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The Cyber Kill Chain (CKC) defense model aims to assist subject matter experts in planning, 
identifying, and executing against cyber intrusion activity, by outlining seven stages required 
for adversaries to execute an attack. Recent advancements in Artificial Intelligence (AI) have 
empowered adversaries to execute sophisticated attacks to exploit system vulnerabilities. As a 
result, it is essential to consider how AI-based tools change the cyber threat landscape and affect 
the current standard CKC model. Thus, this study examines and categorizes how attackers use AI-

based tools, and offers potential defense mechanisms. We conducted a systematic literature review 
of 62 papers published between 2013 and 2023 from the Web of Science and Google Scholar 
databases. Our findings indicate that AI-based tools are used most effectively in the initial stages 
of cyberattacks. However, we find that current defense tools are not designed to counter these 
sophisticated attacks during these stages. Thus, we provide insights to 1) highlight the changing 
threat landscape due to AI and 2) to guide the development of cyber defense mechanisms.

1. Introduction

Digital data storage is being increasingly adopted in major sectors including government, healthcare, energy, and transportation. 
Thus, securing these systems is essential for economic stability, national security and personal safety. For example, cyberattacks can 
alter medical scans, disrupt power grids, and gain unauthorized control over autonomous vehicles [1–3]. The cost of global cybercrime 
is estimated at $600 billion per year, increasing significantly since 2014 [4]. The damage associated with the exploitation of these 
digital systems is expected to grow with the use of new Artificial Intelligence (AI) tools [5].

AI tools can enable unprecedented levels of automation and intelligence [6]. Offensively, AI can be used maliciously to create and 
disseminate misinformation. Even back in 2018, Buzzfeed, a digital media company, published an AI-generated Deepfake of the US 
President showcasing the capabilities of Deepfake technology that can be misused in politics [7], raising privacy and impersonation 
concerns. Furthermore, AI-based technology empowers attackers to process large volumes of data and automatically explore various 
attack methods [8,9]. Defensively, AI automates systems, aid in processing complex data, and reduce the manpower required to 
operate systems or repetitive processes [10]. Therefore, AI can be leveraged to strengthen current cyber defenses.
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This study presents a systematic literature review following the PRISMA guidelines. We analyze how AI-based tools are used 
by adversaries and their effects on each stage of the current Cyber Kill Chain (CKC) model [11]. We aim to provide insight on the 
following research questions:

RQ 1. What adversarial AI tools and strategies can be used in each stage of the Cyber Kill Chain?

RQ 2. What tools and strategies can be used by defenders to mitigate attacks at each stage of the Cyber Kill Chain?

This research highlights how AI transforms the threat landscape at each stage and provides guidelines for the development of 
subsequent defense mechanisms. Section 2 provides an overview of the CKC model. Section 3 discusses the methodology of the 
systematic literature review. Section 4 describes how adversaries leverage AI and possible defense strategies for each stage of the 
CKC. Conclusion and discussion can be found in Section 5. Section 6 aims to guide future research directions based on the insights 
gained.

2. Background and related work

2.1. The cyber kill chain

The Cyber Kill Chain (CKC) is a military defense framework established by Lockheed Martin in 2011, which outlines seven stages 
an attacker must successfully complete to achieve an operation goal [11,12]. The framework has been widely adopted by government 
organizations and various industry sectors. It presents a comprehensive overview of the tasks an attacker must execute along with 
the necessary mitigation measures required at each stage. If the defender manages to stop the attacker at any stage of the CKC, the 
attack will be prevented from causing further harm to the target system [11–13]. The stages are further described in sub-sections 2.2

through 2.8.

The CKC can be used to develop effective defense mechanisms which aim to prevent an attack at a specific stage. Thus, it is 
important to understand how each stage of the chain is affected by advancements in AI to design robust detection models. Narrowing 
down the focus of this inquiry, the research questions presented in the section 1 are selected.

Existing literature on the CKC explores the details and nuances involved in each stage [14], as well as explaining the applicability 
of this framework to specific cybersecurity settings; for example, network defense [11], multimedia services [15] or cryptocurrencies 
[16]. In recent years, there has been an increase in literature regarding the implications of AI and the CKC [8]. However, there 
is limited work that compiles both offensive and defensive techniques used at each stage of the CKC. Thus, our research provides 
cybersecurity specialists with this toolbox and gives an overview on the interconnectedness of these techniques.

2.2. Reconnaissance

The attackers actively and/or passively gather information to select a target, recognize system vulnerabilities, and assess the sys-

tem’s applications and networks. Defenders continuously monitor the system for unusual activity and place an emphasis on protecting 
vulnerable users. This stage is typically the most time consuming, as the attackers aim to maximize their knowledge on the target 
system.

2.3. Weaponization

The weaponization stage follows reconnaissance. Attackers have gathered sufficient information on the vulnerabilities of a po-

tential target. The attackers create software containing malicious payloads, or malware, to be delivered to the target system. If the 
malware is detected by defenders, they will collect any relevant artifacts of the program and analyze the different aspects of the inner 
workings.

Malware is often created using automated tools referred to as “Weaponizers”. The weaponization stage involves two components 
which are bundled together in the deliverable payload. First, a Remote Access Tool (RAT) is created to establish a C&C connection 
with the infected machine. The second component is the exploit, which is responsible for installing the RAT on the host machine and 
evading user detection [14].

The defender is tasked with gathering data on how the attackers have weaponized the delivered payload. This can be done through 
performing malware analysis on the artifacts left on infected computers. Understanding the information about the malware allows 
the defenders to find potentially unpatched exploits and generate strategies to protect systems from similar types of malware.

2.4. Delivery

During this stage, the malicious payload is delivered to the target system [11]. This can occur via email, website URL, a malicious 
USB stick, etc. Defenders aim to identify vulnerable users and information and analyze the medium through which the malicious 
payload was delivered.

Advancement in AI enables attackers to create more intelligent malware that evades detection by choosing an optimal attack time, 
adapting to defense measures, and self-learning the system environment [17–19]. The improvement of social engineering techniques 
increases the probability of a successful malware delivery.
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Defenders should strive to detect malicious activity as it first enters the system to prevent the attacker from traversing through 
the chain. By leveraging machine learning techniques, the defenders can accelerate data analysis, process high volumes of data, and 
enhance model flexibility to better detect adversarial delivery.

2.5. Exploitation

During the exploitation stage, attackers take advantage of the target system’s vulnerabilities to gain unauthorized access or control. 
Defenders increase awareness of potential cybersecurity attacks of users and conduct vulnerability and penetration testing.

If successful in this stage, the attackers will gain privileged access to the victim’s machine and private data, progressing further 
into the CKC. The attacks can be especially dangerous if the attackers exploit zero-day vulnerabilities — vulnerabilities that have not 
been yet discovered by system administrators. Exploiting this type of vulnerability allows attackers to maintain undetected access to 
the victim’s machine, while the vulnerability is not discovered.

There is limited literature on adversarial techniques during the exploitation stage. The effectiveness of this phase significantly 
depends on the quality of data collected during the initial stages. By understanding the system during the reconnaissance stage and 
crafting weapons that adeptly identify system vulnerabilities, the exploitation stage becomes the phase in which the attackers leverage 
this data to execute their exploits.

2.6. Installation

The attackers will install malware that targets a vulnerability or creates access points (backdoors, rootkits, or RATs [14]) to 
the compromised system. Adversaries can also install backdoors or other malicious elements into the victim’s environment [11,12]. 
Defenders utilize endpoint protection solutions and next-generation antivirus software to detect and block abnormal and suspicious 
files created in the systems.

2.7. Command and Control

During the Command and Control (C&C) stage, the attackers establish communication channels with the target system. This enables 
them to remotely control the machine, read files, and further gather information about the victim and target system. Defenders will 
analyze network traffic to identify abnormal network communications. Additionally, they will isolate infected systems to prevent 
lateral movement and actively conduct research on new C&C infrastructures used by attackers.

The communication channel used by attackers is most often established through web, email or DNS protocols. The C&C infras-

tructure to which the victim is connected can be hosted by the attackers or consist of a network of compromised nodes [11].

The C&C stage is a crucial step in Advanced Persistent Threat (APT) attacks, highly targeted and long-term attacks that have 
emerged in recent years [20]. These attacks aim to establish silent communication with the victim’s network for months or even 
years at a time to execute mission objectives [21].

2.8. Actions on objectives

At this stage, attackers accomplish their goal, be it data theft, destruction of systems, or moving laterally through the network. 
Defenders search for indicators of malicious activity, system compromisation, and unauthorized credential usage. They also perform 
damage assessments of the compromised systems. Attackers have full control over the target system and thus, could execute mass 
and targeted attacks [14].

3. Methodology

3.1. Review process

This study aims to curate a relevant and insightful set of literature for review that addresses our research questions. The systematic 
literature review methodology adopted by this study is based on PRISMA International Standards [22] and is guided by the PRISMA 
2020 Checklist as seen in Appendix A. The authors declare that they do not have any competing interests that could impact the review 
process in this literature review.

3.2. Search and identification of literature

The Web of Science and Google Scholar databases are queried using a list of keywords. The following keyword query is used 
to fetch relevant papers using the “AND” and “OR” operators: “(Artificial Intelligence AND (Cybersecurity OR Cyber Kill Chain OR 
Adversarial AI))”. Only studies published between 2013-2023 are considered, as the threat landscape before 2013 was much different 
and research at that time will not take modern cybersecurity risks into account. The sources have been last accessed before August 
2023. Two reviewers screen the query outputs (There are 2,859 results from this query) and select the papers most relevant to our 
research questions. These reviewers work independently but are guided by the Annotation Strategy document located in Appendix B.
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In the process of the review, we seek results in any domain of AI that can be applied by cybersecurity defenders or adversaries 
and have potential real world applications. We also gather data on the effectiveness of tools and strategies when implemented in 
real-world scenarios or experiments. The output of this search is then evaluated and extracted using our predetermined exclusion and 
inclusion criteria.

It is important to note that although most of the articles presented in the review implement their proposed systems and provide 
real application examples and case studies validating their findings, some articles work in the theoretical domain. The evidence from 
these studies may be limited since it is difficult to predict the real world behavior of the proposed systems.

3.3. Exclusion and inclusion criteria

The following exclusive criteria are used to determine if a study should be discarded from the set:

1. Articles that do not discuss topics relevant to the research questions (CKC, Cybersecurity models/strategies, attack models/strate-

gies).

2. Articles that discuss non-AI attack models/strategies.

3. Articles that discuss outdated defense models/strategies. Outdated is defined as defense models which do not protect against 
current threats.

The following inclusive criteria are used to determine if a study should be included in the set:

1. Articles that discuss topics relevant to the research questions (CKC, Cybersecurity models/strategies, attack models/strategies).

2. Articles that either discuss AI driven attack models/strategies or defense models/strategies which consider current threats.

3. Research which uses effective validation experiments on novel models/strategies.

3.4. Selecting procedure

Literature is searched for and identified using the Web of Science and Google Scholar databases. The PRISMA flowchart shown in 
Fig. 1 depicts the systematic review process used to select articles. This is conducted through the following three steps:

Step 1. Extracting Information: Using selected keywords, a search is conducted on the Web of Science and Google Scholar databases. 
This results in about 2,859 articles. Papers which are published before 2013, those with titles which indicate clear irrelevance 
to our research questions, and duplicates are removed before screening.

Step 2. Screening: The relevance of an article is determined by reviewing its content and comparing it to the predetermined ex-

clusionary criteria. 270 research articles are manually reviewed. 120 and 150 articles are contributed by Web of Science 
and Google Scholar respectively. 208 are excluded due to either its non-discussion on AI driven attack models, discussion of 
outdated defense models, or irrelevance to this study’s research questions.

Step 3. Inclusion: The resultant articles are assessed based on the predetermined inclusionary criteria. This study ensures that each 
article either discusses AI driven attacks or defense models which consider current threats and that each model is validated. 
A total of 62 papers are considered in this study.

3.5. Annotation process

The PRISMA systematic review process is used to identify 62 papers to review, these are placed in a shared Mendeley group. A flag 
is assigned to unannotated papers to keep track of articles that await annotation. A detailed description of the annotation strategy 
adopted by this study is outlined in the Annotation Strategy document given in Appendix B.

For each paper, the annotator identifies the research objective, methodology, and key findings of the investigation. The location 
and relevant aspects of these sections are identified in the Annotation Strategy document, located in Appendix B. These annotations are 
recorded on a shared Excel spreadsheet so all authors can utilize the reviewed articles to answer the research questions. Additionally, 
tags are assigned in the spreadsheet to indicate defense or attack tools and the specific stage to which these models are most applicable. 
To avoid bias, tags are given to an article by each annotator independently and compared. If these tags are conflicting, the paper 
must be reviewed again until the annotators reach a unanimous decision.

For papers that present a strategy or tool that can be applied in real world environments and experiments, we synthesize the 
strategy and the specific application of it in tables at the end of each section. This study identifies 14, 7, 10, 3, and 8 papers associated 
with the Reconnaissance, Weaponization, Delivery, Exploitation, and C&C stages respectively, as shown in Fig. 2a. There are 20 papers 
which provide supplemental information and do not align with a specific stage. The selected papers contain 19 adversarial tools and 
27 defender tools as seen in Fig. 2b. Some papers provide both an adversarial tool and a defender tool.

Although no quantitative inter-rater agreement between the authors was established for this study, a rigorous and qualitative 
process was followed to ensure that the papers selected for review were relevant to the research questions, and that the annotation 
strategy was consistent. The details of the inter-rater agreement process are outlined in Appendix B.

Heliyon 10 (2024) e40699 

4 



M. Kazimierczak, N. Habib, J.H. Chan et al. 

Fig. 1. PRISMA flowchart depicting this study’s review process. 

Fig. 2. (a): Distribution of papers across the stages of the Cyber Kill Chain. (b): Distribution of papers across the types of tools. 

3.6. Narrative synthesis and data analysis

The narrative synthesis of the reviewed papers is conducted by extracting the key AI offensive and defensive strategies discussed 
by each paper, and the stage of the CKC they are most relevant to. As part of the data analysis, the proportion of papers presenting 
tools in each domain of the CKC is calculated and further discussed.

4. Findings and discussion

This section provides the answer to both of our RQ1. and RQ2. We discuss each stage of the CKC in more detail, including the 
literature of related technology and the impact of AI advancements on the stage—both from the attackers’ and defenders’ point of 
view. Each following subsection compiles literature on malicious AI tools and strategies as well as possible defense approaches to 
mitigate attackers at that stage. For each stage of the chain, we present a general outline of the impact of AI, and provide the most 
prominent examples of offensive and defensive AI techniques.
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4.1. Reconnaissance

4.1.1. Impact of AI on reconnaissance

AI has emerged as an effective tool to minimize the time needed at this stage, process large volumes of data, and create sophis-

ticated social engineering tools. These offensive AI tools are accessible and easy to implement, enabling amateur attackers to inflict 
considerable damage on systems [8].

Currently, detecting adversarial reconnaissance poses as a significant challenge for defenders, partly because of its traditionally 
stealthy nature. A survey conducted by Mirsky et al. finds that professionals within academia, industry, and the government feel 
that the advancements in AI do not significantly enhance their security approaches, apart from detecting social engineering attacks 
[9]. This is due to the non-invasive nature of many adversarial behaviors during reconnaissance. Consequently, it is challenging to 
develop effective detection mechanisms.

Popularity in studying how AI aids adversaries at this stage is rising. Particularly, researchers have placed an emphasis on inves-

tigating social engineering such as phishing, deepfakes, and pretexting [8,23–26] and on how AI can aid in target selection, target 
identification, and information gathering [9,14,27].

This study finds that advancements in AI have a substantial impact on attackers during reconnaissance, largely due to the in-

volvement of data collection at this stage. AI-powered bots and web crawlers can be used to gather large volumes of data to identify 
patterns, connections, and relevant information from Open Source Intelligence (OSINT), social media platforms, and websites without 
intervention. As a result, attackers can easily determine the optimal target to exploit during the exploitation stage, create stealthier 
malware in the weaponization stage, and execute effective social engineering schemes to ensure a successful delivery. Thus, with the 
help of automated tools, attackers can quickly traverse through the chain.

4.1.2. Adversarial AI techniques

Social Engineering

Advancements in AI have revolutionized social engineering approaches, particularly in generating deepfakes [23,24]. Deepfakes 
are synthetic media which is used to pose as someone else. GANs are emerging as a powerful tool to generate synthetic video, image, 
and audio content [26]. Moreover, using facial recognition algorithms, tools such as EagleEye, allow adversaries to use information 
imported from social media accounts to create deepfakes [25].

Mirsky et al. [9] identify 32 offensive AI tools that utilize deep learning, reinforcement learning, and natural language process-

ing (NLP). These tools, such as point of entry detection, persona building, and target selection can significantly improve campaign 
planning by determining the optimal time and targets to attack. Additionally, these AI tools enhance adversarial OSINT capabili-

ties and aid in creating sophisticated deepfakes, which are utilized in phishing attacks. By automating these planning components, 
inexperienced attackers can significantly increase the impact of their cyberattacks.

Adversarial Research and Data Processing

AI can be used to quickly obtain significant amounts of information on the system, possible targets, and defense measures. AI 
powered tools such as GyoiThon and Deep Exploit can be used for information gathering and automatic exploitation [25]; therefore, 
increasing the quality of adversarial research.

A machine learning model developed by Lee and Yim [27] demonstrate how adversaries can effectively observe keyboard inputs 
to steal passwords with 96% accuracy. This machine learning based model bypasses security measures by distinguishing between real 
and defense generated keystrokes. The paper discusses how adversaries can use the model to differentiate between real keystrokes 
and randomly generated keystrokes induced by defensive systems. There is limited research on defense models that employ AI to 
generate realistic keystrokes. Thus, this attack technique can potentially grant adversaries access to restricted information, aid in 
harvesting email addresses, and lead to ransomware attacks.

Shokri et al. [28] investigate how machine learning models leak information on data records used for training and develops a 
membership inference attack using shadow training techniques. They find that their attack method achieves an accuracy of 94% and 
74% using Google’s and Amazon’s services respectively. By obtaining defense training data, adversaries can gain insight on detection 
behavior and build malicious models that evade detection, identify key system vulnerabilities, and prepare their weaponization 
strategies accordingly.

4.1.3. Mitigation techniques

Social Engineering

At this stage, advancements in AI have mainly improved defense measures against social engineering. Moghimi and Varjani [29] 
propose a rule-based detection extension, “PhishDetector”, which uses string matching and support vector machine (SVM) algorithms 
to successfully detect internet banking phishing with an accuracy of 99.14%. Using NLP techniques, Sawa et al. [30] construct a 
model which detects social engineering in an online conversation by comparing conversation topics to a topic blocklist. The blocklist 
is manually set, so for this to be effective, the list must be updated often to adhere to the changing threat landscape. Tiwari et al. 
[31] develop a heuristic based tool called PhishSpy which can alert users to phishing URLs with a 95% accuracy rate.

As deepfakes become increasingly realistic, researchers aim to build effective safety measures. Using a Convolutional Neural 
Network (CNN) with a metric-learning objective function, Agarwal et al. [32] present a biometric-based deepfake detection approach 
that can detect face swapping. However, this method cannot identify lip-sync deepfakes. Bayar and Stamm [33] propose a CNN 
architecture that uses Deep Learning (DL) to detect deepfakes by identifying image manipulation features. The average accuracy of 
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Table 1
Adversarial techniques and counterattacks adopted by adversaries and defenders during reconnaissance.

Field Offensive technique Relevant sources Defensive technique Relevant sources 

Social 
Engineering 

Uses generative adversarial networks 
(GANs) to create deepfakes. [26] 

Uses DL to detect deepfakes by 
identifying image manipulation 
features. 

[33] 

Uses facial recognition algorithms to 
create the tool “EagleEve” to generate 
deepfakes. 

[25] 
Biometric-based deepfake 
detection approach that can detect 
face swapping in images. 

[32] 

Uses “Persona Building” tools to clone or 
create social media profiles. [9] 

Natural 
language processing (NLP) 
techniques to detect text based 
social engineering. 

[30,34] 

Adversarial 
research 

Tools such as GyoiThon and Deep 
Exploit can be used for information 
gathering and automatic exploitation. 

[25] 
A monitoring mechanism which 
gathers and stores data about a 
system in a knowledge base from a 
system through sensors. 

[36] 

Observes keyboard inputs to steal 
sensitive passwords. [27] 

Ensures that attackers cannot 
access private data using a KNN 
classification protocol using vector 
homomorphic encryption to 
secure cloud data. 

[37] 

Presents a “Target Selection” tool which 
automatically identifies the optimal 
victims to target in social engineering 
attacks 

[9] 

Steals defense training model data to 
execute a membership inference attack [28] 

this method is found to be 99%. Researchers can also use intelligent models to filter dangerous social media posts to prevent further 
traversal in the chain.

Developers can also shift responsibility from cybersecurity researchers and practitioners to the user. For instance, an integrated 
system for the Whats-App messaging platform warns users when their messages contain hyperlinks that could lead to malicious 
websites [34]. This can help further safeguard users from attacks.

Adversarial Research and Data Processing

To ensure that attackers cannot enter the system ahead of time, defenders can ensure a strong defense model. Dreossi et al. [35] 
present a falsification system which uses a machine learning algorithm to assess the reliability of a defense model and indicates when 
more training data is required. Settanni et al. [36] presents a self-adapting anomaly detection model which can be more sensitive 
to adversarial reconnaissance. The first phase of this model monitors the Cyber Physical Power System (CPPS) to learn its normal 
behavior and better detect malicious activities in a timely manner. Yang et al. [37] propose a secure and efficient k-nearest neighbors 
(KNN) classification protocol using vector homomorphic encryption to secure cloud data. This algorithm ensures that attackers cannot 
gain access to private data.

Table 1 presents offensive techniques and corresponding defensive countermeasures developed by researchers that can be em-

ployed at the reconnaissance stage.

4.2. Weaponization

4.2.1. Impact of AI on weaponization

There is a lack of literature on the use of AI in offensive weaponization techniques compared to its use in defensive applications; 
however, there is good reason to believe that AI will change the landscape of the weaponization stage. AI significantly increases the 
malware’s precision in target discrimination, enhancing adversarial behavior at this stage. Several past well-known cyberattacks, like 
the Stuxnet and Flame viruses, have infected many unexpected targets, creating collateral damage [38].

This study finds that the use of adversarial AI at this stage allows for more stealthy and better targeted victim selection. AI 
weaponizers can easily understand complex patterns in antivirus software and behave in a way that mimics benign software. Addi-

tionally, attackers can use powerful tools to attack only desired targets, causing little collateral damage and limiting suspicion.

4.2.2. Adversarial AI techniques

Target Discrimination

Incorporating target selection emerges as an effective strategy for avoiding malware activation in unknown environments, thus 
preventing detection.

AI can and should be applied to weaponization, as discussed by C. Easttom [38]. The article gives an overview of four AI algorithms: 
Neural Network (NN), Decision Trees, KNN, Naïve bayes classifier, and explains how they can be applied to DL. Although several 
possible tasks that AI could help perform more efficiently are discussed, a special emphasis is placed on target discrimination. The 
authors argue that with the use of AI, not only will the attacks be more efficient by attacking a higher number of relevant targets, but 
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it will also reduce collateral damage by minimizing unintended victims. Many novel weaponization techniques employ AI to analyze 
the target system and adopt an attack strategy based on the system data. This allows adversaries to understand what type of attack 
will yield maximal damage with minimal detection probability.

The use of AI malware to indirectly attack computing infrastructure through a cyber-physical system (CPS) can be effective because 
supporting CPS systems often have less developed security compared to the main systems [17]. This approach is applied to the cooling 
system of a supercomputer at the University of Illinois. The system first collects operational data about the CPS and learns the patterns 
associated with the failure of the system (e.g.: power outage, maintenance operations, emergency outage, etc.). Compared to other 
less intelligent methods of CPS attacks, the proposed system administers a fully targeted attack. The attack strategy is specifically 
tailored to disturb the normal operation of the CPS, increasing the probability of success. It also reduces the chance of detection since 
the attack is disguised as a CPS failure. Stealth Malware

Another strategy to enhance malware stealth is to automatically make small modifications as it spreads to other machines. When 
traditional malicious software tries to spread to other computers, it makes an exact copy of itself and sends it to new systems. 
Intelligent malware can make small changes to the source code of its software when spreading to new computers to evade detection. 
As antivirus software rapidly adapts and identifies new malware, adversaries develop adaptable malware which can mutate to evade 
detection. The approach of “Reactively Adaptive Malware” is presented by Hamlen et at. [39]. While traditional malware often uses 
random signatures, defensive tools are still able to detect patterns in these generated signatures. Reactively Adaptive Malware uses 
AI to learn patterns in malware detection algorithms and adapt accordingly to stay undetected. Mohan and Hamlen [40] utilize the 
Reactively Adaptive approach to create malware referred to as “Frankenstein”. It takes advantage of other programs installed on the 
host computer, and copies part of their code. This disguises their behavior as benign software and makes detection very difficult.

Compromising Machine Learning Services

Papernot et al. [41] present an adversarial example crafting model which is composed of two phases. First, a substitute model is 
trained by using data labeled by the target model. Next, the trained model is used to generate adversarial examples that are most 
likely to be misclassified by the target model. They find that some algorithms possess a higher transferability and efficiency between 
different architectures in adversarial sample crafting, but produce more noticeable perturbations in the adversarial samples. The 
attackers will have to find a compromise of effectiveness and stealth based on their priorities. The system can make an online MIST 
classifier misclassify 84% of the adversarial crafted samples. An interesting result of the research is that adversarial samples can be 
transferred from one machine learning algorithm to another. If the NN substitute model is trained using a specific combination of 
number of layers, layer size, and activation function, adversarial samples generated by this model have a high likelihood of being 
misclassified by a different Deep Neural Network (DNN) model with a completely different architecture.

Through review, it is evident that the development of adversarial AI tools in the domain of weaponization is currently focused on 
implementing intelligent environment-aware malware.

4.2.3. Mitigation techniques

In defending against novel weaponization techniques, the trending approach focuses on analyzing malware execution and rewriting 
it to prevent the malware from executing malicious code while preserving the benign programs.

Stealth Malware

Wartell et al. [42] present a method that ensures that malware does not violate any security policies by automatically rewriting 
its program binaries. This approach does not affect the functioning of benign software, as it simply rewrites the programs. However, 
malicious software which relies on a security violation is rewritten such that the policy is no longer violated, which disturbs the 
functioning of the malware. One disadvantage of the approach is that it requires a predefined security policy, thus knowledge of what 
binary instructions can be malicious. This drawback can be especially critical for zero-day exploits. Manually generating security 
policies is burdensome, time-consuming, and mistake-prone, even when developed by experts [39].

An important trend in future cybersecurity practices will involve automated inference of unsafe patterns in binary code. Wartell 
et al. [43] present an approach that deals with program binaries. They propose a ‘Stir system’ which does not involve modifying the 
binaries of all programs to prevent security policy violations, but rather allows the application to randomize their binaries and the 
address locations where certain objects are stored. This makes it significantly harder for other malicious software to disrupt their 
normal operation. This has been proven to be effective against return-oriented programming (ROP) attacks.

Collection and Processing of Malware Artifacts

Traditionally, defenders rely on recording and analyzing how malware behaves to prevent an attacker’s success in the weaponiza-

tion stage. Recent developments in AI enable defenders to collect more detailed information on how malware works.

Two novel tools for malware analysis are explained by Severi et al. [44]. The first involves analyzing infected systems and system 
changes due to the virus. This approach is fast and does not require heavy resource consumption. The disadvantage of this strategy 
is that it can be fooled by malware employing techniques like obfuscation or packing. The second option consists of running the 
malware on sandbox environments and dynamically observing its behavior. While performing this type of analysis is more time and 
resource consuming, it allows cybersecurity specialists to collect a wider range of information about the malware. However, the 
limits of traditional sandboxes arise; if the defenders wish to collect more complex information about the system, this may affect 
the behavior of the malware. For instance, connections to external sources may time out due to the heavy load on the sandbox 
environment. [44] proposes “Malrec”, which allows for running the malware sample and collecting enough information to replay the 
system execution later. By creating a replay of the execution, defenders can collect complex information about the system without 
changing the behavior of the malware. A dataset of more than sixty-six thousand malware execution information is created to assess 
the feasibility of the system. The researchers employ this system to build a malware classification tool based on natural language 
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Table 2
Adversarial techniques and counterattacks adopted by adversaries and defenders during weaponization.

Field Offensive technique Relevant sources Defensive technique Relevant sources 
Target 
discrimination of 
malware 

Use of NN and Decision Trees for AI 
target discrimination. [38] 

Machine Learning 
services 

Crafting of adversarial samples to 
target black-box models. [41] 

Use of the Distillation 
technique to improve model 
resilience and increase model 
robustness. 

[41] 

Stealth Malware 

Frankenstein, an AI approach to 
learn from benign software 
patterns. 

[40] 
Rewriting program binaries to 
prevent security policy 
violations. 

[42] 

Stir system: Randomizing 
benign software binaries to 
prevent malicious software 
from attacking it. 

[43] 

Automated generation of 
security policies that 
encompass unsafe binary 
patterns. 

[39] 

Malware Artifacts 
Use of Sandbox replays to 
perform deep analysis, like 
DNN classifiers, on malware 
behavior data. 

[44] 

features. The classifier analyzes the contents of the bytes accessed by the malware from the replay. Building a DNN classifier allows 
the authors to detect malware based on the natural language information with an f1 score of 94.2%. This strategy is described as 
too heavyweight to run in a real-time traditional sandbox environment; however, the Malrec system makes it feasible to collect these 
features. Compromising Machine Learning Services

A study conducted by Papernot et al. [41] explores a “reactive” and “proactive” defensive strategy for AI models hosted as a 
service. The “reactive” approach involves identifying adversarial samples, whereas the “proactive” approach requires making the 
model itself more robust. The authors conclude that the most promising defensive method is the “proactive” approach. This can be 
done by training a model with a higher dimensionality and modeling complexity. The authors also point to Distillation, which allows 
defense models to become more resilient to adversarial samples.

Table 2 presents offensive techniques and defensive countermeasures that can be employed at the weaponization stage. 

4.3. Delivery

4.3.1. Impact of AI on delivery

This study finds that advancements in AI can significantly aid in both adversarial and defensive cybersecurity approaches during 
delivery. This is attributed to the data collection required in both attack and defense frameworks at this stage. By collecting system 
data in the reconnaissance stage, malware can be automatically delivered at the most vulnerable time and location. This minimizes 
the time and manual involvement of the attackers, allowing amateur attackers to successfully deliver operations.

There is significant research on developing AI driven detection models which intercept the attackers at this stage. Many studies 
show that by leveraging AI’s ability to rapidly analyze data, defenders can decrease their detection time and render their system 
more sensitive to abnormal activity. Currently, defenders face challenges related to securing their training data and maintaining 
vigilance against zero-day exploits within their systems. To detect zero-day exploits, defenders can explore the potential of AI to 
detect abnormal behavior within their own system that indicates weak points.

This is the first stage where the advancements in AI seem to equally benefit the attackers and defenders. AI’s rapid adaptability 
to new attack strategies and its capability to detect unusual system behavior enhance defenders’ chances of interception. Identifying 
zero-day exploits ahead of the attackers and safeguarding training data are key to the success of interception.

4.3.2. Adversarial AI techniques

Smart Delivery Malware

Chung and Iyer [17] develop smart malware that monitors the target system and self-launches the operation by strategically 
injecting an attack at the most vulnerable time and location to inflict maximal damage. This malware filters through system failure 
data to effectively disguise itself as accidental failures to avoid detection. Through testing, they find that this malware adopts three 
unique attack strategies and effectively executes random, semi targeted, and fully targeted attacks.

System Record Tampering

Adversaries can use machine learning to tamper with records to disguise themselves as system updates or to obstruct evidence of 
delivery [9].

Attack Frameworks
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Piplai et al. [45] develop a framework based on the Fast Gradient Sign method which demonstrates AI’s power, even with limited 
information. The study uses the Fast Gradient Sign method to bypass a Generative Adversarial Network (GAN) based network intrusion 
system which is trained with adversarial examples. Although the GAN classifier yields high detection scores, this study shows that 
this defense mechanism is still vulnerable to sophisticated attacks. When all sensitive features of the GAN classifier are present, the 
attack success rate is 96% and 41% if the top 3 features of the GAN classifier are not used. Yuan et al. [46] presents an end-to-end 
black box attack framework called GAPGAN (Graph neural network (GNN)-based Adaptive Predictive GAN) which uses GANs to 
evade DL defense models designed to detect malware binaries. When used against a powerful defender model, MalConv, GAPGAN is 
undetected during delivery with a 100% success rate.

4.3.3. Mitigation techniques

Attack Frameworks

Using the Competitive Markov Model, Kholidy’s [47] Autonomous Response Controller (ARC) enables defenders to deliver coun-

terattacks remotely, thereby decreasing response time and automating the response action. Timely defense methods ensure that 
attacks are shut down before reaching the next stage, ending the adversarial mission.

Smart Delivery Malware

Bekerman et al. [48] provide an end-to-end supervised detection system which analyzes network traffic to accurately detect 
unknown malware. Random Forest, Naïve Bayes, and J48 learning algorithms are applied to train and test the model and detect 
new malware families with a high accuracy. This study demonstrates that using AI increases the accuracy of network traffic analysis, 
achieved by using different observation resolution, cross layers and protocols features. Using anomaly detection, Settanni et al. [36] 
design a reliable self-adapting defense mechanism to protect CPPS (Cyber-physical production systems) using the MAPE-K (monitor-

analyze-plan-execute over a knowledge base) cycle. By utilizing machine learning algorithms, the analysis phase of the cycle examines 
security metrics retrieved from the monitoring phase to detect malicious activity.

Alzaylaee et al. [49] showcase the effectiveness of dynamic analysis by developing a DL model, “DL-Droid”, which detects Android 
malware with an accuracy of 97.8% and 99.6% using only dynamic features and both dynamic and static features respectively. 
Similarly, Wajahat [50] proposes a lightweight and resource efficient machine learning algorithm that collects information about 
an Android application to make a decision on its safety. This approach is especially well suited for Internet of Things (IoT) devices, 
where a dynamic and adaptable system with minimal overhead is ideal in order to keep up with a dynamic environment.

Using the FP-Growth (Frequent Pattern) and Markov Logic Networks algorithms, Choi et al. [51] develop a detection mechanism 
which quickly identifies the deployment of metamorphic malicious code with an accuracy of 91.2%. This method takes several types 
of malware behavior into account and outperforms the General Bayesian Network (GBN) by 8%. However, further research is required 
to decrease the false positive rate which reaches 13.4% when identifying the PUP behavior type.

Fraud

As fraudulent activity grows, Abdallah et al. [52] conduct a survey to investigate credit card, telecommunication, healthcare 
insurance, automobile insurance, and online auction fraud. To prevent an attack at this stage, fraud detection systems (FDS) can be 
administered to detect and report fraudulent activity to the system administrator. This study identifies effective AI techniques utilized 
in FDS such as decision trees, NNs, hidden Markov model, fuzzy NN, Gaussian mixture, and data visualization.

Table 3 presents offensive techniques and defensive countermeasures that can be employed at the delivery stage.

4.4. Exploitation

4.4.1. Impact of AI on exploitation

Recent cybersecurity literature on exploitation provides tools that make it easier to understand a system and its vulnerabilities. 
This is especially important as systems are becoming increasingly complicated. Both defenders and attackers can use automated tools 
to create attack trees, which specify all the vulnerabilities a system may have. Another strategy involves modeling attackers and 
defenders as actors in a simulation to learn the best strategies to “win” [53]. Real world defenders and attackers can leverage this 
knowledge to increase the efficiency of their operations.

4.4.2. Adversarial AI techniques

Offensive/Defensive Strategy Analysis

Bland et al. [53] model attacker-defender interactions in a cyberattack using Petri net models. The attacker and the defender are 
represented as “players” using a reinforcement learning algorithm. This framework enables players to mutually learn from each other 
and determine the most successful and cost-efficient strategies to exploit system vulnerabilities. This type of modeling can be used 
by attackers to plan for optimal attacks and by defenders to find effective defense strategies. These findings will also be useful for 
computer system administrators, as they will be able to understand their most critical vulnerabilities.

4.4.3. Mitigation techniques

Automated Fraud Detection

Fraud cases are increasing annually, placing a growing burden on cooperate resources. Abdallah et al. [52] examine novel Fraud 
Prevention Systems (FPS) and FDS which are developed to protect organizations against fraud. Traditional methods of FDS are based 
on rule-based systems. These methods are slow to adapt to new fraud attacks and must be constantly updated.
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Table 3
Adversarial techniques and counterattacks adopted by adversaries and defenders during delivery.

Field Offensive technique Relevant sources Defensive technique Relevant sources 

Malware 
Development of smart 
malware. [17] 

Analyzes network 
traffic using ML 
techniques to identify 
unknown malware. 

[36,48] 

Detects Android 
malware using DL. [49,50] 
Detects the 
deployment of 
metamorphic 
malware using the FP-

Growth and Markov 
Logic Networks 
algorithms. 

[51] 

Record Tampering 
DL can be used to 
generate synthetic 
data. 

[9] 

Attack Framework 
Uses the Fast Gradient 
method to bypass a 
GAN classifier. 

[45] 

Uses the Competitive 
Markov Model to 
enable defenders to 
deliver counterattacks 
remotely. 

[47] 

Uses GANs to bypass 
malware detection 
mechanisms 

[48] 
Uses ML to collect and 
store system data to 
meticulously monitor 
the CPS 

[35] 

Fraud 

Building fraud 
detection systems 
using decision trees, 
NN, hidden Markov 
model, fuzzy neural 
network, gaussian 
mixture, and data 
visualization. 

[52] 

More recent fraud detection mechanisms make use of data mining techniques, which involve collecting data, extracting useful 
features, classifying transactions, and identifying patterns in the data. Newer machine learning algorithms, like NNs can be more effi-

cient in learning data patterns and achieving higher accuracy. However, challenges like imbalance in training data, rapidly changing 
customer behaviors, and the requirement of real time feedback mean that there is a need for improvement in system accuracy.

Attack Tree Generation

Falco et al. [54] explore possible approaches attackers may take during operations associated with smart cities. They describe how 
public administrators often lack the expertise required to comprehend the security risk of smart cities, which can lead to catastrophic 
attacks. Additionally, considering the extensive network of interconnected devices and systems within a smart city, it would take 
excessive time and resources to enumerate all the possible attack vectors manually. This study builds on the concept of attack trees, 
which are designed to understand all possible causes of system failure. Nodes can be connected to each other by “AND” or “OR” logic 
gates to better capture the requirements of the system failure.

The authors propose a novel method of automatically creating an attack tree by leveraging AI. The trees make use of concepts 
like the stages of the CKC and MITRE’s Common Vulnerabilities and Exposures. A case study shows that when the manually and 
automatically generated attack trees are both applied to a network of CCTV cameras, the automatically generated attack trees are 
significantly more detailed and consistent.

Power Grid Detection Models

Wang et al. [55] design a system to predict different states of the power grid based on its current behaviors. This includes whether 
it is currently under attack or if there are any physical disturbances that are affecting the normal function of the grid. The authors 
make use of several techniques to improve the accuracy of the model. An ensemble model with different classifiers and weights (based 
on the training accuracy) is used. It is also acknowledged that using DL and big data processing strategies will be a crucial research 
direction in the field of power grid management systems in the future.

Table 4 presents offensive techniques and defensive countermeasures that can be employed at the exploitation stage.

4.5. Installation

Our findings show that there is limited research on how advancements in AI contribute to the adversarial installation. This stage 
demands complex decision making and responses, which is challenging for current AI to accurately predict and automate. However, 
utilizing AI in the previous stages to monitor the system for optimal target selection, entry points, and injection timing enhances 
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Table 4
Adversarial techniques and counterattacks adopted by adversaries and defenders during exploitation.

Field Offensive technique Relevant sources Defensive technique Relevant sources 

Attack/Defense 
strategies 

Offenisve strategy analysis 
(learning attacker model). [53] Defensive strategy analysis 

(learning defender model). [53] 

Automated generation 
of attack trees based 
on a system model to 
choose most optimal 
attack path. 

[54] 

Automated generation 
of attack trees based 
on a system model to 
develop defense 
countermeasures 
against attack paths. 

[54] 

CPS attacks Power grid substation vulnerabilities [56] 
Detection of power 
grid attacks using 
machine learning. 

[55,56] 

Fraud detection Automated Fraud 
Detection systems [52] 

Table 5
Adversarial techniques and counterattacks adopted by adversaries and defenders during C&C.

Field Offensive technique Relevant sources Defensive technique Relevant sources 

Network Intrusion 
Botnet creation and 
management using AI. [70] Network Traffic Analysis. [47,48] 

DNN to bypass 
intrusion detection 
systems. 

[45] 
Efficient network 
data compression and 
classification using 
self-adapting algorithms. 

[66] 

Domain Generation DL Domain generation [61] 
GAN for adversarial 
training of domain 
classifiers. 

[61] 

IoT Blockchain as a data 
verification strategy. [67] 
Trust safety mechanism. [57,68] 

Control of machine 
DNN approach for a 
host-based intrusion 
detection system. 

[69] 

Compensation for 
attacks on CPS. [59] 

the success of this stage. To prevent installation, defenders can leverage AI to improve trust mechanisms and strengthen security 
measures.

4.6. Command and Control

4.6.1. Impact of AI on Command and Control

Developments in AI significantly improve operations for both defenders and attackers during C&C. Unlike most previous stages, 
we have found that the majority of offensive strategies can be countered by defensive tools, as shown in Table 5.

Recent offensive research focuses on employing AI to facilitate stealthy communications with C&C servers and in managing large-

scale botnet operations. Traditionally, C&C involved one centralized server hosted by the attacker, to which all infected nodes would 
connect. While this is easy to manage, if the server is taken down, the C&C network will collapse. Newer approaches involve the 
use of decentralized networks of compromised machines, where newly infected nodes are controlled by other infected nodes. These 
networks are highly scalable and do not depend on the resource limitations of a single server. Additionally, the network is harder to 
take down, as there is a plethora of nodes to be targeted [14].

Popularity in designing C&C security approaches for IoT networks is rising in cyber defense research [57]. This is most likely due 
to the rapid growth of IoT networks, with more services and enterprises relying on this technology each year [58].

4.6.2. Adversarial AI techniques

Bypass of Intrusion Detection Systems

Attackers have begun to use more advanced approaches to evade detection algorithms. For example, novel techniques can be 
used to disguise the C&C traffic as normal network activity. However, AI can also help defenders detect possible C&C traffic in their 
networks [20] and even compensate for attacks in the CPS [59].

Piplai et al. [45] demonstrate that it is feasible to use adversarial attacks to bypass GAN network intrusion detection systems, 
even those trained with adversarial samples. This may pose as a challenge for defenders when developing cybersecurity models.

AI Botnet Creation and Management
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Advancements in AI significantly influence Distributed Denial of Service (DDOS) attacks. While simple DDOS tools are unable to 
generate massive amounts of traffic, AI has simplified the creation and maintenance of large botnets [8,60].

Deep Learning Domain Generation

Pseudo-randomly generating domains using a GAN are a novel approach presented by Anderson et al. [61]. These domains can 
be used as endpoints for C&C architectures. Previous domain generation algorithms employ different strategies ranging from uniform 
distribution domains to concatenating words from the English dictionary [62]. In this study, GANs are used to design a DL-based 
domain generation algorithm that bypasses DL-based detectors. However, it has been also shown that the domain generated by the 
proposed algorithm can also bypass other machine learning based detectors. Physical systems or devices that are connected or can 
communicate over network protocols, such as medical devices or pacemakers, can be a common path for malicious actors to establish 
C&C [63].

4.6.3. Mitigation techniques

While attackers can greatly benefit from the use of AI in terms of the creation and management of botnets, defenders are able to 
use different network traffic analysis techniques based on machine learning to detect C&C communications [64]. Network intrusion 
detection systems traditionally rely on rule-based algorithms, where features are manually defined. New rules must be added manually 
once new malware is discovered; thus, such systems adapt very slowly. Using AI, malware can be detected significantly faster compared 
to traditional blocklist methods [65].

Network Traffic Analysis

Kholidy et al. [47] study the effectiveness of machine learning models that use network traffic analysis in detecting malware. 
The models are trained on real network data acquired from university and corporate environments. The approach presented in the 
paper does not consider the content itself being transmitted over the network. The advantage of this approach is that user privacy is 
preserved, as well as the ability of the system to work on encrypted data. Machine learning systems for network intrusion detection 
can leverage the large and increasing network intrusion datasets that have become available in recent years [45].

Another challenge of developing malicious network detection is the large amount of data that can be collected from the network. 
Jing et al. [66] develop a machine learning system that detects DDOS attacks in networks. The first stage of the system consists in 
compressing the network data. The authors employ a Chinese Remainder Theorem based Reversible Sketch. This method not only 
efficiently compresses the data, but also recovers more information about the source of the attack once the model classifies the packet 
as malicious. Next, a modified Multi-chart Cumulative Sum algorithm is built to classify the packets as benign or malicious. This 
algorithm is designed to have self-adaptation capabilities and can detect malicious traffic independently of the network protocol used 
by the attackers. Then, the address of the source of the DDOS attack is recovered and added to a blocklist to mitigate the attack.

Deep Learning Domain Generation

Anderson et al. [61] discuss the Domain Generation Algorithm’s role in strengthening and increasing the robustness of detection 
systems for synthetic domain generation algorithms. This research demonstrates how a GAN model can be used to create adversarial 
samples which can be used during the training of a detection algorithm for maliciously generated domains. This can help defenders 
develop more sensitive cybersecurity models.

Machado and Frohlich’s [67] research targets the cybersecurity of IoT CPSs, particularly focusing on the verification of data 
integrity of IoT devices. They discuss how operations on IoT CPS devices are time-bounded since they must conform with the sense-

decide-actuate cycle of the CPS, posing a challenge for defenders. Another challenge is the resource limitations of IoT devices; 
thus, it is important that integrity verification processes are designed to be energy and resource efficient [67]. It is shown that 
previous methods of integrity verification for IoTs put too much strain on storage capabilities, are not energy efficient, and need 
specialized environments. Machado and Frohlich propose a three-level blockchain architecture to overcome these problems. The 
proposed architecture consists in the following stages:

1. IoT (establishes a domain of trust for several nodes, which communicate with each other);

2. Fog (is responsible for fault tolerance and producing cryptographic keys that are later used for the verification of data integrity);

3. Cloud (stores the IoT data and the cryptographic keys generated by the previous level).

The effectiveness of the system is demonstrated through a series of case studies.

Trust Safety Mechanism

Most defense strategies can address external attacks, but are unable to detect if a node inside the network is broadcasting ma-

licious information. Thus, Wang et al. [68] develop a fog computing based trust system which can be used in networks to verify 
the integrity of new data and detect malicious nodes rapidly; particularly focusing on Sensor–Cloud Systems (SCS). A two-stage 
trust-based hierarchical mechanism is proposed to address possible internal attacks that can occur within networks.

Similarly, Wang et al. [57] present a trust-based approach for IoT integrity verification that uses cloud and edge computing. The 
algorithm not only detects manipulated data and malicious nodes, but also dynamically manages the load placed on the server to 
increase its efficiency in processing data. The task of assessing the trust of the nodes is moved away from the resource limited IoT 
devices, to an edge network. The edge network, which aids the IoT network in ensuring security and efficacy is divided into two 
stages:

• The edge network communicates closely with the IoT nodes and ensures the security of the nodes.
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• The edge platform consists of more powerful nodes, whose task is to manage the load on the IoT devices to ensure maximum 
efficiency, parse incoming user requests, and handle special service requirements.

Host-based Intrusion Detection

DNNs are an efficient approach to malware detection. This does not only apply to network activity, but also to local activity. A 
DNN architecture for both a network-based intrusion detection system (NIDS) and a host-based intrusion detection system (HIDS) is 
developed by Vinayakumar et al. [69]. The first technique is based on analyzing host network activity, while the second considers 
the behavior of the local environment to detect intrusions. They present an architecture based on distributed computer systems, like 
Hadoop Map Reduce and Apache Spark to allow the system to be highly scalable. It is also found that the proposed DNN approach is 
more accurate in detecting malware compared to traditional machine learning methods.

When designing robust detection systems, it must be kept in mind that while it is important to be able to detect cyberattacks, it 
is also important to compensate for the malicious changes to the system that the attack has created. This is especially important in 
CPSs, like vehicles or industrial systems.

CPS Attach Compensation

Farivar et al. [59] design a system to estimate and compensate for cyberattacks in CPS based on NN using the Gaussian Radial 
Basis Function Neural Network (GRBFNN) structure. The efficiency of the algorithm is evaluated using a simulation of a truck, which 
is subject to attacks or other external disturbances.

Table 5 presents offensive techniques and defensive countermeasures that can be employed at the C&C stage.

4.7. Action on objectives

Different adversarial objectives like CPS attacks, fraud, and misinformation discussed in previous sections can be identified at this 
stage. However, the actions and tools required to reach this stage occur previously in the chain; therefore, they will not be discussed 
here.

It is not possible to point out a specific trend in this domain, because the actions taken by the attacker and defender are highly 
varied based on the setting, field, and differing interpretations on what classifies as action on objectives and what is merely a means 
to achieve these.

AI is not particularly helpful at this stage as the decision making is often made using intuition, moral judgment, emotional 
intelligence, and considering ethical policies. These factors pose a challenge to the current AI and limit the effectiveness of AI tools 
at this stage.

However, the integration of AI tools expedites the adversary’s progression through the chain, enabling attackers to reach this stage 
[9]. Many traditional cybersecurity approaches are unable to detect sophisticated AI based attacks [5], thus researchers must reform 
strategies to prevent operations from reaching completion.

The actions of the defender must be executed quickly using forensic evidence to cut off unauthorized access and prevent data 
exfiltration, lateral movement, and further damage [11].

5. Conclusion

In the past decade, advancements of technology and major world events have forced organizations and institutions to undergo 
a digital transformation, moving their data and resources to the cloud. This has encouraged adversaries to target these entities. 
Additionally, due to advancements in AI technologies, these cyberattacks have a higher success rate and can be performed on a larger 
scale. The consequences of cyberattacks have demonstrated that it is imperative for cybersecurity defenders to understand what novel 
tools are being employed by attackers, and what effective defense strategies can be implemented to defend against these cyberattacks.

Our research has revealed several insights into the impact of AI on the widely adopted framework, Cyber Kill Chain. We survey pa-

pers published between 2013 and 2023, obtained from the Web of Science and Google Scholar scientific databases. We review articles 
using the PRISMA framework and analyze the selected papers to compile a set of tools and strategies that give insight into emerging 
approaches used by adversaries. These tools range from the development of GANs that cause third-party model misclassification, to 
tools that learn from benign software within systems, disguising itself against antivirus software.

We address our research questions by investigating how AI affects each stage of the Cyber Kill Chain and what AI tools can be 
used by attackers and defenders. This study finds that although AI influences all the stages of the Cyber Kill Chain, its effects are 
exacerbated in the first stages of the chain: Reconnaissance, Weaponization, Delivery, and C&C. This is largely attributed to the 
fact that these stages deal with large amounts of data. During the reconnaissance stage, the attacker must gather intelligence about 
potential targets and make an informed decision. Similarly, in the delivery stage, the attackers must determine the timing and method 
for deploying the malicious payload. AI certainly enhances attacks by enabling attackers to rapidly process larger volumes of data, as 
well as automating most of the tasks involved with choosing targets and delivering payloads. We find that the Action on Objectives 
stage is less affected by recent developments in technology, as the stage is more dependent on social factors and the aims of the 
attackers.

Fortunately, cybersecurity defense tools have also improved due to advancements in AI. Defenders can take advantage of more 
powerful AI models to perform network classification and generate more accurate and helpful system models. However, further 
research is required to build robust defense models capable of protecting their model training data, identifying adaptive malware, 
and detecting sophisticated social engineering schemes as malicious AI rapidly progresses.
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One of the main limitations of this study was the large corpus of literature on the topic of AI in cybersecurity. Although this gave 
the authors the opportunity to select a wide range of applicable and relevant literature, it inevitably left some parts of the literature 
overshadowed. A future research direction will be to make use of more quantitative tools and bibliometrics to analyze and extract the 
most relevant information from a wider range of literature. As Table A.6 shows, there were 2,8559 records identified in the domains 
of Artificial Intelligence and Cybersecurity, and although this number was greatly reduced through set selection criteria, a study 
aggregating more perspectives would be insightful.

6. Research directions

This section outlines the research directions that were identified during the study. A summary of the overall research directions 
is provided as follows:

• Development and study of defense strategies able to detect data collection from the adversarial side (Section 6.1).

• Study of AI strategies to generate real-looking keystrokes and simulate user input (Section 6.1),

• Methods of employing AI to make decisions to identify malware software based on its patterns of data monitoring and access 
(Section 6.2),

• Use of AI to bypass novel defensive tools which rewrite the binaries of programs (Section 6.2).

• Algorithms, compute units, and strategies to analyze network traffic and program activity in real-time (Section 6.3).

• Study of the effectiveness of methods which combine different AI models to monitor a system (Section 6.3).

• Use of adversarial training for Command and Control prevention mechanisms (Section 6.4).

In the subsequent subsections, we provide a more detailed discussion of research directions categorized by the stage of the CKC.

6.1. Reconnaissance

We find that there is limited research on defense strategies that can detect adversarial data collection, giving attackers a signif-

icant advantage at this stage. Predominantly, current research focuses on developing defense models that utilize AI to detect social 
engineering attempts. Although the efficacy of these models is validated through testing, many studies overlook the safeguarding 
of training data. Without robust security measures, adversaries can manipulate training data to yield incorrect model outputs and 
gain information on the model, improving their campaign planning and evading detection in the subsequent stages. In the future, 
defenders should build more robust monitoring systems adept at identifying adversarial data collection and focus on securing the 
training data of their detection models.

We also found that there is a research gap concerning attackers using a DNN to observe user keyboard input while bypassing 
dummy data generated by defensive software. Attackers could use AI to generate more real-looking fake data, which could confuse 
even the most advanced defense AI tools.

6.2. Weaponization

This study has identified that most adversarial tools in this stage consist in monitoring its surroundings and making decisions 
based on the available information. However, we found no defensive techniques countering this kind of attack. A research direction 
of interest will be employing AI to make decisions on whether a piece of software is malware or not based on the patterns and kind 
of the information about the system the program is accessing.

We find that in the weaponization stage, scientific literature focuses on defensive tools as opposed to adversarial tools. Defenders 
can leverage AI by rewriting program binaries in a way that complies with security policies and avoids known security vulnerabilities 
or by employing advanced tools to record malware behavior in a controlled environment. However, we did not find a matching 
development on the offensive side to overcome the progress in defense.

6.3. Delivery

We find a lack of literature on the effectiveness of combining various AI techniques during the delivery stage. Combining techniques 
like supervised learning, unsupervised learning, and reinforcement learning may enhance the detection of sophisticated attacks. This 
is becoming crucial, as attackers develop novel offensive techniques that require robust tools to detect and prevent a wide range of 
attack methods.

Real time data analysis is also an important future research topic. Being able to analyze data in real time by employing efficient 
algorithms and computing units will be indispensable in detecting and deferring attacks in a timely manner.

6.4. Command and Control

There is a lack of literature in the domain of adversarial training for defensive algorithms which aim to prevent Command and 
Control connections. With more data being collected on attacks and the need for more precise detection algorithms, this is an important 
future research direction.
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Appendix A. PRISMA 2020 checklist

See Table A.7.

Appendix B. Annotation strategy

Review Information

• Our Mendeley paper repository contains 62 articles.

• The list of the papers can be found in the Mendeley repository.

• The research questions are as follows:

RQ 1. What adversarial AI tools and strategies can be used in each stage of the Cyber Kill Chain?

RQ 1. What tools and strategies can be used by defenders to mitigate attacks at each stage of the Cyber Kill Chain?

Literature Selection The agreement reached on how to select literature to review is as follows:

• The literature is retrieved from databases such as Web of Science and Google Scholar.

• The following keyword query must be utilized to fetch relevant papers using the “AND” and “OR” operators: “(Artificial Intelli-

gence AND (Cybersecurity OR Cyber Kill Chain OR Adversarial AI))”

• Literature should be published between 2013 – 2023.

• When literature is found by an individual, it must be shared in the shared Mendeley folder so all annotators can review the 
research.

Annotation

The agreement reached on how to annotate literature during the review is as follows:

1. Tags

• Using the Mendeley software add a tag indicating whether the research is most relevant to an Attacker or Defender tool. This 
will be indicated by the researcher within the abstract/introduction/methodology.

• Using the Mendeley software add a tag indicating what step of the Cyber Kill Chain the paper is most relevant to. This will 
be determined by comparing the objective of the tool/model/framework of the research to each stage within the Lockheed 
Martin Cyber Kill Chain model. The set of tags that can be used in annotating the paper are: Reconnaissance, Weaponization, 
Delivery, Exploitation, Installation, Command and Control, and Actions on Objectives. Papers that are relevant for more than 
one of these stages can be tagged with multiple tags.

2. Research Objective

• The research objective of this paper is to identify how each stage of the Cyber Kill Chain is affected by advancements in AI, 
and what are some notable offensive examples and opportunities for cybersecurity experts.

3. Methodology

• Before the paper selection process, the authors have agreed on the inclusion and exclusion criteria outlined above.

• The authors have agreed on the annotation strategy, and ensured throughout the study that their methodology was consistent 
with the set expectations.

• When it was evident that the interpretation or decision selection of the paper differed among the reviewers, the paper was 
reviewed again, after a discussion, until a unanimous decision was reached.
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Table A.6

PRISMA 2020 Checklist.

Section and Topic Item Checklist Item Outcome

TITLE 
Title 1 Identify the report as a systematic review. Satisfied

ABSTRACT 
Abstract 2 See the PRISMA 2020 for Abstracts Checklist. Satisfied

INTRODUCTION 
Rationale 3 Describe the rationale for the review in the context of existing 

knowledge.

Satisfied

Objectives 4 Provide an explicit statement of the objective(s) or question(s) the 
review addresses.

Satisfied

METHODS 
Eligibility Criteria 5 Specify the inclusion and exclusion criteria for the review and how 

studies were grouped for the syntheses

Satisfied

Information sources 6 Specify all databases, registers, websites, organizations, reference lists 
and other sources searched or consulted to identify studies. Specify 
the date when each source was last searched or consulted.

Satisfied

Search strategy 7 Present the full search strategies for all databases, registers and 
websites, including any filters and limits used.

Satisfied

Selection process 8 Specify the methods used to decide whether a study met the inclusion 
criteria of the review, including how many reviewers screened each 
record and each report retrieved, whether they worked independently, 
and if applicable, details of automation tools used in the process.

Satisfied

Data collection process 9 Specify the methods used to collect data from reports, including how 
many reviewers collected data from each report, whether they worked 
independently, any processes for obtaining or confirming data from 
study investigators, and if applicable, details of automation tools used 
in the process.

Satisfied

Data items
10a List and define all outcomes for which data were sought. Specify 

whether all results that were compatible with each outcome domain in 
each study were sought (e.g. for all measures, time points, analyses), 
and if not, the methods used to decide which results to collect.

Satisfied

10b List and define all other variables for which data were sought (e.g. 
participant and intervention characteristics, funding sources). Describe 
any assumptions made about any missing or unclear information.

Not applicable, no numeric data 
collected from studies

Study risk of bias assessment 11 Specify the methods used to assess risk of bias in the included studies, 
including details of the tool(s) used, how many reviewers assessed 
each study and whether they worked independently, and if applicable, 
details of automation tools used in the process.

Satisfied

Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean 
difference) used in the synthesis or presentation of results

Not applicable, No numeric data 
collected from studies.

Synthesis methods

13a Describe the processes used to decide which studies were eligible for 
each synthesis (e.g. tabulating the study intervention characteristics 
and comparing against the planned groups for each synthesis (item 
#5)).

Satisfied

13b Describe any methods required to prepare the data for presentation or 
synthesis, such as handling of missing summary statistics, or data 
conversions.

Not applicable, No numeric data 
collected from studies.

13c Describe any methods used to tabulate or visually display results of 
individual studies and syntheses.

Satisfied

13d Describe any methods used to synthesize results and provide a 
rationale for the choice(s). If meta-analysis was performed, describe 
the model(s), method(s) to identify the presence and extent of 
statistical heterogeneity, and software package(s) used.

Not applicable, No numeric data 
collected from studies.

13e Describe any methods used to explore possible causes of heterogeneity 
among study results (e.g. subgroup analysis, meta-regression).

Not applicable, No numeric data 
collected from studies.

13f Describe any sensitivity analyses conducted to assess robustness of the 
synthesized results.

Not applicable, No numeric data 
collected from studies.

Reporting bias assessment 14 Describe any methods used to assess risk of bias due to missing results 
in a synthesis (arising from reporting biases).

Satisfied

Certainty assessment 15 Describe any methods used to assess certainty (or confidence) in the 
body of evidence for an outcome.

Satisfied
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Table A.7

PRISMA 2020 Checklist, Cont’d.

Section and Topic Item Checklist Item Outcome

RESULTS 

Study selection
16a Describe the results of the search and selection process, from the 

number of records identified in the search to the number of studies 
included in the review, ideally using a flow diagram.

Satisfied

16b Cite studies that might appear to meet the inclusion criteria, but 
which were excluded, and explain why they were excluded.

Satisfied

Study Characteristics 17 Cite each included study and present its characteristics. Satisfied

Risk of bias in studies 18 Present assessments of risk of bias for each included study. Satisfied

Results of individual studies 19 For all outcomes, present, for each study: (a) summary statistics for 
each group (where appropriate) and (b) an effect estimate and its 
precision (e.g. confidence/credible interval), ideally using structured 
tables or plots.

Not applicable, No numeric data 
collected from studies.

Results of syntheses

20a For each synthesis, briefly summarize the characteristics and risk of 
bias among contributing studies

Satisfied

20b Present results of all statistical syntheses conducted. If meta-analysis 
was done, present for each the summary estimate and its precision 
(e.g. confidence/credible interval) and measures of statistical 
heterogeneity. If comparing groups, describe the direction of the 
effect.

Not applicable, No numeric data 
collected from studies.

20c Present results of all investigations of possible causes of heterogeneity 
among study results.

Not relevant, presented studies 
present results in different domains

20d Present results of all sensitivity analyses conducted to assess the 
robustness of the synthesized results.

Not applicable, no numeric data 
collected from studies

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from 
reporting biases) for each synthesis assessed.

Satisfied

Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of 
evidence for each outcome assessed.

Satisfied

DISCUSSION 

Discussion

23a Provide a general interpretation of the results in the context of other 
evidence.

Satisfied

23b Discuss any limitations of the evidence included in the review. Satisfied

23c Discuss any limitations of the review processes used. Satisfied

23d Discuss implications of the results for practice, policy, and future 
research.

Satisfied

OTHER INFORMATION 

Registration and 
protocol

24a Provide registration information for the review, including register 
name and registration number, or state that the review was not 
registered.

Satisfied

24b Indicate where the review protocol can be accessed, or state that a 
protocol was not prepared.

Not applicable

24c Describe and explain any amendments to information provided at 
registration or in the protocol.

Not applicable

Support 25 Describe sources of financial or non-financial support for the review, 
and the role of the funders or sponsors in the review.

Satisfied

Competing interests 26 Declare any competing interests of review authors. Satisfied

Availability of data, code and 
other materials

27 Report which of the following are publicly available and where they 
can be found: template data collection forms; data extracted from 
included studies; data used for all analyses; analytic code; any other 
materials used in the review.

Not applicable
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