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Abstract

The estimation of the pose of surgical instruments is important in Robot-assisted Mini-
mally Invasive Surgery (RMIS) to assist surgical navigation and enable autonomous robotic
task execution. The performance of current instrument pose estimation methods deteri-
orates significantly in the presence of partial tool visibility, occlusions, and changes in the
surgical scene. In this work, a vision-based framework is proposed for markerless estima-
tion of the 6DoF pose of surgical instruments. To deal with partial instrument visibility, a
keypoint object representation is used and stable and accurate instrument poses are com-
puted using a PnP solver. To boost the learning process of the model under occlusion, a
new mask-based data augmentation approach has been proposed. To validate the model,
a dataset for instrument pose estimation with highly accurate ground truth data has been
generated using different surgical robotic instruments. The proposed network can achieve
submillimeter accuracy and the experimental results verify its generalisability to different
shapes of occlusion.

1 INTRODUCTION

Robot-assisted minimally invasive surgery (RMIS) has evolved
significantly in the last decades thanks to the advances in
Artificial Intelligence (AI) and surgical robotics such as the
da Vinci™platform, which provide surgical assistance through
enhanced visualisation and feedback control. An important task
in RMIS is the tracking of surgical tools. This involves the esti-
mation of the 3D position and orientation of the tool as it moves
with six degrees of freedom (6DoF).

In surgical tracking tasks, external hardware such as depth
cameras, and optical and electromagnetic trackers have been
widely used [1, 2]. These methods may require markers to
be attached to surgical tools and introduce extra equipment
to the operating theatre. However, this can be costly, and
impractical and it requires additional hardware calibration and
software installation. In contrast, vision-based methods provide
a practical and cost-effective approach to tool tracking with-
out requiring any modifications on the hardware setup or the
attachment of external markers.

Early vision-based methods for surgical tool tracking include
marker-based and markerless approaches. Since most of the sur-
gical instruments including those of the Da Vinci™ surgical
robotic system are cylindrical objects, emphasis has been given
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to the design of cylindrical markers [3, 4]. These patterns con-
sist of an array of blobs and dots which are detected on the 2D
image plane to estimate the 6DoF pose of the instrument. One
limitation of these methods is that the marker needs to be kept
in the camera’s field of view (FoV). In addition, the attachment
of external markers requires sterilization and calibration.

This has steered the research focus into the development
of markerless methods based on computer vision algorithms.
Most surgical instrument tracking methods [5–7] consist of
two steps, (i) instrument segmentation and (ii) pose estimation.
These methods first segment the 2D mask of the instrument on
the image, then estimate the 3D pose given the prior knowl-
edge of the 3D model and geometry primitives. However,
these two-stage methods make it difficult to accurately esti-
mate the rotation along the central axis of instruments, since
the region change on the image is insensitive to the axial rota-
tion. These two-stage methods rely on the accurate detection
of image features like the tip or center line of the instrument,
which is unstable in low-light or high-reflection scenarios due
to endoscopic illumination.

Recently, some deep learning methods were proposed to
directly estimate the 3D pose of the object in natural scenes
but they have several challenges in surgical scenarios [8–13].
The first challenge is the partial visibility of the instrument. The
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surgical camera needs to be very close to the instrument and tis-
sue due to the limited operating space. In this case, only part of
the instrument will be in the FOV which may affect the perfor-
mance of pose estimation methods based on object detection.
The second challenge is the occlusion of the tracked instrument.
The surgical tool will frequently interact with organs and tissue,
which can occlude the tip of the instrument. The visual fea-
tures of the tip are vital for the pose estimation and occlusions
can make the pose estimation unstable. Furthermore, the vary-
ing lighting conditions in the surgical environment and specular
reflections on the tissue and the tool, affect significantly the
appearance and texture of the instrument. Another challenge
is the difficulty of acquiring vast and accurate training data.
Although the pose of the instrument can be acquired from the
kinematic information of a surgical robotic arm, the error of
this estimated pose is in the range of several mm. Hence, robot
kinematics can not be used to acquire ground truth tool poses
and another reliable method needs to be developed to acquire a
large amount of image and tool pose data.

In this work, we propose a vision-based framework to esti-
mate the 6DoF pose of surgical instruments without relying on
external markers. To enable our method to efficiently deal with
partial object visibility, a keypoint object representation is used.
For this purpose, a keypoint prediction module is introduced to
detect 2D keypoints on the shaft of the instrument. These key-
points correspond to 3D points sampled from the CAD model
of the instrument. Stable and accurate object pose is computed
using the PnP solver [14] based on the 2D-3D correspondences.
Our contributions are:

1. A feature backbone has been designed by adapting the
HRNet to extract features at multiple resolutions and achieve
high performance on high-resolution endoscopic images.

2. A new mask-based data augmentation approach has been
proposed to increase the robustness of the pose estimation
to partial instrument occlusion.

3. To validate our model, a dataset for 6DoF instrument pose
estimation with highly accurate ground truth data has been
generated using different surgical robotic instruments. The
dataset will become publicly available upon publication of
this work.

The proposed network can achieve sub-millimeter accuracy.
Also, our experimental results verify its generalisability and
robustness to different shapes of occlusion.

2 METHODS

Our approach is designed to determine the 6DoF pose of a sur-
gical instrument utilizing a single RGB image. Given an image
I and a collection of n sparse 3D points {zi}

n
i=1 located on the

instrument, our initial step is projecting the sparse 3D points
onto the image, generating a corresponding set of 2D keypoints
{xi}

n
i=1 onto the image. These 3D points are sampled from the

instrument’s CAD model by applying the farthest point sam-
pling (FPS) algorithm [15]. Subsequently, the instrument’s pose

is derived through a RANSAC-based Perspective-n-Point (PnP)
methodology, which utilizes the 2D-3D point correspondences
for pose estimation. Moreover, our method attains resilience
against partial occlusion of the instrument by implementing
mask-based data augmentation.

2.1 Keypoint prediction module

This module aims to identify on the instrument the 2D key-
points {xi}

n
i=1. We propose a two-stage pipeline. First, the

keypoint prediction module predicts the 2D location of each
keypoint, then the PnP algorithm is used to estimate the 6DoF
pose given the known 3D location of each keypoint. For
this purpose, high-resolution feature maps which contain rich
semantic and texture information are extracted by adapting the
HRNet V2 model [16]. The HRNet is composed of multiple
branches with different resolutions. This allows the network to
extract both high-level semantic representations and low-level
spatial features from the image data. The stage 4 outputs of
HRNet V2 consist of 4 different scale feature maps represent-
ing high-to-low level image features. In the original HRNet V2
paper, only the largest feature map is used for segmentation.
The other feature maps are discarded due to size incompati-
bility. In our framework, the 4 different scale feature maps are
upsampled to the size of the largest map first. Then two 1x1
convolution kernels are added to fuse the feature maps to main-
tain high-resolution image representations through the whole
process. Our experiments have shown that combining the 4 dif-
ferent scale feature maps increases the model’s performance.
The concatenated feature map is fed to the instrument seg-
mentation branch and the vector-field prediction branch. These
branches consist of 1 × 1 convolutions. The proposed model is
shown in Figure 1.

Rather than directly regressing the 2D keypoint localization
like [9], in this work a special format of unit vector maps [10] is
used to represent the keypoint localization. It is based on the
property of a rigid body where the relative position between
different parts of a rigid body is fixed no matter how it trans-
lates or rotates. Once one part of the rigid body is visible,
the rest of the rigid body parts can be inferred even under
occlusion.

For an image containing M pixels, the semantic segmenta-
tion branch outputs the segmentation map {seg j }

M
j=1 and the

vector-field prediction branch outputs the unit vector maps
{vi, j }

n,M
i=1, j=1. To localize keypoints, the outputs from the two

branches are combined to generate the filtered unit vector
map {vi, j }

n,m
i=1, j=1 where m < M . The filtered unit vector map

is illustrated in Figure 2. The black pixels not belonging to the
instrument are masked out by the segmentation branch while
the colourful pixels belonging to the instrument are maintained.
The colour of every pixel represents a unit vector towards a
specific direction. Therefore, each map represents the object-
relevant unit vectors {vi, j }

m
j=1 towards each keypoint xi . A

RANSAC-based [17] voting scheme is then followed to gener-
ate candidate keypoint locations {hi,k}. These locations are at
the intersection of two random vectors in {v j }

m
j=1.
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FIGURE 1 The overview of our proposed pose estimation network. RGB images labeled with semantic masks and 2D keypoint locations are used to train the
model.

FIGURE 2 Illustration of unit vector map generation.

Then, the weight for each intersection is estimated as:

wi,k =
∑ (

hi,k − p j
)T

‖hi,k − p j‖ v j , where

(
hi,k − p j

)T

‖hi,k − p j‖ v j ≥ 𝜃. (1)

Here, 𝜃 is a threshold that we set to 0.99. The keypoint xi is the
weighted average of the intersections:

xi =
∑

wi,khi,k∑
wi,k

. (2)

The final keypoint location is the mean of the candidate key-
point locations. To train our model to predict keypoints on the
instrument, a smooth L1 loss is used as below:

Losskeypoints =
1
N

∑
i

SmoothL1(xi − x̂i ), (3)

where xi and x̂i are the predicted and ground truth keypoint
predictions, respectively. The Smooth L1 loss is defined as:

Smooth L1(x ) =

{
0.5x2 if |x| < 1|x| − 0.5 otherwise

. (4)

The segmentation branch predicts whether a pixel belongs to
the instrument or not via a binary cross-entropy loss:

Lossseg = −
M∑
j=1

( ̂seg j log(seg j ) + (1 − ̂seg j )log(1 − seg j )), (5)

where seg j and ̂seg j are the predicted and ground truth
segmentation labels for pixel p, respectively.

2.2 Mask-based data augmentation for
occlusion

The task of pose estimation is significantly complicated by
the partial occlusion of surgical instruments, as occlusion can
obscure crucial visual features on the instrument’s surface, such
as edges, blobs, and corners. In light of this challenge, we
introduce an innovative data augmentation technique in our
study. This technique is designed to emulate various forms
and degrees of instrument occlusions, along with intensity fluc-
tuations, within our training dataset. The ultimate aim is to
bolster the generalisability of our pose estimation model, ensur-
ing its consistent performance in the face of diverse shapes and
degrees of partial instrument occlusions.

Drawing inspiration from the hide-and-seek methodology
[18] and the Masked Auto-encoder (MAE) technique [19],
the concept of randomly masking image patches has found
extensive utilization in self-supervised image reconstruction
assignments. The act of masking segments of the image neces-
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FIGURE 3 Data Augmentation Process. (a) represents the raw image. (b) Raw Segmentation Mask. (c) represents regular augmentation. (d) Patch Occlusions.
(e) Mask out of the background. (f) Augmented Segmentation Mask.

sitates the network to decipher the geometric interplay between
adjacent patches, thereby facilitating the reconstruction of
the concealed image portion. These methods use masking to
remove image areas to make the model focus on the visible parts
of the image during learning. Our proposed mask-based data
augmentation technique is the first method developed for super-
vised instrument pose estimation. The aim of our method is to
introduce occlusions to help the model distinguish the object-
relevant pixels from occlusions for accurate pose estimation
under occlusion.

We advocate a strategy tailored for the generation of train-
ing data suitable for our pose estimation method. As part of
each training epoch, an array of customary data augmentations,
inclusive of translation, rotation, scaling, and colour jitter, are
initially and randomly imposed upon the raw images and their
corresponding segmentation masks in tandem.

A bounding box is formulated to encapsulate the entire
instrument’s body as seen in Figure 3e. The region within this
bounding box is then subdivided into numerous grids, as illus-
trated in Figures 3c and 3f. Each grid is subject to substitution
by either a noise patch or a shifted image patch. The percentage
of grids that have been replaced by noise patches is determined
by the probability pocclusion. These noise patches are exclusively
comprised of pixels with randomly assigned values ranging from
0 to 255, as depicted in Figure 3c. The shifted image patch is
derived from an area outside the bounding box, randomly cho-
sen from regions not containing the instrument. Moreover, for a
subset of the training dataset, the entire background external to
the bounding box is eliminated, as shown in Figure 3d, thereby
mitigating the background’s influence on network training. This
strategic approach serves to elevate the model’s adaptability
to variations in the surgical environment, as well as to the
form and degree of instrument occlusion. Given that our key-
point prediction module individually processes each pixel of the
image, the partial visibility of the instrument exerts no detrimen-
tal impact on the learning process related to the instrument’s
pose.

Our proposed augmentation method efficiently simulates
occlusion in surgery, not found in previous works. Existing
masking methods apply fixed-size masks to RGB images with
2D transformations. Our method simulates diverse shapes of
occlusion using grid masks. It also transforms the image in 3D
with rotation and translation, adds random noise and removes
the background. More importantly, existing methods act only
on the input, remove the masked image part and let the model
recover this lost information. Our masking is applied to both
the input and the ground truth (GT) segmentation and unit
vector maps, aiming to add disturbance to the image then
promote the model to discriminate between object and back-
ground, as well as estimate pose. Hence, in our augmentation,
the mask is created and applied in a novel way compared to
existing methods.

2.3 Generation of pose estimation datasets

In order to closely approximate real-world applications, video
data was captured using the stereo laparoscope of a da Vinci™Si
surgical robot, employing a 30 degree, 8.5 mm Si Endoscope.
Given that our methodology necessitates a monocular image
as input, we solely utilized the left laparoscope camera. The
original resolution of the footage is 1920 × 1080 pixels. How-
ever, considering the substantial memory demands associated
with high-resolution images, the final images utilized for deep
learning training were downsampled by a factor of 2. The video
capture procedure was programmed in Python and executed at
a rate of 20 Hz on a computer outfitted with an Intel™Core (i7-
8700) CPU operating at 3.20 GHz and equipped with 16 GB
of RAM.

Although the instrument pose can be acquired from the
forwarded kinematic information from the machine arm, the
kinematic information is not accurate enough to generate
ground truth labels. In [7], the performance of kinematics-based
pose estimation methods has been compared to vision-based
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methods and has been shown that the kinematics error is over
5 cm.

Instead, we 3D printed an attachment with a keydot pattern
on the head. To get the ground truth pose between the camera
coordinate and instrument coordinate T C

I , we initially get T C
KP

from the image. The transformation from instrument coordi-
nates I to the keydot pattern coordinate KP can be represented
as T KP

I . Since the transformation T KP
I is constant and important

to the ground truth labelling, we extract the geometric infor-
mation of the attached holder and apply a manual adjustment
to increase the transformation accuracy. Given the CAD model
of the instrument, we generate the ground truth mask segmen-
tation by 2D projection. In addition, we sample n = 10 3D
keypoints {zi}

n
i=1. At time t, the 2D keypoints {xi}

n
i=1 can be

projected on the image plane as:

xi,t = KT C
KP T KP

I zi,t , (6)

where K is the camera calibration matrix.
Eventually, three datasets were collected:

1) Dataset I: This dataset contains videos captured using the
Endowrist™Large Needle Driver, all of which are devoid
of occlusion. The background for these videos is a high-
fidelity liver phantom. In an effort to introduce variation
in terms of lighting conditions, we opted for different lev-
els of light source intensity, specifically 40%, 70%, and
100%. Furthermore, an additional light source was incor-
porated, the intensity of which was varied throughout the
entire recording process. Similarly, the position and orien-
tation of the background phantom were not kept constant
during the recording. Any frames that depicted less than
20% of the instrument’s tip were excluded from the dataset.
Consequently, Dataset I comprises a total of 5945 frames
designated for training purposes, along with 1630 frames
earmarked for testing.

2) Dataset II: It contains the videos captured using the
Endowrist™Prograsp Forceps without occlusion. The same
light source, background, and variations of the scene were
applied as in Dataset I. Dataset II contains 4784 frames for
training and 2010 frames for testing.

3) Dataset III: This dataset includes the videos captured using
as an instrument the Endowrist™Large Needle Driver with
partial instrument occlusion. The occlusion is caused due to
the presence of another surgical tool. To test the generalis-
ability of the method, various occlusion objects were added
including surgical instruments, scissors, tweezers, and cylin-
drical sticks. This dataset is only used for testing and contains
1506 frames.

2.4 Marker inpainting

Given that the visible pattern could serve as prior knowledge for
the training of the deep learning model, we employed an image
inpainting model proposed by [20] to remove the marker. This is
because the keydot marker would not be present in a real appli-

cation and in our case is used only to generate ground truth
data for our validation. A 2D mask of random size was pro-
jected onto the predetermined 3D pose of the marker, ensuring
that the mask covers the marker to guarantee complete cover-
age. We used masks of random sizes to make sure the method
cannot generate any consistent visual features as a shortcut that
can be learned by any computer vision method. Simultaneously,
the corner positions of the mask were allowed to vary within a
specific range, ensuring that the mask differed for each frame,
thereby preventing the introduction of any prior knowledge. As
illustrated in Figure 4, the visible marker in the raw sub-image (a)
was effectively removed via inpainting, as depicted in sub-image
(b).

3 RESULTS AND EVALUATION

For our experiments, we utilized a workstation equipped with
an Intel™Core i9-12900K @5.20 GHz and an NVIDIA™RTX
3090 to train our neural network, with Dataset I and Dataset
II serving as the training datasets. Meanwhile, Dataset III was
employed to assess the model’s robustness in the face of partial
instrument occlusion, with an inference speed of approximately
30 fps recorded on this workstation.

Concerning our proposed mask-based data augmentation
technique, we opted to set the probability of mask occlusion
within the range of 0.15 to 0.5, with the percentage of noise
patch fixed at 0.4. Moreover, for each training sample, the prob-
ability of enacting mask occlusion and blackout was set at 0.6
and 0.2, respectively. An initial learning rate of 1 × 10−3 was
selected, with a halving of this rate occurring every 20 epochs.
The ADAM optimizer was employed with a momentum of 0.9.

To assess the performance of our pose estimation method,
we evaluated our model in terms of the average 3D dis-
tance (ADD), the area under the curve (AUC curve of ADD),
translation error, and rotation error. The ADD quantifies the
mean distance between the points of the 3D tool model as
transformed by the predicted and ground truth poses. To com-
prehensively evaluate the performance of the pose estimation
method on a different scale, we generate the AUC curve of
ADD, which illustrates the proportion of test samples where
the ADD was less than the threshold plotted on the x-axis, with
higher thresholds indicative of greater accuracy. The inference
frequency of our model on a workstation with RTX 3090 is
21 fps.

3.1 Performance without occlusion

The AUC curves of our method are displayed in Figures 5,
6 and 7. A comparison was made between PVNet [10], Effi-
cientPose [21], Hou’s work [13] and our method, with results
shown in Table 1. Although EfficientPose performs well in
the LineMOD benchmark [22], it yields the worst overall per-
formance, struggling with rotation error due to its reliance on
object-level features. In contrast, Hou’s model [13] achieves bet-
ter accuracy by using direct pose estimation. In addition, PVNet
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FIGURE 4 (a) Sample raw image from Dataset I. (b) The inpainting result of (a). (c) Sample image from Dataset II. (d) Sample image from Dataset III.

FIGURE 5 Accuracy-threshold curve for test data in Dataset I.

FIGURE 6 Accuracy-threshold curve for test data in Dataset II.

also achieves high accuracy due to its keypoint representation
detection, with our method outperforming both due to the use
of HRNet as the backbone, which efficiently extracts feature
maps from high-resolution images. The multiple stages archi-
tecture of our method preserves rich semantic information and
increases spatial accuracy. Additionally, the IoU of our segmen-

FIGURE 7 Accuracy-threshold curve for test data in Dataset III.

TABLE 1 Results of our method on Dataset I and II.

ADD (mm)

Translation

error (mm)

Rotation error

(◦)

Method DS I DS II DS I DS II DS I DS II

PVNet [10] 1.67 1.85 1.40 1.21 2.59 3.23

Hou, B. et al. [13] 1.45 1.04 1.01 1.20 1.20 1.39

EfficientPose [21] 5.19 10.22 1.28 4.24 149.21 129.75

Ours w/o Mask-based Aug 0.92 0.72 0.91 0.84 1.05 1.22

Ours w Mask-based Aug 0.84 0.70 0.97 0.69 1.21 1.12

tation for fully visible tools is 0.964 for the Large Needle Driver
(LND) on Dataset I and 0.973 for the Prograsp Forceps (PG)
on Dataset II. This means our model can accurately mask out
the irrelevant pixels for further pose estimation.

3.2 Performance with occlusion

During the collection of dataset III, we added partial occlusion
over the instrument with multiple occlusion objects, as shown
in Figure 4. Here we train our model purely on Dataset I for
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FIGURE 8 Occlusion example with (a) cylindrical objects, (b) scissors and (c) tweezers. Ground Truth data is labeled in red and predictions in blue.
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Endowrist™Large Needle Driver. We avoid any fine-tuning on
Dataset III to make sure the network has never learned the
occlusion information before. We did an extra ablation study
to analyze the effectiveness of the proposed mask-based data
augmentation methods on different models. As can be seen in
Figure 7, there is a large accuracy drop for all methods on the
occlusion task. Hou’s model has the largest performance drop
on pose estimation under occlusion since it learns the non-
linear pose directly from images which limits its generalisability,
especially in the presence of occlusion. However, with the help
of mask-based data augmentation, the accuracy of our method
can reach 60% when we set the ADD threshold to 4 mm,
which means it can detect the instrument even under occlu-
sion with significantly higher accuracy. This greatly illustrates
the significance of our proposed mask-based data augmentation
method. As it can be seen in Figure 8, although the model has
been trained with masked patches of rectangular shape, it can
still recover the pose of the cylindrical instrument under par-
tial occlusion of different shapes, without any prior knowledge.
This verifies the robustness and generalisability of our model to
the shape of the occlusion.

4 CONCLUSION

In this article, we proposed a keypoint prediction-based pose
estimation method for surgical instruments. An innovative
mask-based data augmentation method is designed to increase
the robustness of the method to various occlusions which are
common but challenging in surgical scenarios. To validate our
method, a high-quality dataset for surgical instruments is gener-
ated. Our proposed method can achieve submillimeter accuracy
and our experiments verify the high generalisability and robust-
ness of our model to different shapes of occlusion. So far, our
proposed method can estimate the pose of rigid parts on objects
such as surgical instruments including, imaging probes (ultra-
sound, gamma probes etc.), scalpels and da Vinci instruments.
Our future work will focus on extending our method to esti-
mate the pose of objects with rigidly-deforming parts. Every
rigid part of the tool can be considered as a separate object.
Our proposed pose estimation model can be applied to each
rigid part separately. In addition, our vision-based method can
be combined with kinematic data for higher accuracy and gener-
alisabilty. For example, kinematic information can help alleviate
any ambiguity regarding the rotation of the instrument along
its axis.
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