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Abstract
Essential genes are necessary to sustain the life of a species under adequate nutritional
conditions. These genes have attracted significant attention for their potential as drug
targets, especially in developing broad‐spectrum antibacterial drugs. However, studying
essential genes remains challenging due to their variability in specific environmental
conditions. In this study, the authors aim to develop a powerful prediction model for
identifying essential genes in humans. The authors first obtained the essential gene data
from human cancer cell lines and characterised gene sequences using 7 feature encoding
methods such as Kmer, the Composition of K‐spaced Nucleic Acid Pairs, and Z‐curve.
Subsequently, feature fusion and feature optimisation strategies were employed to select
the impactful features. Finally, machine learning algorithms were applied to construct the
prediction models and evaluate their performance. The single‐feature‐based model
achieved the highest area under the Receiver Operating Characteristic curve (AUC) of
0.830. After fusing and filtering these features, the classical machine learning models
achieved the highest AUC at 0.823 while the deep learning model reached 0.860. Results
obtained by the authors show that compared to using individual features, feature fusion
and feature optimisation strategies significantly improved model performance. Moreover,
the study provided an advantageous method for essential gene identification compared to
other methods.
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1 | INTRODUCTION

A gene is a sequence of DNA that encodes functional products
in an organism. Gene expression is highly regulated and can
vary depending on the cell type, developmental stage, and
physiological conditions. Essential genes constitute a specific
class that is expressed at high levels and is indispensable for
living organisms [1]. These genes are responsible for a range of
basic life activities such as DNA replication, protein trans-
lation, growth and metabolism, and nutrient transport both in
vivo and in vitro [2]. In unicellular organisms, the deletion or
mutation of essential genes can directly result in death [3]. In
higher eukaryotes, defects in these genes can lead to genetic

disorders or birth defects [4]. Research has revealed that gene
essentiality can differ across species, genetic backgrounds, and
specific environments. For instance, the genes encoding en-
zymes, such as CYS3, were deemed essential in Σ1278b but not
in S288c [5]. Therefore, the study of essential genes is crucial
for understanding the biology of living organisms and identi-
fying potential therapeutic targets for diseases [6–13].

The identification of essential genes is a complex task
demanding a comprehensive approach that integrates diverse
methodologies and cutting‐edge technologies [14, 15]. In 1995,
Itaya et al. [16] performed mutagenesis on 79 randomly
selected genes from Bacillus subtilis. They identified six genes
where mutations prevented colony formation, designating
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these as essential genes. In 2013, Sarmiento et al. [17]
employed transposon mutagenesis for the first time to identify
essential genes in archaea. The identification of essential genes
has also been explored in higher eukaryotes. In 2015, three
separate laboratories used mutagenesis or Clustered Regularly
Interspaced Short Palindromic Repeats methods to report the
essential characteristics of human genes, filling a research gap
in human cells [18–21]. Moreover, the use of computational
methods for identifying essential genes is gaining popularity
due to their ability to offer faster and more cost‐effective an-
alyses. The strategies can be classified into two main categories:
comparative genomics methods and machine learning
methods. The core idea of comparative genomics methods is
that essential genes have a higher level of evolutionary con-
servation. By conducting sequence alignment on the genome
sequences of closely related species using tools such as BLAST
[22], FASTA [23], PSI‐BLAST [24], HAlign [25, 26], and
WMSA [27, 28] researchers can identify conserved genes.
These identified genes can be prioritised for experimental
validation as potential essential genes. In machine learning
methods, the prediction of essential genes relies on models
trained with experimental data [29, 30]. These models cate-
gorise genes into essential or non‐essential classes based on
diverse features of genes including gene expression, sequence
information, and functional annotations. Despite their low cost
and quick implementation, continuous optimisation of
computational methods for essential gene identification is
motivated by their relatively lower accuracy compared to bio-
logical experiments.

In this study, we present a new machine learning‐based
model for identifying essential genes in humans. First, we
collected essential gene data and extracted features from the
DNA sequences using several feature extraction methods.
Next, feature recombination and feature selection were per-
formed to select predictive features. Maximal Information
Coefficient (MIC) [31] and F‐score were adopted to identify
well‐performing features. Then, machine learning algorithms
were applied to build essential gene prediction models. These
models were trained and evaluated using 10‐fold cross‐
validation. Figure 1 depicts an overview of the various stages
within the essential gene prediction workflow.

2 | MATERIALS AND METHODS

2.1 | Data collection

The human essential gene datasets used in this study were
sourced from Guo et al. [32] who compiled the information
from the DEG database [33]. The dataset comprises 11 cell
lines, which are KBM7, K562K, Raji, Jiyoye, A375, HAP1,
DLD1, GBM, HCT116, HeLa, and rpel. The annotation in-
formation for protein‐coding genes was obtained from the
HGNC database [34]. To ensure the robustness of our dataset,
we defined essential genes as those showing essentiality in at

least 6 of the 11 cell lines. Finally, we obtained 12,015 human
genes including 1516 essential genes and 10,499 non‐essential
genes. Essential genes are labelled as positive samples while
non‐essential genes are labelled as negative samples.

2.2 | Feature engineering

To transform and select raw sequences into informative fea-
tures, we employed both feature extraction and feature selec-
tion techniques. Feature extraction aims to generate a set of
features that can accurately represent the sequence data and
facilitate subsequent machine learning analysis. In this study,
we used seven methods to characterise the biological features
of human genes: Nucleic acid composition (NAC) [35], K‐mer
[36–38], reverse complement K‐mer (RCKmer) [39], the
composition of K‐spaced nucleic acid pairs (CKSNAP) [40],
Z‐curve [41], pseudo electron–ion interaction pseudopotentials
(PseEIIP) [42], and multivariate mutual information (MMI)
[43]. Nucleic acid composition, K‐mer, RCKmer, CKSNAP,
and Z‐curve describe NAC. Pseudo electron–ion interaction
pseudopotentials calculates the pseudo electron–ion interac-
tion for each sequence. Multivariate mutual information cal-
culates the mutual information for K‐mer. The dimension of
the NAC, K‐mer, RCKmer, CKSNAP, Z‐curve, PseEIIP, and
MMI feature sets are 4, 64, 32, 64, 9, 64, and 30, respectively.
Feature extraction was performed using ilearnPlus [44]. To
assess the impact of features on essential gene identification,
we first developed separate machine learning models for each
feature. The assessment of feature contribution was carried out
by evaluating their performance in a 10‐fold cross‐validation.
Next, we merged the features based on their individual per-
formance and further refined the combined features using
feature ranking scores calculated with F‐score and MIC [31].
Ultimately, we retained the top 200 features for subsequent
model construction.

2.3 | Model construction

The classification models in this study were trained using the
random forest (RF) [45], XGBoost [46], and fully connected
neural network (FCNN) [47] algorithms. Random forest is a
widely used supervised learning algorithm known for its
effectiveness in addressing classification problems. It achieves
this by combining multiple weak classifiers which collectively
vote to make the final decision. XGBoost is a gradient
boosting algorithm proposed by Tianqi Chen. It introduces a
regularisation term into the loss function and controls the
model complexity to minimise the risk of overfitting [48]. The
FCNN is a multilayer perceptron consisting of an input layer
for receiving input information, hidden layers, and an output
layer for generating the prediction probabilities. The FCNN
model in this study comprises 3 hidden layers, with ReLU and
softmax activation functions before and after the output layer,
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respectively. The CrossEntropyLoss and Adam optimiser were
used for the model optimisation. The learning rate, epoch
number, and batch data were set to 0.0001, 100, and 256,
respectively.

2.4 | Data evaluation

To assess the effectiveness of the essential gene identification
models, various evaluation metrics were employed including
accuracy (Acc), sensitivity (Sn), specificity (Sp), Mathews cor-
relation coefficient (MCC), recall, precision (Pre), F1‐score, and
the area under the Receiver Operating Characteristic (ROC)
curve (AUC) [49–53]. Acc measures the prediction accuracy
across all samples. Sn and Sp evaluate the model's accuracy in
predicting positive samples and negative samples, respectively.
Mathews correlation coefficient assesses the correlation be-
tween the predicted labels and the true labels of the samples.
Recall reflects the proportion of correctly predicted positive
samples among the actual positive samples, while Pre represents
the proportion of correctly classified positive samples relative to
the total samples classified as positive. The F1‐score, which
balances the influence of precision and recall, provides a more
comprehensive evaluation of the classifier. Additionally, AUC is

a widely used metric that offers a comprehensive measure of
classifier performance [54–58]. ACC, Sn, Recall, Sp, Pre, MCC
and F1‐score are formulated as follows:

ACC ¼
TP þ TN

TP þ TN þ FP þ FN
ð1Þ

Sn¼ Recall ¼
TP

TP þ FN
ð2Þ

Sp¼
TN

TN þ FP
ð3Þ

Pre¼
TP

TP þ FP
ð4Þ

MCC

¼
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTP þ FPÞðTN þ FPÞðTN þ FNÞ

p ð5Þ

F I GURE 1 The flowchart of the essential
gene identification.
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F1¼
2� Pre� Recall

Preþ Recall
ð6Þ

where TP (Ture positive) and TN (Ture negative) present the
numbers of correctly identified essential genes and non‐
essential genes, respectively. FP (False positive) and FN
(False negative) denote the number of incorrectly non‐essential
genes and essential genes, respectively.

3 | RESULTS

3.1 | Feature evaluation

To evaluate the effectiveness of seven feature extraction
methods in characterising sequences, we constructed various
machine learning models based on these features. For each
feature set, we used RF, XGBoost, and FCNN algorithms to
classify genes into essential and non‐essential categories. The
assessment was carried out through a 10‐fold cross‐validation
process. AUC values for different features using RF, XGBoost,
and FCNN models were summarised in Table 1. The RF
model achieved AUC values ranging from 0.636 to 0.779. The
XGBoost model achieved AUC values ranging from 0.690 to
0.795. The FCNN models achieved AUC values ranging from
0.660 to 0.830. Notably, the RF and FCNN models using
Kmer showed the highest ROC values of 0.779 and 0.830,
respectively, while the XGBoost model constructed using
PseEIIP had the highest ROC value of 0.795. Additionally,
models based on CKSNAP and Z‐curve also demonstrated
good performance.

Subsequently, we scored these features using the rank‐
sum method based on the results from the three algo-
rithms for a comprehensive evaluation. First, we sorted the
features based on their AUC ranking. In the RF, XGBoost,
and FCNN models, the ranked positions of K‐mer, PseEIIP,
Z‐curve, CKSNAP, MMI, RCKmer, and NAC were [1, 2, 3,
4, 5, 6, 7], [1.5, 1.5, 4, 3, 5, 6, 7], and [1, 2, 6, 3, 4, 5, 7],
respectively. We then calculated the rank sum ratio to
determine the overall ranking of the features, resulting in the
following order: K‐mer, PseEIIP, CKSNAP, Z‐curve, MMI,
RCKmer, and NAC. Notably, the NAC feature performed
poorly, likely due to its relatively small size, containing only
four features. Given that the AUC values of the RF model
were generally lower than those of the XGBoost model, we
excluded the RF algorithm for subsequent modelling of
fused features.

3.2 | Fusion feature modelling results

To enhance the accuracy of gene classification we applied
feature selection to various combinations of features. By
combining Kmer, PseEIIP, Z‐curve, and CKSNAP features
with MMI, RCKmer, and NAC features in turn, we employed
F‐score and MIC to score feature contributions. The top 200
features from each combination were used to construct pre-
diction models. For XGBoost and FCNN, eight models were
created to distinguish essential and non‐essential genes,
respectively.

The XGBoost‐based models achieved AUC values ranging
from 0.818 to 0.825, all surpassing 0.8. Notably, the model

TABLE 1 10‐fold cross‐validation
results of seven feature extraction methods
using random forest (RF), XGBoost, and fully
connected neural network (FCNN).

Algorithm Kmer PseEIIP Z‐curve CKSNAP MMI RCKmer NAC

RF 0.779 0.778 0.773 0.769 0.761 0.726 0.636

XGBoost 0.789 0.795 0.777 0.788 0.766 0.736 0.689

FCNN 0.830 0.810 0.720 0.810 0.760 0.750 0.660

Note: Bold values represent the best statistically results.

TABLE 2 The 5‐fold cross‐validation results of XGBoost for different feature combinations.

Feature
Feature filtering
method Acc (%) Sn (%) Sp (%) MCC AUC

Kmer þ PseEIIP þ Z‐curve þ CKSNAP F‐score 88.22 16.03 98.65 0.277 0.823

MIC 88.18 13.52 98.96 0.259 0.825

Kmer þ PseEIIP þ Z‐curve þ CKSNAP þ MMI F‐score 88.20 17.15 98.46 0.282 0.820

MIC 88.15 14.98 98.71 0.265 0.823

Kmer þ PseEIIP þ Z‐curve þ CKSNAP þ MMI þ RCKmer F‐score 88.15 16.09 98.55 0.272 0.819

MIC 88.13 13.92 98.85 0.258 0.821

Kmer þ PseEIIP þ Z‐curve þ CKSNAP þ MMI þ RCKmer þ NAC F‐score 88.12 15.17 98.66 0.265 0.819

MIC 88.14 18.54 98.19 0.286 0.818

Note: Bold values represent the best statistically results.
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constructed with Kmer, PseEIIP, Z‐curve, and CKSNAP using
the MIC screening method achieved the highest AUC value of
0.825. This model reached Acc, Sn, Sp, and MCC of 88.18%,

13.52%, 98.96%, and 0.259, respectively. The performance
results are detailed in Table 2. The ROC curves from 5‐fold
cross‐validation are shown in Figure 2.

F I GURE 2 ROC curves of XGBoost
models for different feature combinations.
ROC, Receiver Operating Characteristic.
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The FCNN‐based achieved AUC values ranging from
0.830 to 0.860. The model constructed with Kmer, PseEIIP, Z‐
curve, and CKSNAP using the F‐score screening method
achieved the highest AUC value of 0.860. Additionally, the
values of Acc, Recall, Precision, and F1 achieved 79.57%,
75.58%, 82.13%, and 0.787, respectively. Detailed results are
provided in Table 3. ROC curves and loss curves are depicted
in Figures 3 and 4, respectively. The convergent loss curve
indicates a well‐fitted model. Both the XGBoost and FCNN‐
based models exhibit improved performance compared to
models based on single features.

3.3 | Feature contributions

To further explore the impact of individual features on the
optimal classification model, the top 20 F‐score ranked features
were listed in Table 4. Within this selection, 9 features origi-
nating from the Kmer constituted approximately 45% of the
total, with 6 features from CKSNAP, 4 from PseEIIP, and one
from Z‐curve. Three of the seven initial feature extraction
methods did not make it to the top 20: MMI, RCKmer, and
NAC. Overall, their dimensionality numbers were relatively low
and performed poorly in the previous single‐feature modelling
results. In addition, it was found that the models constructed by
connecting the feature sets of MMI, RCKmer, and NAC were
less effective than those constructed using fewer types of fea-
tures. Combined with the fact that they did not appear in the top
20 features in terms of importance, it can be speculated that
these feature extraction methods may not be able to distinguish
human essential genes from non‐essential genes well. The re-
sults indicate the Kmer features play a relatively significant role
in distinguishing essential genes from non‐essential genes.

3.4 | Compare with other methods

Machine learning techniques, known for their robust data
learning capabilities, have been widely used to distinguish
essential and nonessential genes. Since 2011, several models

aimed at identifying essential genes have been proposed,
primary focus on bacteria [59, 60]. In 2017, Guo et al. [32]
introduced the first essential gene classification model,
named Pheg. The authors represented nucleotide composi-
tion using λ‐interval Z‐curve and built a support vector
machines (SVM)‐based classification model. Pheg achieved
an AUC of 0.885. In 2023, iEsGene‐CSMOTE [61]
addressed the issue of the imbalanced dataset by employing a
clustering based synthetic minority oversampling technique.
Then, the authors trained an SVM‐based model using the Z
curve, and PseKNC feature for human essential genes
identification. The model achieved an Acc of 83.36% and an
AUC of 0.874. In 2024, Bingo [62] was developed for four
organisms including human. Bingo used a large language
model‐ and graph neural network (LLM–GNN)‐based
approach to predict essential protein‐coding genes, achieving
an AUC of 0.874 in the human dataset. These models show
the promising ability of computational biological models in
essential gene identification. The research on essential gene
identification in humans using machine learning methods is
summarised in Table 5.

4 | DISCUSSION

Despite the availability of essential gene data in numerous
databases, identifying these genes remains challenging due to
their heterogeneity in certain circumstances. This study focuses
on assessing the performance of various feature extraction
methods in classifying essential genes. Initially, K‐mer,
PseEIIP, Z‐curve, CKSNAP, MMI, RCKmer, and NAC were
employed to characterise the biological properties of DNA
sequences. Then, three machine learning algorithms including
RF, XGBoost, and FCNN were used to train both single‐
feature and fused‐feature prediction models. Subsequence
analysis revealed the combination of K‐mer, PseEIIP, Z‐curve,
and CKSNAP features demonstrated superior distinguish-
ability in essential gene identification. These findings suggest
that feature fusion and feature screening are effective in
enhancing classifier performance.

TABLE 3 The results of fully connected neural network (FCNN) for different feature combinations.

Feature
Feature filtering
method Acc (%) Recall (%) Precision (%) F1 AUC

Kmer þ PseEIIP þ Z‐curve þ CKSNAP F‐score 79.57 75.58 82.13 0.787 0.860

MIC 76.48 69.70 80.65 0.748 0.840

Kmer þ PseEIIP þ Z‐curve þ CKSNAP þ MMI F‐score 76.43 70.93 79.70 0.751 0.840

MIC 75.54 70.78 78.10 0.743 0.840

Kmer þ PseEIIP þ Z‐curve þ CKSNAP þ MMI þ RCKmer F‐score 76.68 69.85 80.82 0.750 0.840

MIC 77.88 72.44 81.35 0.766 0.850

Kmer þ PseEIIP þ Z‐curve þ CKSNAP þ MMI þ RCKmer þ NAC F‐score 76.35 70.13 80.02 0.748 0.840

MIC 75.49 69.02 79.29 0.738 0.830

Note: Bold values represent the best statistically results.
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However, our models still have room for improvement,
primarily due to the imbalanced dataset. The imbalance makes
the training model more inclined to predict test samples as

negative. Additionally, we opted for a 10‐fold cross‐validation
approach to evaluate the models without independent testing.
To address the issue of an imbalanced dataset and enhance

F I GURE 3 ROC curves of fully connected neural network (FCNN) models using fusion feature for different feature combinations. ROC, Receiver
Operating Characteristic.
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model accuracy, future work will involve considering resam-
pling techniques. Besides, state‐of‐the‐art algorithms will be
utilised to improve the performance of the model. Moreover,
separate data will be used to further evaluate and improve the

model's accuracy. Following the model optimisation, our future
research aims to apply the improved prediction model to
analyse the entire genome, identifying potential undiscovered
essential genes. Additionally, we intend to develop a user‐

F I GURE 4 Loss curves of fully connected neural network (FCNN) models for different feature combinations.
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friendly online tool for researchers. Users can input the DNA
sequence of their target gene and our tool will provide an
essentiality probability in response.
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