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Abstract

Vital signs such as heart rate (HR) and respiration rate (RR) are essential physiological
parameters that are routinely used to monitor human health and bodily functions. They
can be continuously monitored through contact or contactless measurements performed
in the home or a hospital. In this study, a contactless Doppler radar W-band sensing system
was used for short-range, contactless vital sign estimation. Frequency-modulated contin-
uous wave (FMCW) measurements were performed to reduce the influence of a patient’s
micromotion. Sensing software was developed that can process the received chirps to filter
and extract heartbeat and breathing rhythm signals. The proposed contactless sensing sys-
tem eliminates the need for the contact electrodes, electric patches, photoelectric sensors,
and conductive wires used in typical physiological sensing methods. The system operates
at 76–81 GHz in FMCW mode and can detect objects on the basis of changes in frequency
and phase. The obtained signals are used to precisely monitor a patient’s HR and RR with
minimal noise interference. In a laboratory setting, the heartbeats and breathing rhythm
signals of healthy young participants were measured, and their HR and RR were esti-
mated through frequency- and time-domain analyses. The experimental results confirmed
the feasibility of the proposed W-band mm-wave radar for contactless and short-range
continuous detection of human vital signs.

1 INTRODUCTION

Vital sign monitoring can provide valuable information for the
early detection of diseases such as heart disease and cardio-
vascular-related conditions. In particular, electrocardiography
(ECG) and photoplethysmography (PPG) can measure heart
rate (HR) and monitor cardiac activity. In ECG measurements,
three leads (leads I, II, and III) are used to measure electrical
activity signals from the atria to the ventricles in the heart. An
ECG reading has the form of a waveform, including P, QRS
complex, and T waves. These waveforms can be used to iden-
tify cardiac arrhythmia, heart conduction disorders, coronary
ischemia, myocardial infarction, and atrial fibrillation. Regular
contractions and relaxations of the atria and ventricles can drive
blood flow from the heart through the pulmonary and systemic
circulation systems. Each heartbeat triggers a blood pressure
wave that passes through the blood vessels, causing regular pul-
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sation as the vessels contract and expand. These pulsations can
be measured using PPG, which can thus detect physiological
parameters such as HR, HR variability (HRV), oxygen saturation
(SPO2), and respiration rate (RR) [1–6].

To perform ECG measurements, contact electrodes and elec-
tric patches must be placed on the human body, including on
the upper and lower limbs and chest [6]. These contact sensors
are attached to the skin to perform up to 12-lead measurements
between any two sensors, enabling continuous monitoring of
the heart’s electrical activity. However, measurement quality can
be degraded by environmental factors or subject motion; hence,
patient movement must be restricted. PPG measurements are
performed using a photoemitter and a photodetector in either
transmissive or reflective mode [1, 3]. A photoemitter can emit
visible green light (510 nm), visible red light (659 nm), or
near-infrared (IR) light (800–940 nm); the photodetector then
measures changes in the reflected light [1, 3, 7]. In transmissive
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mode, the light intensity is 40–60 dB stronger than in reflec-
tive mode; however, reflective-mode PPG can be performed for
any location on the human body, including the thumbs, fingers,
and earlobes. An appropriate wavelength range must be selected
to ensure sufficient light transmission and measurement res-
olution. PPG with IR light has a broad sensitivity range and
sufficient resolution to measure physical changes in blood ves-
sels. Hence, optical sensing methods are increasingly employed
in wearable devices, such as wrist-worn fitness trackers, for
continuous and long-term physiological monitoring.

Each PPG pulse trails an ECG signal; hence, ECG and PPG
can be combined to measure the pulse transit time and blood
velocity. These measurements can be input into a characteristic
equation for estimating systolic and diastolic blood pressure for
continuous blood pressure monitoring. Combining these mea-
surements is a non-invasive method of estimating physiological
parameters such as the stiffness index (SI) or reflection index
(RI) [7, 8] and of evaluating the risk of cardiovascular disease
or arteriosclerosis. The advantages and limitations of ECG and
PPG measurements are as follows:

∙ ECG measurements: Commercial ECG methods are used
as a first-line tool for the early detection of heart disease.
However, ECG signals are faint (on the order of millivolts)
and have a frequency of less than a few hundred hertz;
hence, they are susceptible to interference from noise due
to power lines (50 or 60 Hz), impedance from skin contact,
and high-frequency electromagnetic signals. This noise can be
eliminated using digital band-rejection filters (50 or 60 Hz),
digital baseline-drift filters (5–12 Hz), and digital bandpass
filters (1–30 Hz) [9, 10]. In practical applications, ECG is a
time-consuming method for monitoring a patient in a hos-
pital environment and requires the interpretation of data by
medical staff.

∙ PPG measurements: Noise that interferes with optical PPG
measurements can be caused by ambient light, sweat, and
vibrations due to patient motion. Ambient light, such as from
fluorescent bulbs, may incur noise attributable to alternating
current [11–13]; this noise can be reduced by using digital fil-
ters. Wearable PPG sensors can be employed during dynamic
activities but are susceptible to interference attributable to the
relative motion of the optical sensor and the skin, resulting in
low signal sensitivity. In addition, the frequency of motion
vibration can be misinterpreted as the RR and must therefore
be compensated for when measurements are being recorded
during dynamic activities.

Both ECG and PPG contact measurements require the place-
ment of electrodes or optical sensors on the skin and an external
connection to a data processor through signal-conducting wires.
Long-term monitoring with such a setup can cause discomfort
for patients and limit their movement. Contactless measure-
ments do not cause discomfort or adverse biological monitoring
with a mm-wave sensing system; (b) detection of frequency
displacements (fr) produced by a stationary object; and (c) detec-
tion of frequency displacements produced by dynamic object
reactions, such as infection, skin irritation, and allergic reactions.

Clinically, contactless measurements are employed for patients
with special treatment requirements, such as patients with severe
burns in the intensive care unit (ICU), with a novel infectious
disease (such as COVID-19), in the neonatal ICU (NICU) [2,
14–16], or with severe wounds and at high risk of infection.
The continuous monitoring of vital signs is essential for obtain-
ing estimations of a patient’s HR, RR, and SpO2 to monitor
for hypoxia, heart health, autonomic nervous system function
(as indicated by HRV), and systemic inflammatory response or
autoimmune disorders [14, 15]. Contactless monitoring meth-
ods can prevent human-to-human transmission of disease and
also reduce stress, pain, and damage to the fragile skin of infants
and injured adults [2]. Contactless measurements enable long-
term and continuous monitoring and do not suffer from the
shortcomings of contact methods, such as signal-conducting
wires becoming detached.

To make contactless measurements, this study applied
Doppler millimetre-wave (mm-wave) radar with frequency-
modulated continuous wave (FMCW) technology [16, 17] for
vital sign detection (VSD) applications, including HR and
RR estimations [5, 18–25]. An overview of the method is
presented in Figure 1a. The mm-wave bands of the radar
can be segmented into the C-band (4–8 GHz), X-band (8–
12.5 GHz), K-band (12.5–40.0 GHz), V-band (40–75 GHz),
and W-band (75–110 GHz) [5, 16, 20, 26]; these bands can
be measured using the commercial circuit boards and embed-
ded modules shown in Figure 2. Among these mm-wave
bands, the 3–30 GHz mm-wave is commonly used in every-
day life, and the X-band is a standard range for radar sensing
applications in various industries and healthcare. For exam-
ple, commercial mm-wave circuit boards (TRW-5.8G-B and
HB100 Radar) [20] and embedded modules (SW-UWB-M-
DEBUG-V2, SW-UWB-M-A2 × 2, and Texas Instruments
radar sensor (TI IWR1443BOOST) [5]), as seen in Figure 2,
generally operate within specific bands in the 5.8 GHz, 6.5–
8.1 GHz, 10.525 GHz, and 76–81 GHz mm-wave ranges.
The commercial SW-UWB-M-A2 × 2 radar module, with
a lower transmission frequency, offers a broad detection
range of 0.5–3.0 m. X-band mm-wave sensors are widely
used in commercial and industrial applications, such as theft
deterrence, traffic speed detection, automated controls, and
VSD [26]. However, widespread usage of this band results
in high interference. The K-band is commonly employed
for high-discriminant-validity measurements; however, atmo-
spheric attenuation causes it to have a short detection range
of less than 1.0 m [20, 23, 24, 27, 28]. The TI mm-wave
radar sensor (IWR1443BOOST# or IWR1642BOOST#) [5,
16] is a multi-input, multi-output-capable hardware–software
single-chip (two transmitters and four receivers) device that
has a development kit and an application programming inter-
face. Therefore it could be used to develop a VSD system.
However, this chip is slightly more sensitive to random body
motion than 60-GHz systems because of the greater path loss
(antenna peak gain of >9 dBi) across the 76–81 GHz fre-
quency band [29, 30]. The bottleneck for data measurements
is the sensing range; a radar sensor’s accuracy decreases greatly
as the sensing range decreases. The maximum measurement
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FIGURE 1 Doppler millimetre (mm)-wave radar-based contactless measurement system. (a) Vital signs (HR and RR detection) are continuous.

FIGURE 2 Commercial millimetre-wave radar circuit boards and embedded modules.

distance of a sensor being used for HR and RR estimation is
approximately 1.2 m (0.6–1.2 m) for standing or walking
patients [5, 16].

In this study, we employed a W-band FMCW-based mm-
wave (76–81 GHz) sensing system for human VSD. The system
is an embedded module comprising a radio frequency trans-
mission circuit, reviver antennas, a power amplifier, a filter
system, and a microcontroller. The system preprocesses sens-
ing signals and then transmits them to a laptop for digital data
analysis. The distance and direction of measurements can be
estimated by analyzing the frequency differences between trans-
mitted and reflected electromagnetic waves. Application of the
system to stationary and dynamic object detection is depicted
in Figure 1b,c, respectively. Dynamic or stationary objects can
be detected and tracked. Doppler mm-wave radar is employed
to detect heartbeat and breathing rhythm signals in contact-
less measurements, and digital filters are used to eliminate
interference, such as microdisturbances from the body, back-
ground noise, and DC offsets in the system. The phase value
of the received chirps is filtered using a bi-quad infinite impulse
response (IIR) filter [5, 29] into 0.8–4.0 and 0.1–0.6 Hz com-
ponents; these represent, respectively, the cardiac and breathing
frequency spectra [5, 29]. This method enables the mitigation
or complete elimination of interference. In addition, for short-

range detection, reducing the radar wavelength can decrease the
reception of interference signals, thereby reducing measurement
errors in the intermodulation signals. Digital signal processing
can also be performed on a laptop to remove unwanted low-
frequency and high-frequency signals with a bandpass filter (the
Butterworth filter) to yield physiological parameters suitable for
estimating HR and RR.

For digital signal analysis, we estimated HR and RR by using
frequency-domain and time-domain methods. Regarding the
frequency- domain method, the fast Fourier transform (FFT)
was first employed to extract characteristic frequencies from
the postprocessed signals. Typically, the characteristic frequen-
cies are 1.1–1.3 Hz for heartbeat signals and 0.15–0.40 Hz for
breathing rhythm signals [31]. The HR and RR could both
be estimated from these specific characteristic frequencies. An
adult human typically has a resting HR of 60–70 beats/min
and a resting RR of 12–20 breaths/min; both of these increase
during exercise. Regarding the time-domain method, the peak
detection or endpoint detection algorithm [5, 6, 32] was used
to identify the peaks of the heartbeat signals by applying pre-
set threshold values (a peak-to-peak distance threshold and
an amplitude threshold) as a benchmark (peak-to-peak inter-
val) for estimating the average R-R interval; the average HR
was then computed [5, 6]. The aforementioned digital filters
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and signal processing algorithms can all be implemented in
Python [17]. Thus, we established a Doppler mm-wave radar
with FMCW technology (Figure 1a) that can make contactless,
short-range measurements to capture heartbeat and breathing
rhythm signals. This setup enabled us to extract character-
istic frequencies and parameters to determine HR and RR
in both the time and frequency domains. Through experi-
ments, we verified that the data captured by the W-band
mm-wave radar can be used for real-time human VSD, thereby
demonstrating the accuracy of mm-wave radar for contactless
measurements.

2 METHODOLOGY

2.1 Principles of contactless mm-wave radar
sensing

As seen in Figure 1a, the contactless mm-wave radar used
in this study is a 71–86 GHz mm-wave sensing firmware
device (76–77 GHz: 14 dB; 77–81 GHz: 15 dB). This HW-SW
device consists of a radar mm-wave sensor (Joybien mm-
wave IWR1642BOOST single chip), a Raspberry-Pi Hat Board
(ARM Cortex-R4F-based radio control system), and Python
application software [5, 17, 29]. Utilizing the Doppler effect
application, as seen in Figure 1a, an electromagnetic wave is
emitted from the transmitter end, Tx, toward a stationary or
a dynamic object. The object then reflects the electromagnetic
wave back to the receiving end, Rx. The digital signal proces-
sor captures and processes the reflected signal, facilitating the
estimation of the object’s motion, distance, speed, and direc-
tion or angle based on frequency and phase changes, as seen
in Figure 1b,c, respectively. Currently, three dominant mm-
wave radar technologies include: (1) pulse modulation (PM);
(2) continuous wave (CW); and (3) frequency modulation (FM)
[17–20]. Unmodulated CW radars can detect the Doppler fre-
quency shifts caused by changes in object velocity. The object’s
distance must be measured with FM, whereas PM can only
detect the object’s distance. The FMCW method can simultane-
ously detect both an object’s distance and velocity [17, 22–24].
In this study, we employ a Doppler mm-wave radar to perform
continuous, contactless, short-range measurement for estimat-
ing HR and RR based on frequency differences between the Tx
and Rx ends. Figure 1b shows the incident electromagnetic wave
striking a stationary object [22–24]. The reflected incident wave
exhibits identical waveforms and frequencies. A time delay, tr,
develops between both electromagnetic waves due to the dis-
tance, d0; the distance between the object and the radar can be
represented as d0 = c⋅tr / 2, with c representing the signal prop-
agation velocity in the air and is given as c = 3 × 108 m/s. Let
the object’s motion signal, x(t), as [20]

x(t ) = A0 cos(2𝜋 f0t + 𝜃(t )) (1)

where A0 is the signal amplitude and f0 is the frequency.
Given fT and θ(t) as the transmitted frequency and phase noise,

the reflected signal, R(t), can be represented as [5, 20]

R(t ) ≈ AR cos(2𝜋 fTt ) −
4𝜋d0

𝜆T

−
4𝜋x(t )

𝜆T

+ 𝜃

(
t −

2d0

c

)

(2)
where AR is the amplitude of the reflected signal R(t); λT = c / fT
is the wavelength; and d0 is the fixed distance between the object
and the stationary radar sensor. Suppose θ0 = 4πd0 /λT be the
phase shift and Δθ(t) = θ(t) − θ(t − 2d0/c) be the residual phase
noise. With the mixing process, we can obtain the normalized
baseband signal, B(t), as follows [5, 20]:

B(t ) ≈ cos

(
𝜃0 +

4𝜋x(t )

𝜆T

+ Δ𝜃(t )

)
(3)

Considering θ0 as an odd multiple of π/2 and x(t) < < λT,
we can simplify the Equation (3) as

B(t ) ≈
4𝜋x(t )

𝜆T

+ Δ𝜃(t ) (4)

Figure 1c shows that if the object is in motion, the electro-
magnetic wave is reflected by a target moving relative to the
radar, and then the reflected electromagnetic wave demonstrates
a frequency shift, fd; the frequency changes of the processed
signal can be expressed as “f1 = fr − fd” and “f2 = fr + fD”,
respectively. The distance between the radar and the object can
be estimated as distance D = (c / (4 × fm × b)) × ((f2 + f1)/2),
where frequency, fm, indicates the modulation frequency, and b

represents the maximum change in the modulation frequency.
The relative velocity of the dynamic object is v = (c / (2 × fc)) ×
((f2 − f1)/2), where frequency, fc, denotes the centre frequency
of the incident electromagnetic wave [22–24], thus enabling
detection of the dynamic object’s distance and motion velocity.

For the same stationary object, with a displacement
of <5 mm and a frequency of <2 Hz, the phase change is
constant [5, 29]; thus, x(t) in Equation (4) can be expressed as
follows [25]:

x(t ) ≈ xh(t ) + xb(t ) + Δd (t ) (5)

where xh(t) and xb(t) represent the distance variation caused
by heartbeat and breathing rhythms, andΔd(t) denotes the resid-
ual signal. In addition, for short-range measurements (< 1.0 m),
the residual phase noise Δθ(t) and the residual signal Δd(t) can
be neglected [25].

After receiving the processed signal, the measurement data
are transmitted to a data acquisition system through a serial
communication line for analog-to-digital conversion (ADC). In
digital signal processing, a digital band-pass filter (Butterworth)
is employed to remove the unwanted high- and low-frequency
components. This way, we can obtain the heartbeat and breath-
ing rhythm signals, xh(t) and xb(t). For the ECG signal sequence,
FFT can be used to estimate the characteristic frequencies of
signals, xh(t) and xb(t) [33, 34]. The peak detection algorithm was
used to identify the R peaks within a QRS complex and thereby
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TABLE 1 Specifications of the Doppler mm-wave radar [17].

Hardware Specification

FMCW based
transceiver

∙ 76–81 GHz Coverage with 4 GHz continuous
bandwidth;

∙ Four receive channels;
∙ Two transmit channels;
∙ Ultra-accurate chirp (timing) engine based on

fractional-N PLL
∙ Rx noise figure: 14 dB (76 to 77 GHz) / 15 dB

(77 to 81 GHz)

DSP (Digital signal
processor)

C674xDSP for FMCW signal processing

MCU (Microcontroller
unit)

∙ ARM cortex-R4F microcontroller for
application control

∙ I/O: SPI / CAN × 1
∙ Up to 2 UARTs I2C × 1 (Raspberry Pi Hat

Board [ARM® Cortex®-R4F-based radio
control system])

Intend purpose Vital signs detection (VSD) firmware for
short-distance (30–90 cm) wireless and
contactless detection for heart rate (HR) and
respiration rate (RR) only one of VSD; HAM
(pre-programmed within a single mmWave
module)

Power consumption at
power terminals

1.38–1.92 W for two transmitters and four receivers
(25%–50% duty cycle, low power mode) [17]

Sensing range 0.6–1.2 m [5, 16, 29]

Operating temperature
and humidity

∙ 0 to 40◦C
∙ 10%–85% non-condensing

extract the R-R interval parameters and compute the average
HR. Table 1 presents the specifications of the contactless and
short-range mm-wave sensors used in this study [5, 17, 29]. The
proposed mm-wave radar does not require contact sensors or
signal-conducting wires and can perform continuous, real-time
VSD. In addition, the average power consumption of the W-
band mm-wave sensor at the power terminals is approximately
1.38–1.92 W (25%–50% duty cycle), and the measurement dis-
tance is 0.6–1.2 m. Hence, the device is especially useful for
application in patients with severe infectious diseases, serious
and acute respiratory disorders, or burns in the ICU/NICU or
isolation ward.

2.2 HR and RR estimations

Human heartbeats and breathing rhythms are not fixed and
are primarily regulated by the human autonomic nervous sys-
tem. These heartbeats and breathing rhythms can be analysed
using frequency- and time-domain methods to determine HR
and RR. In both methods, the fragmented time-domain rhythm
signals, as seen in approximately ten rhythm signals in Figures 3a
and 4a, are used to estimate the HR and RR, respectively.
In frequency-domain analysis, rhythm signals are transformed
into a spectrogram by using the FFT method to identify the
characteristic frequencies, as seen in Figures 3c and 4b, respec-
tively. The HR and RR can be estimated by using the following

equations:

HR = 60 × fc1 (beats∕min) (6)

RR = 60 × fc2 (breaths∕min) (7)

where fc1 is the characteristic frequency of the fragmented
heartbeat signals; and fc2 is the characteristic frequency of the
fragmented breathing rhythm signals, respectively. For adult
subjects, the main frequency ranges within 1.1–1.3 Hz for
heartbeats and frequency ranges between 0.15 and 0.40 Hz
for breathing rhythm signals at stationary state. Lower fre-
quency ranges, 0.04–0.15 Hz, reflect regulatory responses by the
sympathetic and the parasympathetic systems.

In time-domain analysis, the R peak detection or endpoint
detection algorithms [5, 6, 32] are used to extract the QRS
complex wave in each heartbeat signal and then pick up the
R peak, as seen in Figure 3a. Each R-R interval can be esti-
mated between the R peak and the subsequent one, as displayed
in Figure 3b. The average R-R interval is denoted as R-Rave,
which is used to estimate the average HR with the fragmented
heartbeat signals (M heartbeats), as follows:

R − Rave =
1
M

M∑
m=1

R − Rm (s) (8)

HR =
60

R − Rave
(beats∕min) (9)

Thus, Equations (6)–(9) can be employed to estimate the
physiological parameters and indicators in real-time. Normal
ranges of vital signs for adult humans are 48 < HR < 120
(beats/min) and 6 < RR < 30 (breaths/min), with slight varia-
tions based on factors such as age, sex, body weight, and health.
These indices can assist in the early detection of life-threatening
symptoms, such as coughing and shortness of breath, which
are indicative of respiratory issues such as chronic obstruc-
tive pulmonary disease or acute respiratory distress syndrome
(ARDS).

3 EXPERIMENTAL RESULTS AND
DISCUSSIONS

3.1 Experimental setup

Experiments, tests, and validation of human VSD were con-
ducted using the contactless mm-wave radar sensor, as seen in
the sensing firmware in Figure 1a. The experimental HW setup
employed a Doppler radar mm-wave sensing system [17], which
included a 76–81 GHz (W-band) mm-wave sensing firmware
(Joybien mm-Wave) with a Tx electromagnetic-wave transmit-
ter and an Rx electromagnetic-wave receiver, a Raspberry-Pi Hat
Board (ARM Cortex-R4F), an ADC, a microcontroller unit, and
a digital signal heartbeats; (d) HR estimations with 30 heart-
beats; (e) R-R interval estimations with 10, 20, and 30 heartbeats
processor; and the HW-SW system was designed to carry out
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FIGURE 3 Time-domain and frequency-domain analysis for heartbeat signals. (a) Time-domain raw data for heartbeat signals. (b) Time-domain R-R interval
analysis (HR = 72.78 bpm) and (c) frequency-domain HR analysis (fc1 = 1.24 Hz, HR = 74.4 bpm).

FIGURE 4 Time-domain and frequency-domain RR analysis for breathing rhythm signals. (a) Time-domain raw data for breathing rhythm signals. (b)
Frequency-domain analysis for RR estimation (fc2 = 0.30 Hz, RR = 18 breaths/min).

the FMCW-based sensing functions for VSD at short range
(0.30–1.20 m). The measurement distance was suggested at
0.6 m distance [5, 29]. The Raspberry-Pi Hat Board provided
an integrated development environment, namely “Geany,” for
writing Python application programs. These programs are used
to implement the mm-wave FMCW control, FFT operation,
and time-domain analyses for processing the raw data. Hence,
heartbeat and respiratory phase differences were processed with
MATLAB 9.0 (MathWorks, Natick, MA, USA) version software
and used to estimate HR and RR; these were then displayed
on a graphical user interface (GUI). This system can also link
to the internet of medical things (IOMT) systems via built-in
Wi-Fi or Bluetooth wireless communication [35] for transmit-
ting physiological measurements. This can be achieved through
2.4–2.485 GHz or 5.0–6.0 GHz ISM (Industrial, Science, and
Medical, excluding applications in telecommunications) radio
band standards (IEEE 802.11 Wireless Networking Protocol
[36]). The 5G (fifth-generation) communication system [37]
facilitates the transmission of a patient’s data to remote hospi-
tals or a clinician’s smart phone and iPad, enabling hospitals,
patients, and their families to monitor physiological parameters.
This information can then be used in multiparty consultations
and patient discussions for medical purposes.

3.2 Experimental tests and discussion

The contactless VSD experiments and tests at 0.6 m dis-
tance (<1.0 m) were conducted in a laboratory, as shown in
Figure 5a. Participants were ten young adult males with an
average age of 22 years. Each participant underwent the sta-

tionary VSD test, recording heartbeats and breathing data for
a 1-min timing interval for each measurement test. For instance,
fragmented raw data from ten instances of heartbeats and
breathing rhythms are portrayed in Figures 3a and 4a, respec-
tively. Through time-domain analysis, the R-R interval was
determined, and Equations (8) and (9) were employed to com-
pute the average R-R interval and HR, respectively. As seen
in Figure 3b, the average HR for the ten heartbeats depicted
in Figure 3a was 72.78 beats/min (SDRR = 0.0214 s). The
experimental results from the frequency-domain analysis are
displayed in Figures 3c and 4b. The main characteristic fre-
quencies, fc1 = 1.24 Hz and fc2 = 0.30 Hz, were extracted for
ten instances of a heartbeat and breathing rhythm, where signi-
fied components of the measurement signals in the frequency
ranges 0.8–2.0 and 0.1–0.6 Hz (frequency spectrum) were the
cardiac and breathing signals, respectively. Equations (6) and (7)
revealed that HR = 74.4 beats/min and RR = 18 breaths/min,
respectively.

For fragmented raw data from 10, 20, and 30 instances of
heartbeat signals, with frequency- and time-domain analysis,
Figure 5b–d presented HRs for ten young participants at sta-
tionary VSD tests as average HRs of 71.66, 72.03, and 71.94
beats/min, respectively; and average R-R intervals of 0.8361,
0.8336, and 0.8345 s for time-domain analysis, respectively; and
with ten participants’ R-R intervals to compute HRs, Figure 5e
shows the average HRs of 73.11, 74.06, and 73.68 beats/min
for three fragmented raw data, respectively. All participants were
healthy young adults, with their average HRs falling within the
normal range of 48 beats/min < HR < 120 beats/min. It could
be seen that the proposed mm-wave radar sensor had promising
results for heartbeat measurement.
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FIGURE 5 Experimental setup and frequency- and time-domain analysis for HR estimation with ten young adult subjects. (a) Experimental setup for VSD
tests. (b) Frequency- and time-domain analysis for HR estimations with ten heartbeats. (c) HR estimations with 20.

TABLE 2 Comparisons of experimental results with different W-band mm-wave radarsensors.

Literature HW-SW

Measurement

distance HR estimation RR estimation

[5] TI mm-wave radar sensor (IWR1443BOOST#), MATLab
Application Software

0.3–1.5 m 67.12 beats/min (at a 0.6 m
distance)

6–14 breaths/min (at a
0.6 m distance)

[29] TI mm-wave radar sensor (IWR6843 and 1642BOOST#),
MATLAB Application Software

0.6–1.0 m 76.00 beats/min (1.27 Hz, at a
1.0 m distance)

10.50 breaths/min
(0.175 Hz at a 1.0 m
distance)

Proposed Method Joybien mm-wave radar sensor (TI IWR1642BOOST#),
MATLAB and Python Application Software

0.6–1.0 m 72.02 beats/min (at a 0.6 m
distance)

18.28 breaths/min (at a
0.6 m distance)

FIGURE 6 Frequency-domain analysis for RR estimations with 10, 20,
and 30 breaths (ten young adult subjects).

Figure 6 presents the frequency-domain RR estimations for
the 10, 20, and 30 breathing rhythm signals of the ten young
adult participants. The average RRs were 18.29, 18.26, and
18.31 breaths/min, respectively, within the normal RR range
of 6–30 breaths/min. To investigate the contactless perfor-
mance of the method, 1-min stationary VSD tests at a distance
of 0.6 or 1.0 m were performed using the proposed method
(TI IWR6843BOOST) and W-band mm-wave radar sensors
described in the literature (TI IWR1443 and TI IWR1642
BOOST) [5, 29]. The experimental results are presented in
Table 2. The proposed mm-wave system obtained promising
results for both HR and RR estimation at 0.6 m. A comparison
of the results of our mm-wave radar system with those of ECG
and PPG detection is presented in Table 3. ECG measurements
capture weak voltage signals through active or passive electrodes
on the skin. The ECG sensing circuit must contain high-gain

analog and digital high-pass (Butterworth) filters, band-rejection
filters, and baseline-drift filters to remove noise due to interfer-
ence from power circuits (50 and 60 Hz), electromagnetism, and
skin contact impedance. These contact sensing and filtering cir-
cuits can readily be integrated into a wearable device. In clinical
applications, 12-lead measurements can also be used to obtain
ECG signals from limb and chest leads. Continuous monitoring
of cardiac electrical activity signals through conventional ECG
limits patient movement, and the measurement quality is easily
degraded.

Additionally, PPG measurement employed the single- or
dual-wavelength light sources (650 nm or 800–940 nm) to
measure pulse signals and oxygen saturation in the transmissive
or reflective modes [1, 3, 4, 7]. Although reflective mode
can be used on any part of the body, the use of an optical
detector, which detects a change in the light flux at different
depths, means that the reflected signal has to undergo further
processing, such as noise filtering, signal amplification, signal
modulation, and signal digitization. Commercial optical sensors
are compact and lightweight; photoemitters, photoreceivers,
and driver circuits can be easily integrated into an embedded
system to suppress ambient light, reduce power consump-
tion, and extend the possible monitoring duration. In clinical
applications, combining ECG and PPG measurements can be
effective for detecting peripheral arterial disease through the
assessment of a patient’s arteriosclerosis risk level [4, 38]. The
R peak can be used as a timing reference, as seen in Figure 7a,b,
enabling the extraction of specific pulse feature parameters



434 CHEN ET AL.

TABLE 3 Comparisons of mm-wave radar sensor, ECG, and PPG detection.

VSD methods Millimetre (Mm)-wave radar ECG measurement PPG measurement

Principles (technology) Doppler radar detection of millimetre
waves

Detection of physiological signals from
the heart through electrodes on the
skin

Optical detection of pulse signals through
direct contact with the skin

Detection signals 76–81 GHz electromagnetic waves
(incident and reflected
electromagnetic waves)

Heart nerve conduction signals
(changes in cardiomyocyte
depolarization voltages)

Infrared light (650 nm) or near-infrared
light (800–940 nm) [1, 3, 4, 7]

Detection approach Contactless Sensing Contact Sensing Contactless/Contact Sensing

Detection distance Short-range (0.3–1.2 m) [5, 29] Active or passive detection through
electrodes on skin

Transmissive and reflective light sensors on
the skin

Wearable × √ √

Sources of interference
and noise

Uses short-wavelength mm-wave and
short-range measurement to avoid
unnecessary environmental noise
(slight)

Power harmonic interference
(50 Hz/60 Hz), skin contact
impedance interference,
electromagnetic interference,
interference caused by human
vibrations

Interference from ambient light
(fluorescent lights and energy-saving
lamps), sweat, and motion vibrations

Filter requirement √ √ √

Monitoring type Continuous monitoring Continuous monitoring Continuous monitoring

Movement restrictions × √ √

Medical purpose
(applications)

HR and RR estimation ∙ HR and RR estimation
∙ Sympathetic nerve activity evaluation
∙ Temperature regulation response

evaluation
∙ Peripheral cardiovascular tone and

reflex evaluation

∙ HR and RR estimation
∙ SPO2 estimation
∙ Blood flow velocity estimation
∙ Stiffness index (SI) estimation
∙ Reflection index (RI) estimation

FIGURE 7 ECG and PPG signals of vital signs: (a) millimetre-wave radar detection of ECG signals; (b) lead II detection of ECG signals; and (c) infrared
photoreceiver detection of PPG signals.

from the time-domain PPG waveforms, such as differences in
the pulse transit time between the ECG R peak and the PPG
foot, timing intervals between pulse waves, and peak height
ratios of the pulse signals. These parameters can be used to
measure the SI and RI [1, 3, 4, 7, 39], for example, RI = (H2
/ H1) × 100%, as seen in Figure 7c. Hence, the 76–81 GHz
mm-wave radar sensor developed in this study offers several
advantages compared to ECG and PPG measurements:

∙ It enables contactless and short-range sensing manner.
∙ It offers suitable directionality from the mm-wave antenna

emitting electromagnetic waves, which aids in controlling the
sensing range.

∙ It bears a strong resistance to interference from environmen-
tal factors such as temperature, humidity, noise, airflow, dust,
and light.

∙ It exhibits a high level of resistance to radio frequency
interference.

∙ It produces low output power that is harmless to humans.

Figure 7a,b shows the raw data from the mm-wave radar and
a lead II ECG in the time domain, respectively. Both waveforms
had distinct and periodic R peaks and could be used to estimate
the R-R interval. In combination with the fragmented heartbeat
signals, the average HR could be easily calculated using Equa-
tions (8) and (9). In this study, the developed mm-wave radar
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sensing method achieved contactless and short-range heart-
beat signal detection. Numerous ECG and PPG measurements
were performed to gather raw data that was used to evaluate
patient risk for peripheral arterial disease, cardiac arrhythmia,
and arteriosclerosis, as well as sympathetic nervous system activ-
ity and temperature regulation responses. ECG waveforms have
been used to identify cardiac arrhythmia types, heart conduction
abnormalities, coronary ischemia, and atrial fibrillation based
on the detected P wave, QRS complex wave, and T wave.
Future studies should aim to acquire more heartbeat signals
from patients with cardiovascular diseases to validate the appli-
cability of the 76–81 GHz mm-wave radar sensor for VSD and
disease examination.

4 CONCLUSION

In-hospital and at-home IOMT systems with sensors enable
the collection and transmission of vital sign data. Such sys-
tems can be used for the continuous collection of medical data,
including heartbeat and breathing signals, blood pressure, and
other biochemical examination data. Physiological signals can be
obtained using the proposed contactless and short-range sensor
and then analysed in the time and frequency domains to assist
in the early detection of the symptoms of cardiopulmonary
diseases. In this study, VSD experiments involving a group of
healthy young adults were conducted using a 76–81 GHz mm-
wave radar sensor at a distance of 0.6 m. The system yielded
promising results for HR and RR estimations, demonstrating
its feasibility for contactless detection. VSD is a critical tool for
patient monitoring, particularly in patients with infectious respi-
ratory diseases such as COVID-19, those in ICUs and NICUs,
and those in isolation wards. Contactless methods can reduce
human -to-human transmission and improve infectious disease
control. The proposed mm-wave radar sensor can facilitate con-
tinuous vital sign monitoring. Moreover, it can be integrated
with 5G communication technologies to simplify the processing
of the data collected by IOMT systems. Collected data can be
analyzed and features extracted before they are ultimately used
in artificial intelligence (AI)-based diagnosis methods, such as
machine learning (ML) and deep learning (DL)-based diagnostic
algorithms. In summary, this study demonstrated the feasibil-
ity of the proposed mm-wave radar for contactless VSD. The
tool can be applied in future clinical applications to monitor
heartbeat signals related to atrial fibrillation, supraventricular
tachycardia, ventricular tachycardia, and bundle branch block
beat and thereby contribute to AI classification. The combina-
tion of the mm-wave radar sensor with an AI-based classifier
would be considered a Class II medical device; before licensing
and approval of this device, its electrical safety, effectiveness,
accuracy, and risk must be evaluated (IEC60601 [40]), and clin-
ical testing and validation must be performed. It could then be
integrated into an IOMT system.
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