
𝑘+1)

𝑇 )
𝑃
(𝑖)
𝑥𝑥,𝑘+1 = 𝑃

(𝑖−1)
𝑥𝑥,𝑘+1 −𝐾

(𝑖)
𝑘+1𝑃

(𝑖)
𝑌 𝑌 ,𝑘+1𝐾

(𝑖)𝑇
𝑘+1

(32){
𝑥𝑘+1 = 𝑥

(𝑛𝑘)
𝑘+1

𝑃𝑥𝑥,𝑘+1 = 𝑃
(𝑛𝑘)
𝑥𝑥,𝑘+1

(33)

3.2. GPR-AUKF algorithm

The EM algorithm can solve the maximum likelihood estimation problem with latent variables. We take the state of target as a 
latent variable that cannot be directly observed, and regard measurement noise covariance as the current estimated parameter. Based 
on the EM algorithm, the posterior probability distribution of the state of target is calculated based on the initial measurement noise 
covariance. Then, measurement noise covariance is updated through the obtained posterior probability distribution.

To alleviate the problem caused by variable measurement noise covariance. By applying EM algorithm, we update the measurement 
noise covariance of the extended target at each moment. The maximum likelihood estimation of measurement noise covariance 𝑅𝑘+1
is written as �̂�𝑘+1, which is described as follows:

�̂�𝑘+1 = argmax
𝑅𝑘+1

𝑝𝑅𝑘+1 (𝑦𝑘+1)
(34)
5

= argmax log
𝑅𝑘+1

𝑝𝑅𝑘+1 (𝑦𝑘+1)
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where 𝑝𝑅𝑘+1 (∙) is the probability density function (PDF) related to the parameter 𝑅𝑘+1 . We only iterate once to obtain the local 
optimal solution of 𝑅𝑘+1. Then, the minimum variance estimation 𝑄(𝑅𝑘+1, 𝑅

[0])
𝑘+1) is used to approximate log𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1).

𝐿𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1)
.
=𝑄(𝑅𝑘+1,𝑅

[0])
𝑘+1)

=𝐸𝑋 [log𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1)|𝑅[0]
𝑘+1, 𝑦𝑘+1]

= ∫ log𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1)𝑝𝑅[0]
𝑘+1

(𝑥𝑘+1, 𝑦𝑘+1)𝑑𝑥𝑘+1

(35)

where 𝐸𝑋 [∙] is an expectation of 𝑥𝑘+1; 𝑅[0]
𝑘+1 is an approximate solution of �̂�𝑘+1 at iteration 0, 𝑄(𝑅𝑘+1, 𝑅

[0]
𝑘+1) is defined as the 

conditional expectation of log𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1).

3.2.1. The expectation approach

log𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1) is factored using Eq. (36):

log𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1) = log[𝑝𝑅𝑘+1 (𝑦𝑘+1|𝑥𝑘+1, 𝑦1∶𝑘) ∗ 𝑝𝑅𝑘+1 (𝑥𝑘+1|𝑦1∶𝑘)𝑝(𝑦𝑘)]
= log[𝑝𝑅𝑘+1 (𝑦𝑘+1|𝑥𝑘+1, 𝑦1∶𝑘)] + log[𝑝𝑅𝑘+1 (𝑥𝑘+1|𝑦1∶𝑘)] + log[𝑝(𝑦1∶𝑘)]

(36)

where 𝑝𝑅𝑘+1 (𝑦𝑘+1|𝑥𝑘+1, 𝑦1∶𝑘) = 𝑝𝑅𝑘+1 (𝑦𝑘+1|𝑥𝑘+1), because includes all of the information in 𝑦1∶𝑘.
Remark: The predicted PDF 𝑝𝑅𝑘+1 (𝑥𝑘+1|𝑦1∶𝑘) is approximated to follow the Gaussian distribution; then, the 2𝑛 + 1 sigma points are 

selected, and the moment estimation of 𝑝𝑅𝑘 (𝑥𝑘+1|𝑦1∶𝑘) is calculated using the unscented transformation. The mean and covariance matrix of 
𝑝𝑅𝑘 (𝑥𝑘+1|𝑦1∶𝑘) with higher accuracy are acquired for the nonlinear state equation.

𝑝𝑅𝑘 (𝑥𝑘+1|𝑦1∶𝑘) =𝑁(𝑥𝑘+1;𝑥−𝑘+1, 𝑃
−
𝑥𝑥,𝑘+1) (37)

where 𝑁(∙, 𝜇, 𝜎2) is the Gaussian distribution with the mean 𝜇 and covariance 𝜎2. Calculating the state vector 𝑥−
𝑘+1 and covariance 

matrix 𝑃−
𝑥𝑥,𝑘+1 are the same as Eqs. (18) ∼ (22).

When 𝑖 = 1, 𝑥(𝑖−1)
𝑘+1 = 𝑥−

𝑘+1, 𝑃
(𝑖−1)
𝑥𝑥,𝑘+1 = 𝑃

−
𝑥𝑥,𝑘+1. Similarly, 𝑝𝑅𝑘 (𝑦

(𝑖)
𝑘+1|𝑥(𝑖)𝑘+1) is approximated as

𝑝𝑅𝑘 (𝑦
(𝑖)
𝑘+1|𝑥(𝑖)𝑘+1) =𝑁(𝑦(𝑖)

𝑘+1;𝑌
(𝑖)
𝑘+1,𝑅𝑘+1) (38)

where the predicted measurement vector 𝑌 (𝑛𝑘)
𝑘+1 is calculated as Eq. (25). The measurement error covariance matrix 𝑃 (𝑖)

𝑌 𝑌 ,𝑘+1 and cross 
error covariance matrix 𝑃 (𝑖)

𝑥𝑌 ,𝑘+1 are calculated as follows:

𝑃
(𝑖)
𝑌 𝑌 ,𝑘+1 =

2𝑛+1∑
𝑖=0
𝑤𝑐(𝑌

(𝑖)
𝑘+1 − 𝑌

(𝑖)
𝑘+1)(𝑌

(𝑖)
𝑘+1 − 𝑌

(𝑖)
𝑘+1)

𝑇 +𝑅(𝑖)
𝐺𝑃 ,𝑘+1 +𝑅𝑘 (39)

Then updating the estimates of the state 𝑥𝑘+1 and covariance 𝑃𝑥𝑥,𝑘+1 as Eqs. (30) ∼ (33).

The posterior PDF is 𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1) while 𝑅𝑘+1 =𝑅
[0]
𝑘+1 is approximated as the Gaussian PDF:

𝑝
𝑅
(0)
𝑘+1

(𝑥𝑘+1, 𝑦𝑘+1) =𝑁(𝑥𝑘+1;𝑥
[1]
𝑘+1, 𝑃

[1]
𝑘+1) (40)

where the mean and covariance of 𝑥𝑘+1 are 𝑥[1]
𝑘+1 and 𝑃 [1]

𝑘+1. Different from the linearization method mentioned above, the unscented 
transformation is employed in the measurement process update. The integration calculation for the nonlinear function is transformed 
into the weight sum for sigma points so that the negative effect caused by the truncation error is reduced. The computational procedure 
is presented.

Employing Eqs. (35) ∼ (38), log𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1) can be deduced using Eq. (40):

log𝑝𝑅𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1) = −0.5(𝑦(1∶𝑛𝑘)
𝑘+1 − 𝑌 (1∶𝑛𝑘)

𝑘+1 )𝑇 𝑅−1
𝑘+1(𝑦

(1∶𝑛𝑘)
𝑘+1 − 𝑌 (1∶𝑛𝑘)

𝑘+1 )

− 0.5(𝑥(1∶𝑛𝑘)
𝑘+1 − �̂�−

𝑘+1)
𝑇 (𝑃−

𝑥𝑥,𝑘+1)
−1(𝑥(1∶𝑛𝑘)

𝑘+1 − �̂�−
𝑘+1)

− 0.5 log ||𝑅𝑘+1||− 0.5 log |||𝑃−
𝑥𝑥,𝑘+1

|||+ 𝑐
(41)

where |∙| represents the determinant operation of a matrix, and 𝑐 represents a constant value with regard to the variable 𝑅𝑘+1 . 
Eventually, 𝑄(𝑅𝑘+1, 𝑅

[0]
𝑘+1) can be simplified as

𝑄(𝑅𝑘+1,𝑅
[0]
𝑘+1) = −0.5 log ||𝑅𝑘+1||− 0.5𝑡𝑟(𝑀𝑘+1𝑅−1

𝑘+1) − 0.5 log |||𝑃−
𝑥𝑥,𝑘+1

|||− 0.5𝑡𝑟[𝑁𝑘+1(𝑃−
𝑥𝑥,𝑘+1)

−1] + 𝑐 (42)

where 𝑡𝑟(∙) represents the trace operation of a matrix, 𝑀𝑘+1 and 𝑁𝑘+1 are obtained by

𝑀𝑘+1 = ∫ (𝑦(1∶𝑛𝑘)
𝑘+1 − 𝑌 (1∶𝑛𝑘)

𝑘+1 )(𝑦(1∶𝑛𝑘)
𝑘+1 − 𝑌 (1∶𝑛𝑘)

𝑘+1 )𝑇 𝑁(𝑥𝑘+1;𝑥
[1]
𝑘+1, 𝑃

[1]
𝑘+1)𝑑𝑥𝑘+1 (43)
6

𝑁𝑘+1 = ∫ (𝑥(1∶𝑛𝑘)
𝑘+1 − 𝑥−

𝑘+1)(𝑥
(1∶𝑛𝑘)
𝑘+1 − 𝑥−

𝑘+1)
𝑇 𝑁(𝑥𝑘+1;𝑥

[1]
𝑘+1, 𝑃

[1]
𝑘+1)𝑑𝑥𝑘+1 (44)
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3.2.2. The maximization approach

The maximization step includes the maximization of 𝑄(𝑅𝑘+1 , 𝑅
[0]
𝑘+1). In order to find the extreme point, the first-order derivative 

of 𝑄(𝑅𝑘+1, 𝑅
[0]
𝑘+1) should be obtained and set as equal to 0.

𝜕𝑄(𝑅𝑘+1,𝑅
[0]
𝑘+1)

𝜕𝑅𝑘+1
= −0.5𝑅−1

𝑘+1 + 0.5𝑅−1
𝑘+1𝑀𝑘+1𝑅

−1
𝑘+1 = 0 (45)

solving Eq. (45), then

𝑅𝑘+1 =𝑀𝑘+1 (46)

as a result,

𝑅𝑘+1 = (𝑦(1∶𝑛𝑘)
𝑘+1 − 𝑌 (1∶𝑛𝑘)

𝑘+1 )(𝑦(1∶𝑛𝑘)
𝑘+1 − 𝑌 (1∶𝑛𝑘)

𝑘+1 )𝑇 (47)

Thus, the measurement noise covariance is updated.

4. Simulation

In this section, we will first introduce the indexes for tracking targets. During the experiments, we thoroughly evaluate the tracking 
performance of the proposed method.

4.1. Evaluation index

4.1.1. RMSE

The position and orientation errors of target can be measured using Root Mean Square Error (RMSE).

4.1.2. IOU

IOU reflects the accuracy of the algorithm in estimating the extent of the target. Assuming that 𝑆 and �̂� are the true extent and 
estimated extent of the target respectively, the calculation method of IOU is as follows:

𝐼𝑂𝑈 (𝑆, �̂�) = 𝑎𝑟𝑒𝑎(𝑆 ∩ �̂�)
𝑎𝑟𝑒𝑎(𝑆 ∪ �̂�)

(48)

where 𝑎𝑟𝑒𝑎(∙) represents the calculated area, so the value of 𝐼𝑂𝑈 (𝑆, �̂�) is within the interval [0,1]. When 𝐼𝑂𝑈 (𝑆, �̂�) = 1, it indicates 
that the estimated target shape completely coincides with the actual target extent; when 𝐼𝑂𝑈 (𝑆, �̂� ) = 0, the estimated extent and 
the real extent of the target is non-intersect. IOU is easily affected by the accuracy of target kinetic state estimation, and the large 
error of position can easily lead to 𝐼𝑂𝑈 (𝑆, �̂�) = 0.

4.2. Experimental results and analysis

In this section, we evaluate the performance of the proposed method and compare it with relevant extended target tracking 
algorithms in the literature. We set up two groups of simulation experiments, the first group involves setting up moving targets 
with different levels of mobility and the second is to track maneuvering target under varying measurement noise. The results of the 
experiments demonstrate that GPR-AUKF is suitable for tracking targets with different levels of mobility and varying measurement 
noise. The presented results are the average of the 100 Monte Carlo runs.

4.2.1. Distinct maneuverability

During the simulation experiment, the ellipse targets with different levels of maneuverability follow different trajectories. The 
first scenario involves the constant velocity (CV) model for target motion trajectory and the second scenario uses both the CV and 
constant turn rate and velocity (CTRV) models, the last scenario uses the collaborative turning (CT) model.

For the proposed model, the hyper-parameters of the Gaussian process have been set to 𝜎𝑟 = 0.8, 𝜎𝑓 = 2 and the length scale of 
the function is set to 𝑙 = 𝜋∕8 (see Eq. (10)). The initial measurement noise covariance is set to 𝑅0 = 4𝐼2, and the sampling time is set 
to 𝑇 = 1 and 𝑤 represents the turning radius.

We test the algorithms on moving objects with different maneuverability, i.e., a CV model(S1), a model combining CV and CTRV 
(S2), and a CT model(S3). The first scenario is CV model which involves a linear path with a constant velocity of 0.14𝑚∕𝑠; and the 
second scenario, which is a combination of linear paths and turns, is generated. The object first moves on a linear path with 0.14𝑚∕𝑠
in the horizontal orientation, then makes a turn with 0.14𝑚∕𝑠 and runs with a change in direction of 𝜋∕300𝑟𝑎𝑑∕𝑠, and again follows 
a linear path, maintaining the original velocity. The last scenario is CT model, for a maneuvering target, its velocity is 1𝑚∕𝑠 which 
remains unchanged, and its orientation is variable in real-time. Assuming that the size of the extended object is constant (plus noise), 
a target that follows a variable turn-rate model is simulated, its turn rate starts with 𝜋∕300(𝑟𝑎𝑑∕𝑠) in the first 150𝑘 and increases to 
7

𝜋∕250(𝑟𝑎𝑑∕𝑠) from 150𝑘 − 463𝑘, then ends with 𝜋∕200(𝑟𝑎𝑑∕𝑠) in the last 50𝑘.
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Table 1

RMSE of the target position, orientation and intersection-over-union (IOU) with respect to different tracking algorithms. The numbers are averaged 
over 100 MC runs.

Trajectory S1 S2 S3

Method GPR-EKF GPR-UKF GPR-AUKF GPR-EKF GPR-UKF GPR-AUKF GPR-EKF GPR-UKF GPR-AUKF

Center(m) 1.1056 0.7441 0.7039 1.1945 0.8970 0.7052 1.9486 1.4625 1.1868

IOU 0.6137 0.6681 0.6670 0.5965 0.6359 0.6432 0.5399 0.5802 0.6178

Orientation(rad) 0.2357 0.2138 0.2110 0.2442 0.2239 0.2183 0.2585 0.2179 0.1746

Table 2

RMSE of the target position, orientation and intersection-over-union (IOU) with respect to different track-
ing algorithms. the numbers are averaged over 100 MC runs.

Trajectory Low measurement noise High measurement noise

Method GPR-EKF GPR-UKF GPR-AUKF GPR-EKF GPR-UKF GPR-AUKF

Center(m) 1.7368 1.1711 0.9106 2.1166 1.6226 1.2640

IOU 0.6156 0.6820 0.7282 0.5098 0.5549 0.6133

Orientation(rad) 0.2265 0.1995 0.1721 0.2159 0.2048 0.1730

The number of measurements at each scan follows Poisson distributed. The measurement noise covariance of GPR-EKF and GPR-
UKF is constantly set to 𝑅 = 4𝐼2. The measurement covariance of GPR-AUKF is updated in real-time with the update of the state and 
covariance of the target. The object is an ellipse with a semi-major axis of 17𝑚 and a semi-minor axis of 4𝑚. As shown in [26], we 
set the real measurement noise covariance of the target as

𝑅𝑘 = 30 ∗ (0.1 + 0.05 ∗ cos(𝜋 ∗ 𝑘
𝑡

)) ∗
[
1 0
0 1

]
(49)

Fig. 2 presents the comparison results of trajectory (left column) and error results (right column) for GPR-UKF, GPR-AUKF, and 
GPR-EKF. Additionally, Table 1 displays the target tracking error.

Looking at Fig. 2, it is evident that the performance of the proposed GPR-AUKF is superior to both GPR-EKF and GPR-UKF. 
Moreover, GPR-UKF shows better robustness than GPR-EKF in extended target tracking. In combination with Table 1, we analyze the 
error in Fig. 2. In Fig. 2(b), under the CV model, the tracking error is relatively smooth. For our proposed GPR-UKF, the position error 
is reduced to 0.7441𝑚, the IOU is increased to 0.6681, and the orientation error is decreased to 0.2138𝑟𝑎𝑑. Compared to GPR-EKF, 
this method exhibits better robustness. With our proposed GPR-AUKF, the position error is further reduced to 0.7039𝑚, the IOU 
is increased to 0.6670, and the orientation error is reduced to 0.2110𝑟𝑎𝑑. When compared to GPR-EKF and GPR-UKF, GPR-AUKF 
achieves the highest tracking performance. In Fig. 2(d), the error will jitter as the target maneuverability shifts and then remain 
smooth. Compared to GPR-EKF, by employing the proposed GPR-UKF, the position error is reduced by 0.2975𝑚, the IOU is increased 
by 0.0394, and the orientation error is decreased by 0.0332𝑟𝑎𝑑. Compared to GPR-UKF, by adopting GPR-AUKF, the position error is 
reduced by 0.1918𝑚, the IOU is increased by 0.0073, and the orientation error is decreased by 0.0056𝑟𝑎𝑑. In Fig. 2(f), as the target 
maneuverability increases, the tracking error becomes larger. The tracking accuracy of GPR-AUKF is further improved compared to 
the other two filter algorithms. It can be clearly seen that the proposed GPR-UKF outperforms GPR-EKF for targets with stronger 
mobility, and the proposed GPR-AUKF performs better than GPR-UKF in all aspects of tracking performance.

Moreover, for each time step 𝑘, GPR-EKF runs for 0.0055𝑠, GPR-UKF runs for 0.04𝑠, and GPR-AUKF runs for 0.05𝑠. Although 
GPR-EKF is superior in running time compared to GPR-UKF and GPR-AUKF, its accuracy in estimating the shape and position of 
extended targets is limited.

4.2.2. Different measurement noises

As we focus on the variable measurement noise of the target tracking, we restrict trajectory to S3 in the Section 4.2.1. The only 
change is the measurement noise covariance. We set the covariance of low measurement noise as

𝑅𝑘 = 3 ∗ (0.1 + 0.05 ∗ cos(𝜋 ∗ 𝑘
𝑡

)) ∗
[
1 0
0 1

]
(50)

and the high measurement noise covariance as

𝑅𝑘 = 30 ∗ (0.1 + 0.05 ∗ cos(𝜋 ∗ 𝑘
𝑡

)) ∗
[
4 0
0 1

]
(51)

The simulation results are presented in Fig. 3. Table 2 shows the RMSM of position, orientation, and the IOU of tracking results. As 
can be clearly seen from Table 2, under low measurement noise, by adopting GPR-UKF, the position error is decreased from 1.7368𝑚
to 1.1711𝑚. At the same time, the IOU is increased from 0.6156 to 0.6820, and the orientation error is reduced from 0.2265𝑟𝑎𝑑 to 
0.1995𝑟𝑎𝑑. When employing GPR-AUKF, the position error further decreases from 1.1711𝑚 to 0.9106𝑚, the IOU increases from 0.6820
8

to 0.7282, and the orientation error is reduced from 0.1995𝑟𝑎𝑑 to 0.1721𝑟𝑎𝑑. In the case of high measurement noise, when comparing 
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Fig. 2. Example results for tracking target with different maneuverability. The moving trajectories are in the left column and the tracking errors of the target position, 
extent, and orientation are shown in the right column. True target (black contour) is compared with the proposed two methods, i.e., GPR-UKF (magenta contour) and 
GPR-AUKF (red contour), and other competing method, GPR-EKF (green contour). The black dashed line represents the moving trajectory which is connected by the 
center position of the target at each moment, and the measurements are depicted as black dots. (a) Motion model: S1, (c) Motion model: S2, (e) Motion model: S3, 
(b) Tracking error of S1, (d) Tracking error of S2, (f) Tracking error of S3.

GPR-UKF with GPR-EKF, the position error is reduced by 0.4940𝑚, the IOU is increased by 0.0451, and the orientation error is reduced 
by 0.0111𝑟𝑎𝑑. When comparing GPR-AUKF with GPR-UKF, the position error is reduced by 0.3586𝑚, the IOU is increased by 0.0584, 
and the orientation error is reduced by 0.0318𝑟𝑎𝑑. Simultaneously, when considering the tracking results under the measurement 
noise covariance of S3 in Section 4.2.1, it is evident that GPR-AUKF is more robust in tracking the position, extent, and orientation 
of the extended target both at low and high measurement noise. Moreover, GPR-UKF has better performance than GPR-EKF. From 
Fig. 3(b) and Fig. 3(d), it can be concluded that GPR-AUKF has more obvious advantages over GPR-EKF and GPR-UKF in the case of 
9

high measurement noise.
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Fig. 3. Example results for tracking target with different measurement noises. The moving trajectories are in the left column and the tracking errors of the target 
position, extent, and orientation are shown in the right column. True target (black contour) is compared with the proposed two methods, i.e., GPR-UKF (magenta 
contour) and GPR-AUKF (red contour), and other competing method, GPR-EKF (green contour). The black dashed line represents the moving trajectory which is 
connected by the center position of the target at each moment, and the measurements are depicted as black dots. (a) Low measurement noise, (c) High measurement 
noise, (b) Tracking error of low measurement noise, (d) Tracking error of high measurement noise.

We can see that the entire system is very stable regardless of different maneuverability conditions or environments with different 
measurement noises.

There are two main reasons for this: First, the measurement noise changes over time during target tracking, which leads to larger 
measurement error if the measurement noise covariance is not updated in real time. However, the measurement noise covariance 
of GPR-EKF and GPR-UKF is fixed value while GPR-AUKF realizes the real-time update. Second, the target state is not linearized in 
GPR-AUKF and GPR-UKF, so the truncation error may be eliminated, and thus the performance of GPR-AUKF and GPR-UKF is better 
than that of GPR-EKF.

5. Conclusion

The conventional EKF faces challenges in unknown and variable environments. To address this issue, a new closed form tracker 
called GPR-AUKF is proposed in this paper for the estimation of extended targets. The process of tracking algorithm focuses on two 
key points: 1) combining the GPR with UKF to achieve high-precision tracking of extended targets with maneuverability; 2) utilizing 
EM to update measurement noise covariance. Experimental simulation results show that GPR-AUKF outperforms GPR-EKF in terms 
of kinematic state and extent estimation.

In the future, we will expand this method to tracking extended targets in three-dimensional environment or embed it into multiple 
target trackers, such as PHD filter.
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