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The bacterial chemotactic response reflects
a compromise between transient and

steady-state behavior
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Swimming bacteria detect chemical gradients by performing tem-
poral comparisons of recent measurements of chemical concentra-
tion. These comparisons are described quantitatively by the che-
motactic response function, which we expect to optimize
chemotactic behavioral performance. We identify two indepen-
dent chemotactic performance criteria: In the short run, a favorable
response function should move bacteria up chemoattractant gra-
dients; in the long run, bacteria should aggregate at peaks of
chemoattractant concentration. Surprisingly, these two criteria
conflict, so that when one performance criterion is most favorable,
the other is unfavorable. Because both types of behavior are
biologically relevant, we include both behaviors in a composite
optimization that yields a response function that closely resembles
experimental measurements. Our work suggests that the bacterial
chemotactic response function can be derived from simple behav-
ioral considerations and sheds light on how the response function
contributes to chemotactic performance.

chemotaxis | optimization | strategy

he bacterium Escherichia coli moves up gradients to regions

of high chemoattractant concentration by performing a
biased random walk. The random walk consists of alternating
runs (periods of forward movement) and tumbles (sudden
reorientations) that arise from changes in flagellar rotation (1,
2). When the flagella rotate counterclockwise, they form a
bundle, and the bacterium swims more or less in a straight line
at a roughly uniform speed. When one or more flagella rotate
clockwise, they leave the bundle, and the bacterium tumbles,
randomly reorienting itself (3, 4). Bacteria bias the random walk
by modulating the run duration in response to measurements of
chemoattractant concentration that are made at the cell surface
(5, 6). They do not perform spatial comparisons between points
along the cell body because of the fast diffusion across such short
distances (7).

The chemotactic response function describes how bacteria
process concentration measurements to produce their behav-
ioral run-biasing decisions. It has been measured experimentally
by monitoring the rotation of single flagella on bacteria stimu-
lated by instantaneous chemoattractant pulses (8). The empirical
response function is biphasic: The pulse provokes an immediate
brief elevation of the counterclockwise probability followed by a
longer depression. We expect the shape of the chemotactic
response function to deliver optimal behavioral performance.

We consider the chemotactic behavior of a bacterium at some
specific position on a gradient of attractant. As it wanders up and
down the gradient, the distribution of its positions approaches a
steady state. We choose performance criteria that quantitatively
characterize the performance of the bacterium at early times in
the non-steady-state regime and at late times in steady state.
Both of these regimes are biologically relevant. If the system
navigated by the bacterium is small compared with the distance
the bacterium could explore in the time between cell divisions
[an example is bacterial aggregation into clusters (9)], then it is
the steady-state behavior that matters most to the bacterium. If,
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however, the system is large (more than a few millimeters in size)
or varies in time, the bacterium will not come to a steady state
before dividing, and a single cell might never reach a steady state.
Bacteria have no a priori knowledge of the size of their system,
so their chemotactic strategy should benefit them in either the
steady-state or non-steady-state regime. Following foraging the-
ory (10, 11), we will assume that the chemotactic strategy
maximizes the attractant seen by the bacterium on the timescale
of bacterial divisions.

Our first performance criterion reflects the expected velocity
of bacteria at early times, before they have reached the bound-
aries of the system. It is quantified by T, a measure of the early
time transient velocity of bacteria with a given response function.
This velocity was previously calculated by de Gennes (12).
Optimizing T leads to a single-lobed response function, which
causes bacteria to have transient average velocities up gradients
at early times. Contrary to intuition, this optimization leads to an
unfavorable steady-state distribution with bacteria accumulated
in regions of low attractant. The second performance criterion,
S, quantifies how strongly the bacteria aggregate about chemoat-
tractant maxima when in steady state. Optimizing S leads to a
bacterium that has a mean velocity down gradients at early times
but whose position distribution peaks at high concentrations at
long times. The two performance criteria conflict: When one is
maximal, the other is unfavorable. If both performance criteria
are used to calculate the response function, the theoretical
function closely matches the empirical biphasic bias curve mea-
sured by Segall et al. (8). The optimization procedure explains
the curve’s structure.

Our work contributes to a body of theoretical investigations of
bacterial chemotaxis. Schnitzer ef al. (13) used Monte Carlo
simulations to confirm the favorable performance of a biphasic
response function compared with a monophasic one. Our ap-
proach supports their end result, although we show that aggre-
gation can occur without a positive lobe on the response
function. Schnitzer (14) adopted a kinetic approach and derived
results about steady-state behavior in a variety of cases. He
distinguished between ‘“nonadaptive pseudochemotaxis” and
“true adaptive chemotaxis.” In contrast, our approach empha-
sizes both transient and steady-state behavior in evaluating
chemotaxis. In a different approach, Strong et al. (15) adopted
a deterministic model for tumbling and examined optimality in
the presence of signal noise. Work by de Gennes (12) focused on
the mean bacterial velocity due to a given response function. We
show that this mean velocity only applies at early times, and we
extend the framework used by de Gennes (12) to examine
steady-state performance and performance optimization.

Model Details

We adopt the stochastic framework used by de Gennes (12). In
this model, bacteria continuously modulate their instantaneous
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probability of tumbling as a function of a differential weighting
of past measurements of chemoattractant concentration. The
differential weighting constitutes the chemotactic response func-
tion, R(?).

We assume that the chemical landscape is static and that
chemoattractant concentration is defined at every point by a
function c(x). Bacteria swim along individual paths x(¢) at a
uniform speed v. The probability, P, that a bacterium tumbles in
an interval between ¢ and ¢ + dt is dictated by its entire previous
path, the chemical landscape, and the chemotactic response
function

Plx(t'); t]dt=d—: 1- f t dt'R(t — t")cx(")) |, [1]

where 7 is the mean run duration in the absence of a perturba-
tion. In a uniform concentration, this model describes tumbling
as an unbiased Poisson process with a constant rate of tumbling
1/7 given by (1 — ¢ [ R(¢)dt)/7. In a concentration gradient, P
depends on the bacterium’s history. By choosing particular forms
of the response function, bacteria can bias their random walk so
that they climb gradients and remain in regions of high c. We will
consider first-order perturbations of the Poisson process by
defining R(r) « o/ 7, with @ small such that [* , dt'R(t — t")c(t')
<< 1. The constant « has units of volume. We expand equations
as power series of such integrals and discard higher-order
terms involving products of such integrals. Eq. 1 can itself be
regarded as the first-order expansion of some monotonic func-
tion of [*.. di"R(t — ")c(x(¢")) that remains positive for all
concentrations.

In our analysis, we neglect the effects of noise due to fluctu-
ations of c(x). Noise averages to zero in all of our first-order
expansions. The first noise contribution that does not average to
zero is proportional to the variance of the concentration and is
of order a’c/V, where V is the cell volume. To neglect this term
with respect to the first-order term, we require a << V. The
experimental conditions described by Segall et al. (8) correspond
to the regime in which bacterial responses are linear and the
bacteria can detect ¢ without being overwhelmed by noise.

Berg and Purcell (7) argued that measurement integration
times of ~1 s account for observed sensitivity to concentrations
and gradients in the presence of noise. The response functions
resulting from our analysis vary on the timescale 7, ~1 s, so they
will display biological sensitivity without explicitly requiring long
integration times.

We assume that the length scale of variations in the concen-
tration gradient is longer than the average run length, so that
over one run, the gradient appears linear. We consider bacteria
in one dimension and assume that tumbles are instantaneous and
randomize orientation. Of course, real bacteria navigate in three
dimensions, and their run directions are not completely decor-
related by tumbles (1, 4). Further, in real bacteria, runs directed
up attractant gradients lengthen, whereas those directed down-
ward are the same length as runs in constant concentrations (1).
Nonetheless, this simplified model gives insight into real bacte-
rial behavior.

Transient Chemotaxis

The strategic goal of a bacterium navigating a chemoattractant
landscape is arguably as simple as producing an average velocity
up the attractant gradient. De Gennes (12) showed that a mean
velocity can be produced when, after a tumble, a run up the
gradient lasts longer than a run down the gradient. For a
population of bacteria starting at the same position, the expected
velocity at early times will be
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Fig. 1. Comparison of the two performance calculations. (Upper) The inte-
gration in the expression for T (Eq. 6). Two bacteria that have both just
tumbled are considered as they move in different directions along the gradi-
ent until they tumble again at position x(ts). (Lower) The integration in the
expression for S (Eg. 13). In this case, two bacteria meet that last tumbled at
points x(to). One finds the expectation of their respective tumbling probabil-
ities, P*, by averaging over possible histories.

At

=y —
27’

v [2]
where At is the difference in run times moving up and down the
gradient, and the bars are averages over possible trajectories.
The model presented in Eq. 1 dictates that the probability of next
tumbling at time # after having previously tumbled at time ¢ is

i
P(tilto) = Plx(¢"); t] exp —f Plx("); t'1dt";, (3]

to

where P[x(t");t;] is the probability of tumbling at time ¢4, given a
path x(¢").

Following de Gennes (12), we consider the expected time until
the next tumble

t(xy) = f didty — to)P(tfto), [4]

0

where the average is taken over possible future trajectories and
the bacterium is at x( at time 7. We define fi(xo) as the mean
time until the next tumble for bacteria moving up (+) and down
(—) the gradient. We expand c¢(x(¢)) into c(xo) = v(Vc)(t — to),
where v is the constant speed of a run. After expanding in « and
then using the identity R(t) = [y R(s)8(s — t)dt, where (s —
t) is a Dirac delta function, we find de Gennes’s result that

©

V= % (;+(x0) - ;7()60)) = VZ'TVC(XU) f eit/TR(t)dL [5]

0

Fig. 1 illustrates this integral over future paths. For bacteria to
behave most favorably at early times, v should be maximal.

To gain intuition about this mean velocity, consider 1,000
bacteria all taking exactly average steps, beginning at a point xg
on an infinitely long gradient, as illustrated in Fig. 2. Initially, 500
bacteria move up the gradient until the time ¢*; 500 bacteria
move down until time #~. The average position of the bacteria is
simply x, until time =, when the 500 bacteria moving down split
into 250 moving up and 250 moving down. From this time until
the upward-moving bacteria tumble at time ¢*, the mean position
of the bacteria moves up at v/2. This phenomenon is repeated
after every tumble, creating the mean velocity up the gradient
(Eq. 2). In Fig. 2, this mean velocity is reflected by the thick tail
of bacteria on the upward-moving branch and the thinner tail on
the downward-moving branch. When the upward-moving tail

PNAS | June 28,2005 | vol.102 | no.26 | 9151

BIOPHYSICS



Lo L

P

1\

BN AS DN AS P

time

position

Fig. 2. Cartoon showing origin of transient velocity. Solid lines indicate
possible paths taken by bacteria that all execute exactly average paths; line
thickness gives a sense of the probability weighting of each path segment. The
chemoattractant gradient in this case is positive, and t+ > t~. The dotted line
shows the average position over time: It moves to the right, indicating an
expected velocity up the gradient. Note that after the time elapsed in this
figure, more bacteria on average will have reached the farthest right point
than the farthest left point, because they have tumbled less frequently.

encounters a boundary on the system, bacteria are forced to
tumble, and the mean velocity up the gradient dies away as the
bacteria move toward their steady-state distribution. Fig. 3b
shows the results of a simulation that demonstrates this transient
behavior.

We divide out the constants in Eq. 5 and introduce the
dimensionless performance measure,

-t 1"
e —t/7
T[R(®)] Ve o fo e ""R(t)dt, [6]

to quantify the transient chemotactic behavior at early times.
This quantity is an overlap integral of R(¢) against a performance
kernel K¢(f) = (1/a)e™"". The performance kernel shows the
effect of the response function on the mean velocity at early
times. The form of this kernel can be understood qualitatively.
The mean velocity is proportional to the difference in run times
between two bacteria with the same starting point that are
moving in different directions (see Fig. 1). As upward- and
downward-moving bacteria move away from each other, the
difference in the concentrations they measure grows until
the bacteria tumble. A response that weights ¢(¢) heavily in the
immediate past will contribute more to increasing T than a
weighting further in the past where concentration differences
were smaller. Therefore, the performance kernel prefers recent
weighting. The shape of the performance kernel matches sim-
ulations of the model system (Fig. 3c). The exponential decrease
in influence of R(¢) on T is due to the exponential run length of
the unperturbed Poisson process. Note that this heuristic argu-
ment is not strongly dependent on the form of P chosen in Eq.
1. Any positive decreasing function of [ dt"R(t — t")c(x(¢"))
would yield a kernel that weights the most recent measurements
most heavily.

We can maximize T over a constrained set of response
functions. We assume the response function to be finite and to
decay to 0 at large ¢. The simplest way to include both restrictions
is to hold the integral [ R?(¢)dt constant, which amounts to
maximizing over a set of response functions that have the same
rms deviation from 0. We impose the constraint

f R%(t)dt = o?/, [7]

0

and maximize T subject to this constraint by using a Lagrange
multiplier and taking a functional derivative
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Fig.3. Simulations of the model. We performed discrete time simulations of
the model on a positive concentration gradient with reflective boundary
conditions to see the result of different R(t) on transient and steady-state
behaviors. (a) Bacteria were released from the center of the gradient (Left)
and evolved until they arrived at a steady-state distribution. R(t) was chosen
to weight positively only at 6 seconds before the current time, t (Right); that
is, it weights only c(t — ). It was further chosen so that the maximum
perturbation from the average tumbling probability was 30%. (b) In a gradi-
ent of length 60 v7, bacterial distributions and the mean position of bacteria
were found by using a response function with 6 = 7, where 7is the run duration
averaged over the box. At early times, bacteria are clustered and have a mean
velocity up the gradient. After the bacteria hit the boundary, they approach
a steady state peaked at low c. Note that more bacteria have reached the
right-hand wall than the left-hand wall at t = 1007. For this response
function, T> 0and S < 0; both results are reflected in the bacterial behavior.
(c) We varied 6 and calculated T from the initial slope of the lower plot in b.
The result shows the contribution of R(0) to T. The solid line is the transient
performance kernel, K¢, derived in the text. (d) In a short-length scale gradient
(4v7), we varied 0 and calculated S from the bacterial distributions at long
times. The contribution of R(6) to Sis shown. The solid line is the steady-state
performance kernel, K;, derived for a similar situation (see the supporting
information). Error bars in c and d are 1 SEM.

2 A Revar - 1) | =0 8
5R(0) o | (&)t =0. (8]

Solving this condition, we calculate the optimized response
function

Ry(0) = Ny exp{—1/1), [91

where Nq is a normalization constant. This response function
is proportional to the performance kernel K¢ (#) used to
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Fig. 4. Optimized response functions and comparison with data. (a) Re-
sponse functions that optimize the performance measures 7T, §, and T + AS,
where A = 1/2. Note that all three functions are normalized such that
J R(t)2dt = o?/7. (b) The points are data from figure 1 of ref. 8 showing the
counterclockwise bias in flagellar motor rotation after a very short impulse of
chemoattractantattime t = 0.The bias response is linear in this experiment’s
regime. The solid line is a best fit of R (t) to the data, using a 10-Hz low-pass
Gaussian filter to realistically smooth discontinuities. The fitting parameters
were A, 7, and an overall amplitude, and the least-squares fitwas A = 0.56 and
7= 0.9s. The bias of a single flagellum is related to the tumbling probability
P[x(t"); t] butis not identical, because multiple flagella are involved in running
and tumbling (4), and cooperative effects could be involved.

determine T; it is positive everywhere but weighted toward
most recent times (shown in Fig. 4a). Using this response
function, bacteria moving up and down the gradient are
progressively less and more likely to tumble, respectively.
Given a particular tumbling position x, this response function
results in maximally longer runs up the gradient than down it.
A similar effect has been termed “pseudochemotaxis’ (16).
We call it “transient chemotaxis,” because, unlike in pseudo-
chemotaxis, P[x(t'); t] in transient chemotaxis has a history
dependence, and, moreover, we argue that short-term perfor-
mance is relevant for bacteria in large or changing chemical
gradients. Surprisingly, although Rq (f) maximizes the ex-
pected velocity up the gradient, it leads to an unfavorable
steady-state distribution in which the bacteria spend more time
in low chemoattractant concentration regions. The simulation
in Fig. 3b shows the initial favorable transient velocity and the
unfavorable steady state for an all-positive response function.
This counterintuitive result can be explained as follows. Imag-
ine two bacteria passing each other on a linear concentration
gradient (see Fig. 1). The one heading down the gradient has
high c in its past, so its value of [ R¢ (t — t")c(x(¢")) dt' is larger,
on average, than that of an upward-moving one at the same
position. Eq. 1 then shows that the probability of tumbling is
lower for the bacterium moving down the gradient. Because
this statement is true at all points on the gradient, more
bacteria will accumulate in the low concentration areas. The
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unfavorable steady state of a positive response function was
previously shown in numerical simulations (13) and noted in
Schnitzer’s analysis (14).

Initial velocity need not indicate the eventual steady-state
distribution, as the following thought experiment shows [dis-
cussed by Lapidus (16), Schnitzer et al. (13), and Schnitzer (14)].
Consider a closed tube containing steel wool with a graded
density such that one end contains dense wool and the other
contains sparse wool. At one end of the tube, mean free paths
of a molecule are short, whereas at the other end, they are long.
After each collision, because of the gradient in the wool, a
molecule has an expected net displacement toward the sparse
end of the tube. In steady state, however, gas molecules are
distributed evenly throughout the free volume of the tube.
Therefore, although the expected net displacement after each
collision creates an initial mean velocity toward the sparse end,
it does not determine the steady-state distribution. For gas
molecules, the collision probability is determined by a particle’s
instantaneous position. For bacteria using an all-positive re-
sponse function, both t* and ¢~ are longer in higher ¢ regions
because [ R¢ (f)dt # 0, making path length depend on position.
It is the history-dependence of Ry that causes the bacteria to
aggregate in regions of low c.

Steady-State Bacterial Distribution

Here, we show how the steady-state distribution of bacteria
depends on expected tumbling rates. The expected tumbling rate
for a bacterium at position x depends on whether it is moving up
or down the gradient and is given by P*(x) or P~ (x), respectively,
where bars are averages over possible histories ending at x. In
steady state, these averages will not be functions of ¢.

In steady state, bacterial flux is zero, and the bacterial
steady-state concentration, b(x), can be written in terms of the
probabilities P*(x) (see the supporting information, which is
published on the PNAS web site):

X !

b(x) = by exp J En

0

P~(x")—P*(x")|}. [10]

This equation reproduces a more general result derived in ref. 14.

With net flux equal to zero, the number of upward-moving
bacteria must equal the number of downward-moving bacteria at
any point x. If P*(x) # P~(x), then the fraction of bacteria
passing through a point from the left will not equal that passing
through from the right. To keep the number fluxes equal, the
number of bacteria on each side of that point must be different.
Maintaining this balance generates the form of the distribution
in Eq. 10. When the tumbling rate is higher for downward-
moving bacteria arriving at point x, bacteria aggregate at the top
of the gradient in steady state.

We now express the tumbling probabilities in terms of R(¢). To
calculate P*(x), we must consider all possible histories of
bacteria reaching point x. Histories and instantaneous tumbling
probabilities both depend on R(r), so the difference P~(x) —
P~ (x) that governs steady-state aggregation can be expressed in
terms of the response function. By integrating over paths for
bacteria arriving at x (details of the derivation are in the
supporting information), we find that

P~ (x) — PT(x) = 2vVc(x) jw — (/7 +2/21)e” R(t)dt.
0

[11]

This integral should be positive to obtain an advantageous
steady-state distribution with more bacteria at high chemoat-
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tractant concentrations. The x dependence in Eq. 11 comes
through the V¢ factor, which integrates immediately to c(x),
giving the steady-state distribution

P (x) — P*(x)) }

2vVe(x) [12]

b(x) = by exp{ c(x)(

The quantity in round brackets does not depend on x. We
introduce the dimensionless version of this quantity,

P (x) — P* 1 (=
S[R()] = ST@)()C) = jo =t/ + 2/2)e "R(t)dt,

[13]

as a performance measure of the steady-state distribution. This
expression is an overlap integral, with a performance kernel
Ks(t) = —(t/7 + 12/27%)e ™. A response with large S yields a
steady-statae distribution with the bacteria aggregated favorably
in high ¢ regions. When § is maximized by the same procedure
used in Eq. 8, one finds a response function

o
Ryt) = — ;N5(t/7 + 1227 exp{—t/ 1}, [14]

which is negative everywhere, zero at¢ = 0 and at long times, and
peaked at ¢ = V2 (see Fig. 4a). The negative values of this
response function mean that bacteria moving down the gradient
at point x with high concentrations in their past have higher
tumbling probabilities than bacteria moving up the gradient atx
with lower concentrations in their past.

Because Rs() is negative, it results in 1~ (x) > ¢*(x), creating
a transient velocity down the gradient at early times. Although
this response function gives a beneficial steady-state distribution,
it yields detrimental behavior at early times.

One can understand the steady-state performance kernel
qualitatively. The performance measure S considers the differ-
ence in tumbling probability between two bacteria at the same
point in space but coming from opposite directions (see Fig. 1).
In this case, measurements of ¢ are most different in the past,
whereas the most recent concentration measurement, c¢(x), is the
same for both bacteria. This weighting is reflected in the
performance kernel K and in the optimal response Rj(?), in
which concentrations in the past are more heavily weighted.
Concentration measurements in the more distant past could
have been made where Ve was different from the current Ve and
cannot be reliably related to the current gradient. Therefore,
such distant information is not useful for making run-biasing
decisions and is not weighted heavily by the kernel (17). Fig. 3d

shows the derived performance kernel and results of simulations
of the model in a small system.

Optimizing the Response Function

The response functions resulting from optimizing the two per-
formance criteria have opposite signs, so that optimizing T leads
to an unfavorable § and vice versa. Both aspects of performance
are biologically relevant: Bacteria should move up gradients
when not in steady state and remain at high concentrations as
they approach steady state. We expect bacteria to optimize a
composite criterion that preserves both aspects of performance.
One can imagine a variety of ways to maximize a combination of
the two quantities, but maximizing any positive increasing func-
tion of both T and § will produce a solution that is a linear
combination of Rs and Ry. We therefore adopt the most
straightforward way and maximize the quantity

T[R(N)] +A S[RD)], [15]

where A is some unknown weighting factor of the two perfor-
mance measures. As before, we constrain R(f) and take the
functional derivative of this equation to find a response function
that compromises between maximizing the transient velocity up
gradients and the steady-state bacterial distribution. That re-
sponse function is

Ry () = %NT, sexpi—t/T}(1 — A(t/7 + 12/277),

[16]

which is proportional to Ry + AR,

It is reasonable to set [ R = 0 because there are physical
bounds placed on the run length of real bacteria. Purcell (18)
pointed out that run duration should be chosen at least large
enough so that, for a given v, a bacterium outruns the diffusion
of the chemoattractant ¢ during its run. For real values of v, ~30
wm/s, this lower bound on run duration is ~1 s. Further, in real
situations, runs longer than ~10 s are turned 90° off course by
rotational diffusion (1, 19), setting a maximum useful run
duration. Neither of these limits depends on c. Bacteria should
be sensitive to gradients by maintaining a large « but must not
allow their run durations to wander outside these bounds in
widely varying concentrations. Run duration depends on a Vc
term as derived in the text and on ¢ [ R(¢)dt. The integral of R
should be zero to allow for sensitivity to Vc while keeping 7
within the limits above, thus creating a large dynamic range for
the response (19). This argument leads us to set 4 = 1/2 so that
J R = 0. Experimentally, Alon ef al. (20) have shown that this
robustness of run duration to changes in absolute concentration

Table 1. Behavioral performance of different response functions

Response function Equation T N
R4(t) Positive lobe, weighted toward t = 0 + -
Rs(t) Negative lobe, weighted toward t = 7 — +
R, s(t) Initial brief positive lobe; negative lobe peaked beyond 7 + +
R(t) (a/T)Nge~t/" 0.7 -0.5
Rs(t) —(a/TN;s (t/7 + t2/272)e~t/7 -0.4 0.9
Rz,s(t) (a/DNg,s (1 = (1/2)(t/7 + t2/27))e V" 0.5 0.05

Transient velocity values (7) and steady-state strength of aggregation (S) for the various response functions
R(t). The first three rows are heuristic, derived from qualitative arguments; rows 4-6 are derived from our
particular model. The first and fourth rows are the response functions maximizing T; the second and fifth rows
maximize S. The third and sixth rows maximize both T and S, as described in the text. More positive values of T
and Sindicate more favorable behavioral performance; in the heuristic rows, favorable values are represented by

+ and unfavorable by —.
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is a property of the E. coli chemotactic network when cells
respond to aspartate (see, however, ref. 1).

The optimized response function is shown in Fig. 4a, where we
have required [ R = 0. It predicts a sharp, immediate, positive
response with a drawn-out negative response peaking near 2.57.
It was obtained here by developing a response function that (i)
maximizes the transient velocity of bacteria up gradients when
they are not in steady state and (if) creates a steady state where
bacteria aggregate in high concentration regions. The initial,
short, positive lobe in Ry s(f) makes T > 0 and serves to move
the bacteria up gradients when not in steady state, whereas the
second, longer, negative lobe makes § > 0 and serves to produce
the advantageous steady-state distribution.

The functional form of Eq. 16 fits the actual response function
exhibited by individual flagellar motors in Segall et al. (8) (see
Fig. 4b). Our theory concerns the whole cell, not single flagellar
motors; correlations between the activity of single flagella and
the behavior of the whole bacterium are not well understood (21,
4). Nevertheless, we find a surprisingly good fit. We have left 4
and 7 as fitting parameters, and the best fit yields. 4 = 0.56, which
matches our expectation that 4 = 0.5.

Values of Tand S for any response function can be easily found
by calculating their overlap with the kernels in Eqgs. 6 and 13; a
summary of such calculations for our three optimizations is
shown in Table 1. The top half of the table provides the
qualitative picture independent of model details; the lower half
provides the values of T and S given by our model.

Discussion

The biphasic shape of the chemotactic response function has
long been interpreted as a temporal comparator that auto-
matically adapts to offsets in chemical concentration (8). Here,
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formance and found that neither aspect optimized alone
produces a biphasic response. A composite response function,
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closely fits the shape of the experimental data, leading to an
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Our theory makes predictions about the behavior of wild-type
and mutant bacteria. The functional fit of R s to the wild-type
data is quite good, so that we predict that experimental measures
of wild-type T and & in the linear regime should roughly match
those in Table 1. If L is the decay length of b(x) when bacteria
are on a linear gradient, it is related to the expected transient
velocity up the gradient, v, by the relation L = (v21/%) * (T/S).
The first factor could be found on dimensional grounds, but we
predict T/S = 14 for wild-type E. coli. For a gradient that elicits
v =1 um/s, this relation predicts L = 5 mm. Response functions
of mutant bacteria can be calculated (see ref. 22 or 23) or
measured experimentally, as Segall et al. (8) have done for strains
with mutant cheZ and for strains with mutant cheRcheB. Both of
these mutant response functions are entirely positive, with
durations of roughly 5 and 1 s, respectively. We predict that both
mutants will have transient velocities up gradients but that both
will reach an unfavorable steady-state distribution. Available
data for both mutants does not rule out these predictions
(24-27). Microscopic observations of " — ¢~ or measurements
of b(x) in static spatial gradients could evaluate the validity and
limits of this theory.
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