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Human islets display a high degree of heterogeneity in terms of size, number, architecture, and endocrine cell-type 
compositions. An ever-increasing number of immunohistochemistry-stained whole slide images (WSIs) are available 
through the online pathology database of the Network for Pancreatic Organ donors with Diabetes (nPOD) program 
at the University of Florida (UF). We aimed to develop an enhanced machine learning-assisted WSI analysis workflow 
to utilize the nPOD resource for analysis of endocrine cell heterogeneity in the natural history of type 1 diabetes (T1D) 
in comparison to donors without diabetes. To maximize usability, the user-friendly open-source software QuPath was 
selected for the main interface. The WSI data were analyzed with two pre-trained machine learning models 
(i.e., Segment Anything Model (SAM) and QuPath's pixel classifier), using the UF high-performance-computing cluster, 
HiPerGator. SAM was used to define precise endocrine cell and cell grouping boundaries (with an average quality score 
of 0.91 per slide), and the artificial neural network-based pixel classifier was applied to segment areas of insulin- or 
glucagon-stained cytoplasmic regions within each endocrine cell. An additional script was developed to automatically 
count CD3+ cells inside and within 20 μm of each islet perimeter to quantify the number of islets with inflammation 
(i.e., CD3+ T-cell infiltration). Proof-of-concept analysis was performed to test the developed workflow in 12 subjects 
using 24 slides. This open-source machine learning-assisted workflow enables rapid and high throughput determina-
tions of endocrine cells, whether as single cells or within groups, across hundreds of slides. It is expected that the use of 
this workflow will accelerate our understanding of endocrine cell and islet heterogeneity in the context of T1D 
endotypes and pathogenesis. 
Introduction 

Type 1 diabetes (T1D) is an autoimmune disease characterized by the 
destruction of insulin-producing pancreatic islet β-cells. Islets of 
Langerhans are clusters of cells in the pancreas that secrete hormones, in-
cluding insulin from beta cells and glucagon from alpha cells, to regulate 
blood sugar levels.1 Clinical onset of T1D occurs when there is insufficient 
functional β-cell mass resulting in hyperglycemia. As T1D develops, loss of 
β-cells occurs as well as inflammation of the islets (CD3+ T-cell 
infiltration).2 To aid in concordance between studies of T1D histopathol-
ogy, a consensus definition of CD3+ T-cell infiltration was established in 
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2013: T1D was defined by the presence of ≥3 islets without β-cells (also 
called pseudoatrophic islets) and CD3+ T-cell infiltration as the presence 
of ≥3 islets with ≥15 CD45+ cells within or touching the perimeter of 
an islet.3 Further studies expanded the definition to include islets with 
≥6  infiltrating CD3+ cells as insulitic .2 

Several challenges have limited research on the pathogenesis of T1D, at-
tributed to the following factors: first, a high degree of heterogeneity 
among pancreas islets (i.e., the number of each endocrine cell type and 
total endocrine cells within each islet). Second, manual analysis for detect-
ing and quantifying islets is time-consuming given the large number of is-
lets in each whole slide image (WSI).4 Third, studying the histopathology
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of T1D in living subjects is not feasible due to severe complications associ-
ated with pancreatic biopsy.5 

Computational pathology is a growing field in clinical and research pa-
thology that is expected to hasten understanding of disease pathogenesis 
using microscopic tissue sections.6,7 Manual histopathological analysis 
can be time consuming and subject to individual bias leading to limited re-
producibility and consistency between studies due to the heterogeneity of 
human pancreas.8–10 Additionally, it is challenging to find qualified pathol-
ogists to perform manual histopathological analysis. In contrast, WSI anal-
ysis offers numerous advantages, particularly the ability to assess changes 
across a very large number of subjects and tissue sections. Recently, WSI 
analysis using ImageJ or QuPath software has been applied in several stud-
ies of endocrine cell heterogeneity in the context of T1D pathogenesis.11–14 

The Network for Pancreatic Organ Donors with Diabetes (nPOD) program15 

provides online access to numerous human pancreatic WSI of various T1D 
risk-levels, ranging from donors with no diabetes (ND), ND but islet 
autoantibody-positive (AAb+) individuals, and those with T1D ranging 
in durations from onset to ≥50 years. Additionally, multiple WSI are 
often available from three regions of the pancreas: head, body, and tail. 
The serial sections are stained by standard hematoxylin and eosin (H&E) 
and also multiplex immunohistochemistry (IHC) to differentially label 
islet endocrine cells or CD3+ lymphocytes.16 Corresponding donor demo-
graphics, clinical history, and laboratory assessments are also collected. We 
aimed to develop an enhanced machine learning-assisted WSI analysis 
workflow to utilize the online pathology nPOD resource for the analysis 
of endocrine cell heterogeneity in the natural history of T1D with open-
source software. 

Technical background and objectives 

Deep learning-based segmentation and object detection models have 
substantially improved WSI analysis more accurate, rapid, and reproduc-
ible. Machine learning methods such as extreme gradient boosting 
(XGBoost), convolutional neural networks (CNNs), and transfer learning 
have been utilized for analyzing bioimages for detection, segmentation, 
and classification. The transfer learning was utilized to improve the classi-
fication performance for WSI patches,17 and it also enhanced the perfor-
mance of CNN networks in the detection and classification of breast 
cancer.18 Additionally, novel data augmentation techniques were sug-
gested to further improve the CNN-based model for breast cancer detection 
and classification.19 A CNN was also used to classify kidney cancer 
subtype20 and to detect and diagnose prostate cancer.21 Alternatively, a 
random forest was harnessed to diagnose breast cancer.22 

Few studies have focused on analyzing the pathology of T1D: large-scale 
image analysis of endocrine cells and immune cells through semi-
automated methodology through ImageJ,23 endocrine cell quantification 
of ND and AAb+ donors using ImageJ,24 using random forest-based pixel 
classifier to segment of islets through QuPath,25 and a CNN model was 
harnessed to detect pancreatic islet regions.26 

Instance segmentation27,28 which outlines each object in an image at 
the pixel level, has been widely and increasingly used in recent medical 
image analysis.29–32 Segment Anything Model (SAM),33 a  foundation
image segmentation model trained by huge amount of data, is capable of 
identifying cellular objects with precise boundarie s.29,34,35 SAM is a 
prompt-based segmentation model that comprises an image encoder, 
prompt encoder, and mask decoder. It processes prompts such as points, 
boxes, or text to generate the ground truth of the image and returns the 
highest-quality mask among the three generated masks. The artificial neu-
ral network (ANN)-based pixel classifier is a model used to classify individ-
ual pixels based on RGB vectors, allowing for the differentiation of the 
various cell types by analyzing the designated RGB stain values. 

With the advancement of user-friendly pathology applications like the 
open-source QuPath,36 researchers are striving to expedite accurate islet 
and single cell analyses. QuPath offers diverse functions for analyzing 
bioimages, including cell detection and the ANN-based pixel classifier. Ad-
vanced deep learning models, such as Deep MIB,37 SAMapi,34 Stardist,38 
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WSInfer,39 can be utilized in the user-friendly interface, QuPath. It also pro-
vides the flexibility to craft customized scripts to facilitate more advanced 
processes. 

This work aimed to develop an enhanced machine learning-assisted 
WSI analysis workflow to analyze islet heterogeneity by leveraging the 
WSI data collected from nPOD. nPOD dataset is publicly available for study-
ing objectives.40 The University of Florida's high-performance-computing 
resource known as HiPerGator aids in handling large sizes of the WSI 
data and using pre-trained deep learning models that can be used through 
QuPath. Fig. 1 illustrates how this developed workflow can be used to accel-
erate the analysis of pancreatic WSIs for islet segmentation, area segmenta-
tion of insulin and glucagon cells inside each islet, and CD3+ cell 
detection.

Developed workflow 

QuPath (v0.4.4) was selected as the main interface for the developed 
workflow. Additional groovy scripts were developed to apply the inner ca-
pabilities of QuPath to streamline data processing. The deep segmentation 
model SAM trained by microscopy data35 through SAMapi (v0.5.0)34 and 
ANN-based pixel classifier provided the most accurate quantification of 
islet measurements. This combined methodology is crucial for analyzing 
pancreatic WSI images due to the diverse conditions of stain values under 
which data were collected. Additionally, a function implemented in 
QuPath, positive cell detection, was applied to detect the number of im-
mune cells (CD3+ cells) around the segmented islets, considering the 
stain values of cells. Fig. 2 illustrates the developed methodology consisting 
of six steps. Each step of the developed methodology is described in more 
detail in the following sections, along with explanations of how to use the 
scripts provided as supplementary materials and case examples.

Color deconvolution 

Due to variability in the color stain spectrum across the brightfield WSI 
data (Fig. S1), we also allowed users to define RGB stain value separation 
for each image slide to enhance performance.41 Insulin, glucagon, and 
CD3+ cells were respectively stained in red, blue, and brown. Therefore, 
each slide varying in color designations leads to a wide range of stain 
values. To accurately define RGB stain values for each slide, users can run 
the Supplementary A1 script to change the identity of the three-color 
schemes to insulin, glucagon, and CD3+. Then, users can assign a square 
around each cell type in QuPath's image viewer to indicate the stain values 
for the corresponding cell type. Fig. 2A and Fig. S2a demonstrate the result-
ing stain values that fit each cell type in the particular image slide. 

Construction of ROI boxes 

Specifying regions of interest (ROIs) around islets requires leveraging 
the pre-trained SAM with microscopy dataset35 for islet segmentation. 
The ROI can be constructed by applying an islet pixel classifier, which is im-
plemented in QuPath as an ANN-based pixel classifier. This classifier is 
trained on each WSI individually, using a single islet segmented by pre-
trained SAM and the background designated as an annotation square box. 
For training the islet pixel classifier, the segmented islet is created by draw-
ing a rectangular box around the islet, followed by the application of SAM. 
The trained islet pixel classifier categorizes the classes of each cell within 
the value of RGB stains for each pixel and identifies the clustered islet 
and backgrounds. In addition, only clustered cells can be included in the 
analysis by defining the minimum object size (Fig. S2b). To reorganize 
the detected group into the islet, perspective of ROI boxes including insulin 
and glucagon, users can run the Supplementary A2 script after removing 
the backgrounds. This allows users to automatically construct the ROI 
boxes around numerous islets of various sizes and shapes. Fig. 2B  and  
Fig. S2c illustrate the progression from candidate boxes to accurate red 
ROI boxes. To increase the accuracy of the islet analysis, users can further 
remove or adjust the ROI boxes manually in QuPath.
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Fig. 1. Overview of machine learning-assisted workflow using the user-friendly application QuPath. The main purpose of this approach is to efficiently quantify the number of 
endocrine cell groups and proportions of insulin, glucagon, and CD3+ cells within each of the segmented islets.

Fig. 2. This outline demonstrates the proposed methodology using machine learning-assisted, semi-automated workflow. SAM is used to segment precise boundaries of 
endocrine cell groups, and the ANN-based pixel classifier is used to segment the insulin and glucagon areas.
Islet segmentation using SAM 

For the accurate islet boundary quantification, the pre-trained SAM35 

was applied to the ROI boxes. This SAM model is specifically designed for 
cell segmentation and it can be added to QuPath as an extension tool as 
SAMapi. By running SAM for all ROI boxes, the islet boundaries can be ac-
curately defined. This process was accelerated through the use of HPG 
NVIDIA A100 graphics processing units (GPUs). Accurate islet segmenta-
tions using SAM are shown in Fig. 2C  and  Fig.  S2c  .
3

Segmentation of insulin and glucagon 

To quantify endocrine cells within islets, a cell pixel classifier was ap-
plied to classify three classes: insulin, glucagon, and background (Fig. 2D 
and Fig. S2d). The Supplementary A3 script was added to assign a number 
to each segmented islet (Fig. S2d). The cell pixel classifier detected areas of 
the insulin and glucagon classes for positive areas larger than 20 μm2 . The 
resulting segmented areas of insulin and glucagon are shown in Fig. 2D  and  
Fig. S2d.
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CD3+ cell detection 

In this study, an islet was categorized as low T-cell infiltrated if there 
were one to six CD3+ cells, and as high T-cell infiltrated if there were 
more than six CD3+ cells either inside or within 20 μm of the islet perim-
eter. The 20 μm perimeter boundaries for each islet can be established au-
tomatically using the Supplementary A4 script (Fig. S2e). The 
Supplementary A5 script was developed to detect CD3+ cells using thresh-
old setup by the mean and standard deviation of all cells in 20 μm boundary 
of each islet. Fig. 2E and Fig. S2f show the results of detecting CD3+ cells, 
annotated with a red doubled boundary. 

Export measurements 

The quantified information can be exported using QuPath's built-in 
functions, such as annotation measurement and detection measurement. 
The exported measurements include the areas of insulin and glucagon, 
the number of CD3+ cells, and the diameter and circularity of each islet 
(Fig. 2F). The Supplementary A6 script was added to further process the ex-
tracted measurements to convert the QuPath exported text files to a single 
CSV format and extract the necessary data. 

Proof-of-concept analysis results 

To demonstrate the developed workflow, IHC WSI files were obtained 
from the nPOD by file transfer. The average size of the WSI data was 
43,234.5 × 33,600.958 pixels (W × H) with 0.497 μm per pixel. Table 1 
summarizes donor demographics used for this proof-of-concept study 
using two slides from each pancreas tail region belonging to 12 donors. 
Four donors were selected from each of the disease groups: ND, AAb+, 
and T1D. 

As shown in Fig. 3A, the advantage of utilizing SAM is the accurate seg-
mentation of endocrine cell boundaries. The quality score, representing the 
intersection over the union (IoU) (Eq. 1) metric, which quantifies the over-
lap between the segmentation mask and the ground truth generated by the 
mask decoder and image encoder, is displayed above each segmented islet. 
SAM demonstrates the highest-quality segmentation mask among the three 
candidate masks. All islets were segmented with a high quality score 
(i.e., an average quality score of 0.91 per slide) in the proof-of-concept anal-
ysis. Fig. 3B demonstrates the performance of the cell pixel classifier which 
segments the endocrine cell compositions into insulin and glucagon.

IoU 
Mask ∩ Ground Truth 
Mask ∪ Ground Trut h

1

– –

Table 1 
Demographic summary. Two pancreas tail slides from each donor were analyzed, 
with four donors included per disease category. 

Characteristics ND AAb+ T1D 
(n =  4) (n =  4) (n =  4  )

Age, mean ± SD (years) 20.21 ± 14.53 22.78 ± 4.39 19.38 ± 9.35 
Sex, n 

Female 0 3 1 
Male 4 1 3 

Ethnicity, n 
Caucasian 2 3 3 
Hispanic 1 0 0 
African American 1 1 1 

BMI, mean ± SD (kg/m2 ) 20.65 ± 5.59 30.45 ± 12.58 20.60 ± 3.12 
Diabetes duration, 
mean ± SD (years) 

9.65 ± 11.34 

C-peptide, 
mean ± SD (ng/ml) 

4.56 ± 1.42 8.41 ± 2.90 0.04 ± 0.04 

HbA1c, mean ± SD (%) 5.43 ± 0.63 5.38 ± 1.58 9.55 ± 2.28 

SD: standard deviation, ND: no diabetes, AAb+: autoantibody-positive, T1D: type 1 
diabetes, BMI: body mass index, HbA1C: hemoglobin A1C. 

4

Fig. 4 shows the use of SAM and ANN-based pixel classifiers to enable 
the identification of all endocrine cells in the pancreas WSIs ranging from 
single endocrine cells to large islets. We have found that the majority of 
components of the pancreas tissue are small endocrine single cells and clus-
ters. Our methodology has been able to successfully identify around 10,000 
additional endocrine cells using our semi-automated workflow with deli-
cate segmentation.

In addition, the scripts of our methodology assist in detecting the CD3+ 
cells around the segmented endocrine single cells, clusters, and islets. The 
exact quantification of the number of CD3+ cells around the islets is impor-
tant for identifying CD3+ T-cell infiltration. Fig. 5 demonstrates that ND 
donors have around 77.3% islets without CD3+ cells, 21.6% with 1–5 
CD3+ cells, and 1.1% with ≥6 CD3+ cells. Notably, none of the ND do-
nors had insulin-negative islets, therefore, CD3+ T-cell infiltration is not 
considered in ND donors. In AAb+ donors, these percentages are 67.7%, 
27.8%, and 4.5%, whereas in T1D donors, the values are 63.4%, 31.0%, 
and 5.6%, respectively.

Discussion 

WSI analysis contributes to expediting and facilitating the analysis of 
donors with ND, AAb+ presence, and T1D. Previous work applying WSI 
analysis to pancreatic tissue, especially manual digital analysis, identified 
several challenges. Biased interpretation and inter-observer variability 
occur even when analyzing identical data due to the variety of stained 
color values in the WSIs. The adaptability of stained color values from the 
initial stage of the proposed methodology, specifically the color 
deconvolution, makes the analysis more robust to the diverse staining pat-
terns encountered on slides. In addition, compared to previous WSI analy-
ses, our proposed semi-automated methodology enables the precise 
extraction of islets, even small endocrine cells, with accurate boundary de-
lineation. Furthermore, it facilitates the extraction of key information from 
each slice, including islet diameter, insulin and glucagon measurements 
within each islet, and the number of CD3+ cells within a designated perim-
eter boundary. The results of our analysis demonstrate the accuracy of our 
methodology and could provide insights into the potential discovery of new 
characteristics of T1D. 

We designed our approach as a solution to support analysts who may 
not have extensive experience with digital analysis. Each script encom-
passes a range of functions designed to execute specific tasks, allowing 
users to analyze WSI data without needing to navigate complex software in-
terfaces. Notably, the proposed scripts are not limited to workflow execu-
tion but also aid in post-processing data to streamline analysis procedures 
and assist with statistical analysis. Furthermore, the proposed methodology 
can be adapted for widespread applicability in the analysis of various dis-
eases by developing or modifying the proposed scripts, leveraging the ex-
tensibility of QuPath. 

Using advanced deep learning and high-performance-computing re-
sources, our methodology enables a more detailed and non-biased analysis. 
Unlike previous analyses, our methodology detects various sizes of ranging 
from single endocrine cells to islets. Additionally, it enhances the perfor-
mance of extracting islets from WSIs through the combination of the deep 
segmentation model SAM and ANN-based islet pixel classifier. The addi-
tional manual modification of ROI boxes by users can also improve accu-
racy and increase confidence in islet segmentation. Nonetheless, this 
manual step offers users the flexibility to adjust and validate the ROIs as 
needed, ensuring precision in the segmentation process. 

Based on the precise segmentation of islets, the quantification of the 
islet area is likely more accurate than prior methods, suggesting a new 
standard for islet definition in terms of cell size. With our methodology, 
users can quantify the size of a single cell and determine the area of an 
islet. Additionally, well-segmented islets facilitate the measurements of 
insulin and glucagon within the islet, which are quantified using the 
cell pixel classifier at high resolution. The accurate assessment of the 
areas of insulin and glucagon can be used as new analysis criteria for 
the study of T1D in WSIs.
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Fig. 3. Representative results demonstrating: (A) the boundaries of endocrine cell groups segmented by SAM, (B) the three classes (i.e., insulin (red), glucagon (blue), and 
background (purple)) segmented using the ANN-based pixel classifier. (Scale bar = 50 μm.)

Fig. 4. The proposed methodology effectively detects the diverse heterogeneity of endocrine cell groups, including single cells. The bar graph illustrates the mean and 
standard deviation of the number of endocrine cell groups per pancreas slide categorized by size. The endocrine cell groups vary in size ranging from single endocrine 
cells to endocrine cell groups. (A) Shows the count of the endocrine cell groups per area (endocrine cell group size: 0–2000 μm2 ), (B) shows the count of endocrine cell 
groups per area (endocrine cell group size: 2000–20,000 μm2 ).
The detection and quantification of the number of CD3+ cells 
around the islet or single endocrine cell are accurately performed 
through our methodology. This approach broadens the opportunity to 
analyze T1D pathology and understand the pathogenesis of T1D. 
Hence, our methodology provides the flexibility to define CD3+ T-cell 
infiltration based on CD3+ cells. Although, previous studies have de-
fined CD3+ T-cell infiltration by islets containing a certain number of 
CD3+ cells, users can now modify the definition of CD3+ T-cell infiltra-
tion through our proposed scripts. These scripts will set a new perimeter 
boundary and new CD3+ T-cell infiltration standard for the number of 
CD3+ cells around a single islet. 

From a practical use standpoint, our methodology accelerates the anal-
ysis time with the assistance of the user-friendly application QuPath and 
deep learning. Based on our observations, the time needed per slide ranged 
from 40 min to 1.5 h, influenced by factors such as computer resources and 
the quantity of islets within each slide. 
5

Our semi-automated T1D pathology methodology can contribute to the 
accurate quantification of T1D-related WSI analysis in donors. Particularly 
in quantifying islets, identifying the ratio of insulin and glucagon within in-
dividual islets, and the number of CD3+ cells around the islets. Through 
this methodology, trends or characteristics of T1D progression are expected 
to be analyzed based on quantified information from various nPOD donors. 
Furthermore, analyzing the phenomenon through the pancreas WSI will be 
more accurate and faster compared to manual analysis, making it exten-
sively useful. Ultimately, the methodology will be applicable for analysts 
because it is well organized with open-source programs. 

As demonstrated by the results of the experiment, the developed meth-
odology was applied to only a limited number of WSIs from each donor, 
which is insufficient for detailed analysis. Analyzing a large number of 
WSIs from various donors is necessary for understanding the pathogenesis 
of T1D. Our methodology can be harnessed to the diverse WSIs available 
through the assistance of biobanks, which offer a large quantity of accurate,
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Fig. 5. The proportion of endocrine cell groups without CD3+ cells, containing 1–5 CD3+ cells, and containing more than or equal to 6 CD3+ cells inside and within the 20 
μm perimeter among all detected endocrine cell grouping. Each dot represents a tail slide from a single donor. The Wilcoxon test is applied, and non-significant (NS) results 
are not shown in the graphs. (p-values, ***: p < 0.001, **: p < 0.01, *: p < 0.1). Abbreviations: ND: no diabetes, AAb+: autoantibody-positive, T1D: type 1 diabetes.
and high-resolution data. It is expected that various new findings will be re-
vealed through detailed analysis. 

Processing time varies depending on computer resources and individual 
factors. The analysts spent the majority of time completing manual ROI 
modifications and running the scripts for detecting CD3+ cells. Manual 
ROI adjustments are subject to individual variability, whereas the perfor-
mance of SAM relies on GPU capabilities and the quantity of ROIs, and 
CD3+ cell detection is influenced by CPU performance. 

In our future work, we plan to leverage our analysis workflow with the 
WSI data from nPOD to further accelerate the understanding of T1D patho-
genesis. A large set of WSIs from multiple donors and pancreatic regions 
(head, body, and tail) will be analyzed using our workflow. In particular, 
the ability to quantify features of small endocrine cells and groups, along-
side detailed quantification of insulin and glucagon areas, will provide 
new insights into the understanding of T1D. 

Conclusion 

The machine learning-assisted WSI analysis workflow was developed to 
analyze islet heterogeneity to add to current T1D research. To increase us-
ability, the user-friendly open-source software QuPath was used as the main 
interface. The SAM pre-trained with microscopy dataset was employed to 
define precise islet boundaries and the cell pixel classifier was applied to 
segment the areas of insulin and glucagon within each islet. An additional 
script was developed to count CD3+ cells inside and within 20 μm  of  
each islet perimeter to quantify the number of islets with inflammation 
(i.e., CD3+ T-cell infiltration). Proof-of-concept analysis was performed 
to test the developed workflow. This machine learning-assisted methodol-
ogy enables identifying precise islet boundaries and cell compositions for
6

endocrine cell clusters of all sizes, including those smaller than islets. Our 
contribution to the field of T1D research will accelerate the analysis of pan-
creas slides and provide insights into better understanding of islet heteroge-
neity. 
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