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Abstract

Aims

Acute promyelocytic leukemia (APL) progresses quickly and often leads to early hemor-

rhagic death. Treatment with all-trans retinoic acid (ATRA) promotes differentiation of APL

cells and clinical remission, making APL a potentially curable malignancy. Understanding

how ATRA works may lead to new treatments for other types of leukemia. Long non-coding

RNA NEAT1 has been implicated in the differentiation of APL cells. This study aims to eluci-

date the specific role of NEAT1 in the granulocytic differentiation of APL.

Methods

The influence of NEAT1 on autophagy and PML/RARα degradation was assessed using

western blot assays. The impact of NEAT1 on the expression of autophagy-related genes

was evaluated through quantitative real-time RT-PCR. Mechanistic insights into the role of

NEAT1 in modulating autophagy were supported by RNA immunoprecipitation and RNA

pulldown assays.

Key findings

Knockdown of NEAT1 suppressed autophagy and attenuated ATRA-induced PML/RARα
degradation and granulocytic differentiation of APL cells. Subsequent screening of autop-

hagy-related genes demonstrated that silencing NEAT1 impaired the ATRA-induced upre-

gulation of ATG10 and ATG12. Mechanistic investigations revealed that the RNA-binding

protein TAF15 interacted with NEAT1, synergistically stabilizing the mRNA of ATG10 and

ATG12. Furthermore, knockdown of NEAT1 impaired the interactions between TAF15 and

the mRNAs of ATG10 and ATG12, thereby compromising their mRNA stability.
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Significance

Our study elucidates the critical role of NEAT1-mediated autophagy in the differentiation of

APL cells and delineates the molecular mechanism by which upregulation of NEAT1

enhances autophagy. Specifically, NEAT1 binds to the RNA-binding protein TAF15, which

in turn stabilizes the mRNA of both ATG10 and ATG12.

Introduction

Acute promyelocytic leukemia (APL), a distinct subtype of acute myeloid leukemia (AML), is

characterized by t(15;17) and the resulting promyelocytic leukemia/retinoic acid receptor α
(PML/RARα) fusion gene. The hallmark of APL is the uncontrolled proliferation of leukemic

blasts blocked at the promyelocyte stage of differentiation within bone marrow [1]. Account-

ing for 10–15% of all AML cases, APL is noted for its rapid progression and a high incidence

of hemorrhagic death [2]. Treatment with pharmacological doses of all-trans retinoic acid
(ATRA) can trigger terminal differentiation of APL blasts and disease remission, particularly

when combined with arsenic trioxide or chemotherapy, establishing APL as the most curable

subtype of AML [2, 3]. However, the efficacy of ATRA is primarily confined to APL [4]. Thus,

advancing our understanding of ATRA’s mechanisms in inducing differentiation in APL is

crucial for developing new treatments for other leukemia types. Previous studies had mainly

focused on protein-coding genes in APL differentiation, leaving the roles of long non-coding

RNAs (lncRNAs) in this process largely unexplored.

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved cata-

bolic process that involves the formation of double-membrane autophagosomes. These autop-

hagosomes engulf damaged organelles and protein aggregates for delivery to the lysosome,

facilitating the rapid degradation of compromised cellular structures [5]. Autophagy-related

genes (ATGs), which are also highly conserved, play critical roles in regulating autophagosome

formation [6]. Although often categorized as a type of programmed cell death, autophagy pri-

marily functions as a fundamental intracellular homeostatic mechanism and participates in a

variety of physiological processes [7, 8]. For instance, autophagy has been shown to support

the differentiation processes in hematopoiesis, including the formation of erythrocytes [9],

lymphocytes [10], monocyte-macrophages [11] and plasma cells [12].

Recent studies have highlighted a significant role for autophagy in APL cell differentiation

triggered by ATRA [13–15]. It is reported that ATRA enhanced autophagic activity in APL

patient-derived NB4 cells. The inhibition of autophagy impaired ATRA-induced differentia-

tion of NB4 cells, while the induction of autophagy through rapamycin not only caused differ-

entiation of NB4 cells but also enhanced ATRA-mediated differentiation [13]. Further

investigation demonstrated that inhibiting autophagy attenuated the degradation of

PML-RARα oncoprotein, thereby impeding granulocytic differentiation. Conversely, rapamy-

cin promoted ATRA-induced degradation of PML-RARα and enhanced differentiation [14].

These findings indicate that ATRA-induced autophagy is critical for PML-RARα degradation

and the differentiation of APL cells. However, the specific molecular mechanisms by which

ATRA induces autophagy in APL cells remain poorly elucidated.

A Recent study identified that lncRNA NEAT1 was repressed in APL and upregulated dur-

ing ATRA-induced differentiation of APL cells, where silencing NEAT1 impaired ATRA-

induced differentiation [16], indicating NEAT1’s involvement in APL cell differentiation. In

this work, we found that knockdown of NEAT1 inhibited autophagy and attenuated ATRA-
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induced degradation of PML/RARα and differentiation in APL cells by impairing the upregu-

lation of ATG10 and ATG12. Mechanistic investigations demonstrated that the RNA binding

protein TAF15 interacted with NEAT1, synergistically stabilizing the mRNAs of ATG10 and

ATG12, thereby promoting autophagy and facilitating granulocytic differentiation in APL

cells. This study highlights the regulatory role of NEAT1 in autophagy and elucidates the

molecular mechanism by which NEAT1 contributes to the differentiation of APL cells.

Material and methods

Cell culture and reagents

NB4 cells were maintained in RPMI 1640 medium (Gibco, Carlsbad, CA, USA) supplemented

with 10% fetal bovine serum (FBS; Gibco). 293T cells were cultured in Dulbecco’s Modified

Eagle Medium (DMEM; Gibco) with 10% FBS. Both cells were incubated in humidified atmo-

sphere at 37ºC with 5% CO2. All-trans retinoic acid (ATRA; Sigma-Aldrich, St. Louis, MO,

USA) was used at a final concentration of 1 μM. Polybrene and Actinomycin D were pur-

chased from Sigma-Aldrich (St. Louis, MO, USA). Bafilomycin A1 (Sangon Biotech, Shanghai,

China) were utilized at a final concentration of 25 nM.

Quantitative real-time RT-PCR

Total RNA was extracted using the RNAiso Plus reagent (TaKaRa, Dalian, Liaoning, China).

This RNA was subsequently reverse transcribed into cDNA using the PrimeScript RT Reagent

Kit (TaKaRa). Quantitative real-time PCR (RT-qPCR) assays were conducted with the Roche

LightCycler 96 system with SYBR Premix Ex Taq II (TaKaRa). GAPDH served as the normali-

zation control. Relative gene expression at various time points was initially analyzed using the

ΔCT method, which involves calculating the ratio of the target gene expression to that of

GAPDH. Subsequently, relative expression levels were calculated and normalized to the con-

trol group (NC) baseline expression prior to ATRA treatment. Details of all primers used for

RT-qPCR can be found in S1 Table.

RNA interference experiment and transfection

Lentiviral plasmid constructs encoding short hairpin RNAs (shRNAs) targeting NEAT1 and

TAF15, along with a negative control, were synthesized using the pLVX-shRNA2 vector (Clon-

tech Laboratories, Mountain View, CA, USA) following the manufacturer’s protocol. Lenti-

viral particles were generated by co-transfecting 293T cells with the packaging plasmids

pMD2.G and psPAX2. The viral supernatants were harvested 48 hours post-transfection and

used to transduce NB4 cells in the presence of 8 μg/ml polybrene. Expression levels of the tar-

geted genes were assessed via RT-qPCR.

The shRNA targeting NEAT1 was selected based on its documented efficacy in silencing

NEAT1 across various cell types, as reported in prior studies [17–20], and its proven ability to

reduce NEAT1 expression in NB4 cells [16]. Consequently, this specific shRNA sequence was

utilized in our experiments. For TAF15 knockdown, a combination of three shRNAs from The

RNAi Consortium (TRC) human genome-wide shRNA collection (TRCN0000020140,

TRCN0000020141, and TRCN0000020143) was used, as detailed in the literature [21]. The

sequence 5’-AGCGUGUAGCUAGCAGAGG-3’ served as the negative control.

Flow cytometry

NB4 cells transfected with shRNA targeting NEAT1 (shNEAT1) or a negative control were col-

lected following 48 hours of treatment with ATRA. Subsequently, these cells were stained
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using APC-conjugated antibodies against CD11b, CD11c, and CD18 (BioLegend, San Diego,

CA, USA). Flow cytometric analysis was performed using a BD FACS Canto II system (BD

Biosciences, San Jose, CA, USA) to assess the expression of these markers.

Western blot

The detailed procedure was described previously [22]. Briefly, proteins extracted from cells

were separated by SDS-polyacrylamide gel electrophoresis and subsequently transferred to

PVDF membranes (Sigma). These membranes were then incubated with specific primary anti-

bodies. Protein bands were visualized using an ECL detection kit (Invitrogen, Carlsbad, CA,

USA). GAPDH served as the loading control. The primary antibodies used included anti-

LC3B (Proteintech, 14600-1-AP), anti-p62 (Proteintech, 66184-1-Ig), anti-RARα (Santa Cruz

Biotechnology, C-20x), anti-TAF15 (Abcam, ab134916), anti-ATG10 (Proteintech, 13406-

1-AP), anti-ATG12 (Proteintech, 11264-1-AP), and anti-GAPDH (Proteintech, 10494-1-AP).

Bioinformatics analysis

The correlations between NEAT1/TAF15 and ATG10/ATG12 in APL were analyzed using

data from the Gene Expression Omnibus (GEO) datasets GSE10358 and GSE12662. Potential

RNA-binding proteins that interact with NEAT1, ATG10, and ATG12 were predicted using

the ENCORI platform (http://starbase.sysu.edu.cn/index.php). Additionally, the interaction

scores between TAF15 and the mRNAs of ATG10, ATG12, and NEAT1 were predicted using

the RNA-Protein Interaction Prediction (RPISeq) tool (http://pridb.gdcb.iastate.edu/RPISeq/).

Subcellular fractionation location

Cytoplasmic and nuclear RNAs were separately isolated from NB4 cells and ATRA-treated

NB4 cells following the instruction of PARIS kit (Invitrogen, Carlsbad, CA, USA). RT-qPCR

was used to detect the RNA (GAPDH, U6, and NEAT1) levels in fractions.

RNA immunoprecipitation assay

RNA immunoprecipitation (RIP) was performed by using the EZ-Magna RIP RNA-binding

protein immunoprecipitation kit (Millipore, Billerica, MA, USA) according to the manufactur-

er’s instructions. Subsequently, the precipitated RNAs were subjected to RT-qPCR analysis.

Fold enrichment was calculated based on CT as 2-Δ(ΔCT), where ΔCt = CTIP- CTInput and Δ
(ΔCT) = ΔCTantibody - ΔCTIgG.

RNA pulldown assay

The detailed procedure was described previously [23]. In brief, the 3’-untranslated regions (3’-

UTRs) of ATG10 and ATG12 were synthesized in vitro using T7 RNA polymerase (New

England Biolabs, Ipswich, MA, USA). Subsequent purification was performed using the

RNeasy Plus Mini Kit (Qiagen, Hilden, Germany), followed by treatment with RNase-free

DNase I (Qiagen) to remove residual DNA. The purified transcripts were then biotin-labeled

using the Biotin RNA Labeling Mix (Sigma-Aldrich). Protein lysates extracted from NB4 cells

were incubated with the biotinylated 3’-UTRs of ATG10 and ATG12. Streptavidin-coated

magnetic agarose beads were utilized to isolate the RNA-protein complexes. Finally, the com-

plexes were analyzed via western blot assay to confirm the presence of specific proteins.
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Statistical analysis

The Student’s t test was used to assess the significance of differences in data obtained from at

least three independent experiments. Data are presented as mean ± standard error of the mean

(S.E.M.). P-values less than 0.05 were considered statistically significant. An asterisk (*)
denotes p< 0.05.

Results

ATRA-induced NEAT1 upregulation contributes to autophagy and PML/

RARα degradation during APL cell granulocytic differentiation

It is reported that ATRA induced upregulation of NEAT1 in APL cells, and silencing NEAT1

impaired granulocytic differentiation in these cells [16]. However, the underlying mechanism

by which NEAT1 influences APL cell differentiation remains unclear. It is known that NEAT1

exists in two isoforms, NEAT1_1 and NEAT1_2, as depicted in Fig 1A. The primer pair used

for NEAT1 detection targets both isoforms, whereas the primer pair for NEAT1_2 is specific

to this isoform. Here, we first constructed short hairpin RNA (shRNA) to stably silence

NEAT1 in NB4 cells derived from APL patient. The shRNA design targeted a sequence com-

mon to both NEAT1_1 and NEAT1_2. Thus, we need to measure the expression level of

NEAT1 and NEAT1_2. As shown in Fig 1B, shRNA effectively reduced the expression of

NEAT1 and NEAT1_2 isoform in both untreated and ATRA-treated NB4 cells. Subsequently,

we assessed the expression of granulocytic differentiation markers (CD11b, CD11c and CD18)

in NB4 cells treated with ATRA for 48 hours, to confirm the role of NEAT1 in modulating dif-

ferentiation in APL cells. Silencing NEAT1 significantly attenuated the ATRA-induced upre-

gulation of CD11b, CD11c, and CD18 in APL cells, as revealed in Figs 1C, 1D and S1. This

suggested that ATRA-induced NEAT1 upregulation played a crucial role in promoting granu-

locytic differentiation in these cells. Given that autophagy has been implicated in the granulo-

cytic differentiation of APL cells and that the degradation of the PML/RARα oncoprotein by

ATRA is autophagy-dependent [13], we investigated the protein levels of LC3B-II, p62 and

PML/RARα in NEAT1-silenced NB4 cells, both before and after ATRA treatment. As shown

in Fig 1E, ATRA treatment increased LC3B-II level, but this upregulation was impaired by

NEAT1 knockdown, indicating that NEAT1 is essential for the formation of autophagosomes

during ATRA treatment. Furthermore, ATRA treatment typically reduces p62 level, consistent

with previous findings [14]. However, in NEAT1-knockdown cells, there was an accumulation

of p62, suggesting an interruption in autophagic flux. Additionally, while ATRA normally pro-

motes the degradation of the PML/RARα protein, this effect was reversed in the context of

NEAT1 silencing. We further explored the autophagic flux by treating NB4 cells with both

ATRA and bafilomycin A1, an autophagy inhibitor, as shown in Fig 1F. This treatment led to

increased levels of LC3B-II and p62, indicating an accumulation of autophagic substrates due

to inhibited degradation. Similarly, NEAT1 knockdown reduced LC3B-II accumulation, and

bafilomycin A1 treatment diminished the ATRA-induced degradation of PML/RARα. These

results collectively demonstrated that NEAT1 upregulation during APL cell differentiation

facilitated autophagic processes and contributed to the degradation of the PML/RARα
oncoprotein.

Knockdown of NEAT1 reduced ATG10 and ATG12 upregulation induced

by ATRA

Because blocking Beclin 1 does not influence ATRA-induced granulocytic differentiation [15],

we assessed the expression levels of 12 autophagy-related genes (ATGs) in NEAT1-knockdown
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NB4 cells before and after ATRA treatment. These ATGs are well-established and critical regu-

lators of autophagy [7]. For instance, ULK1 is essential for the initiation of autophagy. Addi-

tionally, two protein conjugation systems, composed of ATG12/ATG7/ATG10/ATG5 and

Fig 1. ATRA-induced upregulation of NEAT1 promotes autophagy and PML/RARα degradation during granulocytic differentiation of NB4 cells. (A)

Schema of the two NEAT1 isoforms and the positions of qPCR primers and the shRNA targets. (B) NB4 cells were transfected with NEAT1-specific shRNA

(shNEAT1) or negative control shRNA (NC). The expression levels of NEAT1 and its isoform NEAT1_2 were assessed in NB4 cells both before and after

treatment with 1 μM ATRA for 48 hours by RT-qPCR. (C) The representative flow cytometry plots of NB4 cells stained with CD11b both before and after

ATRA treatment. (D) The expression of granulocytic differentiation markers CD11b, CD11c and CD18 was determined in NB4 cells following treatment with

1 μM ATRA for 48 hours. (E) Protein levels of LC3B, p62 and PML/RARα were examined in NB4 cells both before and after 1 μM ATRA treatment for 48

hours. (F) The protein levels of LC3B, p62 and PML/RARα were also determined in NB4 cells treated with 1 μM ATRA treatment for 48 hours and 25 nM

bafilomycin A1 for 12 hours. * indicates p<0.05.

https://doi.org/10.1371/journal.pone.0316109.g001
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LC3/ATG3, are integral for autophagosome elongation and maturation. As shown in Fig 2, the

upregulation of ATG10 and ATG12 were attenuated following NEAT1 knockdown, whereas

the expression levels of other ATGs remained largely unaffected by the silencing of NEAT1.

Fig 2. Knockdown of NEAT1 attenuates the ATRA-induced upregulation of ATG10 and ATG12. (A) Expression levels of the 12 autophagy-related genes

were assessed in NB4 cells transfected with shNEAT1 and negative control shRNA (NC) both before and after treatment with 1 μM ATRA for 48 hours. *
indicates p<0.05. “NS” indicates findings that are not statistically significant. (B) Protein levels of ATG10 and ATG12 were also tested in NB4 cells following

treatment with 1 μM ATRA for 48 hours.

https://doi.org/10.1371/journal.pone.0316109.g002
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Furthermore, an analysis of the GEO datasets (GSE10358 and GSE12662) revealed significant

positive correlations between NEAT1 and both ATG10 and ATG12 in APL (S2 Fig). These

data support the role of NEAT1 in regulating the mRNA levels of ATG10 and ATG12. Collec-

tively, these findings suggested that silencing NEAT1 decreased ATRA-induced upregulation

of ATG10 and ATG12, thereby reducing autophagy and consequently the degradation of the

PML/RARα oncoprotein.

RNA binding protein TAF15 binds to and stabilizes ATG10 and ATG12

mRNA during APL cell granulocytic differentiation

To investigate the potential molecular mechanism by which NEAT1 regulates ATG10 and

ATG12, we analyzed the subcellular localization of NEAT1 in NB4 cells, both untreated and

treated with ATRA. Consistent with its known role as a crucial component of paraspeckles,

NEAT1 was predominantly localized in the nucleus (Fig 3A) [24]. However, a significant frac-

tion, over 30%, of NEAT1 was also detected in the cytoplasm, aligning with previous studies

that have documented its presence in both nuclear and cytoplasmic compartments [25].

NEAT1 is implicated in promoting cancer cell proliferation and autophagy through a compet-

ing endogenous RNA (ceRNA) mechanism, highlighting its functional importance in the cyto-

plasm as well [26, 27]. Cytoplasmic lncRNAs are known to interact with RNA binding

proteins (RBPs) [28], and NEAT1 has been identified to interact with several RBPs, such as

AUF1 [29], LIN28B [30], U2AF2 [31] and HuR [32]. Analysis using the ENCORI database

revealed potential overlaps in the RBPs interacting with NEAT1, ATG10, and ATG12, identi-

fying six RBPs - ELAVL1 (HuR), U2AF2, TAF15, DDX54, HNRNPC, and RBFOX2 (S2–S4

Tables). Of which, ELAVL1 and U2AF2 are already known to interact with NEAT1 [31, 32].

DDX54 is associated with alterations in RNA secondary structure, HNRNPC is involved in

pre-mRNA processing and mRNA metabolism, and RBFOX2 regulates alternative splicing in

the nervous system. All these three RBPs are generally not linked directly to lncRNA stability.

Conversely, TAF15, which acts as an mRNA stabilizer [33] and has not yet been reported to

interact with NEAT1, ATG10 or ATG12, presents a novel candidate for further exploration of

its potential interactions with NEAT1.

First, we hypothesized that TAF15 might stabilize ATG10 and ATG12 mRNA in APL cells.

Notably, a strong correlation was observed between TAF15 and these mRNAs in APL, as

shown in S3 Fig. We utilized the RPISeq website to predict the interaction probabilities

between TAF15 and ATG10/ATG12 mRNA, which indicated high likelihoods of interaction

(Fig 3B). Subsequently, the interactions between TAF15 and these mRNAs were experimen-

tally confirmed using RNA immunoprecipitation (RIP) and RNA pulldown assays (Fig 3C and

3D). To further investigate the role of TAF15, we employed shRNA to specifically knock down

TAF15 expression in NB4 cells (Fig 3E). As expected, TAF15 knockdown significantly reduced

the expression levels of ATG10 and ATG12, both in untreated and ATRA-treated NB4 cells

(Fig 3F). Finally, we assessed the impact of TAF15 silencing on the stability of ATG10 and

ATG12 mRNA. The results demonstrated that TAF15 knockdown significantly compromised

the mRNA stability of both ATG10 and ATG12 (Fig 3G and 3H). Collectively, these findings

support the conclusion that TAF15 directly interacts with and stabilizes ATG10 and ATG12

mRNA, contributing to granulocytic differentiation in APL cells.

NEAT1 and TAF15 synergistically stabilize ATG10 and ATG12 mRNA

Furthermore, we utilized the RPISeq website to predict the interaction between TAF15 and the

NEAT1 isoforms NEAT1_1 and NEAT1_2. The predictions indicated a probable interaction

between TAF15 and both isoforms of NEAT1 (Fig 4A). These predictions were subsequently
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Fig 3. TAF15 binds to and stabilizes ATG10 and ATG12 mRNA in NB4 cells. (A) The expression of NEAT1 in the cytoplasm and

nucleus of NB4 cells, both untreated and treated with ATRA, was determined by RT-qPCR. GAPDH served as a marker for the

cytoplasm, and U6 as a marker for the nucleus. (B) The likelihood of TAF15 binding to the mRNA/3’-UTR regions of ATG10 and

ATG12 were predicted by the RNA-Protein interaction prediction (RPISeq) website. “RF classifier” means random forest classifier

and “SVM classifier” means support vector machine classifier. A prediction probability>0.5 was considered “positive”, indicating a

probable interaction between the RNA and protein. (C) RIP experiments were conducted in ATRA-treated NB4 cells to confirm the

interaction between TAF15 and the mRNA of ATG10 and ATG12. (D) Biotinylated probes of the 3’-UTR regions of ATG10 and

ATG12 were employed to pull down TAF15 from cell lysates. The presence of TAF15 in the precipitates was detected using western

blot assay. (E) NB4 cells were transfected with shRNA specifically targeting TAF15 (shTAF15) or negative control shRNA (NC).

TAF15 expression was detected by RT-qPCR in these cells both before and after treatment with 1 μM ATRA for 48 hours. (F) The

RNA and protein levels of ATG10 and ATG12 were measured in TAF15-silenced NB4 cells before and after ATRA treatment for 48

hours. (G-H) NB4 cells with or without TAF15 knockdown were treated with 1 μM ATRA for 48 hours, then the cells were further

treated with Actinomycin D to inhibit new RNA synthesis. The expression levels of ATG10 and ATG12 mRNA were determined

every hour by RT-qPCR. The data represent the mean ± S.E.M. from three replicates. * indicates p<0.05.

https://doi.org/10.1371/journal.pone.0316109.g003
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confirmed by RNA immunoprecipitation (RIP) assays conducted on ATRA-treated NB4 cells

(Fig 4B). We also evaluated the expression levels of NEAT1 and its NEAT1_2 isoform in NB4

cells following TAF15 knockdown, both before and after ATRA treatment. Interestingly,

TAF15 silencing had minimal impact on the expression levels of NEAT1 and its isoforms (Fig

4C and 4D). Similarly, inhibiting NEAT1 did not affect TAF15 expression (Fig 4E).

Fig 4. NEAT1 and TAF15 synergistically stabilize ATG10 and ATG12 mRNA. (A) The interaction probabilities between TAF15 and the two isoforms of

NEAT1, NEAT1_1 and NEAT1_2 were predicted by the RPISeq website. (B) RIP assays were performed in NB4 cells and ATRA-treated NB4 cells to verify

the interactions between TAF15 and NEAT1/NEAT1_2. (C) and (D) Expression levels of NEAT1 and NEAT1_2 isoform were examined in NB4 cells both

with or without TAF15 knockdown before and after 1 μM ATRA treatment for 48 hours. (E) The protein level of TAF15 was determined in NB4 cells

transfected with shNEAT1 and negative control (NC) after ATRA treatment for 48 hours. (F) RIP experiments were performed in NB4 cells transfected with

shNEAT1 or negative control (NC) after ATRA treatment for 48 hours. The results indicated that the interactions between TAF15 and the mRNAs of ATG10

and ATG12 were reduced after NEAT1 knockdown. (G) NB4 cells transfected with shNEAT1 or negative control (NC) were treated with 1 μM ATRA for 48

hours, and subsequently the cells were further treated with Actinomycin D to inhibit new RNA synthesis. The expression levels of ATG10 and ATG12 mRNA

were measured in NB4 cells every hour by RT-qPCR. The data represent the mean ± S.E.M. from three independent experiments. * indicates p<0.05. NS: not

significant.

https://doi.org/10.1371/journal.pone.0316109.g004
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We further examined the interactions between TAF15 and ATG10/ATG12 mRNA in NB4

cells with NEAT1 knockdown following ATRA treatment. The results revealed that silencing

NEAT1 significantly impaired the interactions between TAF15 and both ATG10 and ATG12

mRNAs (Fig 4F). Consistently, NEAT1 knockdown significantly reduced the stability of

ATG10 and ATG12 mRNA (Fig 4G). Collectively, our findings suggested that NEAT1 and

TAF15 work synergistically to stabilize ATG10 and ATG12 mRNA, thereby facilitating granu-

locytic differentiation in APL cells.

Discussion

LncRNA NEAT1 has been implicated in various pathophysiological processes by modulating

autophagy. For instance, NEAT1 upregulates ATG3 to enhance autophagy, thereby increasing

resistance to sorafenib in hepatocellular carcinoma cells [34]. Conversely, silencing NEAT1

reduces autophagy by influencing ATG9A and ATG4B, which increases sensitivity to 5-fluoro-

uracil in colorectal cancer [27]. Additionally, NEAT1 upregulates ATG9A, contributing to

IGFBPrP1-induced autophagy and activation in hepatic stellate cells during liver fibrosis [35].

In contrast, NEAT1 could mitigate LPS-induced inflammation by activating autophagy [36].

Furthermore, NEAT1 is associated with the modulation of autophagy in diseases such as con-

genital heart disease [37], Parkinson’s disease [38] and myocardial ischemia-reperfusion injury

[39]. In our study, we have discovered that upregulation of NEAT1 enhances autophagy,

which in turn promotes the degradation of PML-RARα and granulocytic differentiation of

APL cells. This finding represents the first demonstration of NEAT1’s role in ATRA-induced

autophagy and its contribution to APL cell differentiation via autophagy regulation. Conse-

quently, enhancing NEAT1 expression may improve the efficacy of ATRA treatment, position-

ing NEAT1 as a potential therapeutic target for acute promyelocytic leukemia.

NEAT1 is known to interact with RNA binding proteins such as NONO and PSF, enhanc-

ing the processing of primary microRNAs globally [40]. Additionally, NEAT1 physically inter-

acts with FUS, promoting cell growth in breast cancer [41]. When bound and stabilized by

HuR, NEAT1 facilitates the proliferation and invasion of ovarian cancer cells [32]. Moreover,

NEAT1 recruits EZH2 to gene promoters, thereby supporting myoblast proliferation during

myogenesis [42]. These findings suggest that NEAT1 could interact with RBPs to fulfill diverse

biological roles. On the other hand, RNA binding protein TAF15, acting as an RNA stabilizer,

is reported to be recruited by lncRNA PITPNA-AS1 to stabilize HMGB3 mRNA, enhancing

proliferation and migration of lung squamous cell carcinoma cells [33]. Similarly, TAF15

interacts with TRPM2-AS to maintain the stability of TRPM2 mRNA, promoting cell prolifer-

ation in colorectal cancer [43]. These observations suggest that TAF15 might interact with

other lncRNAs, including NEAT1. In this study, by predicting with the ENCORI database,

TAF15 was identified as a shared RBP for NEAT1, ATG10 and ATG12 mRNA. Experimental

validations confirmed that TAF15 interacts with NEAT1, synergistically stabilizing ATG10

and ATG12 mRNA. This research highlights, for the first time, the interaction between

NEAT1 and RBP TAF15, which stabilizes downstream effectors. However, silencing TAF15

had minimal impact on NEAT1 expression, and blocking NEAT1 did not affect TAF15 expres-

sion. Given NEAT1’s role in structuring paraspeckles and its ability to scaffold RBPs [40], it is

plausible that NEAT1 serves as a platform to recruit TAF15, thereby stabilizing downstream

mRNAs such as ATG10 and ATG12.

Autophagy is characterized by the formation of autophagosomes, a process that involves

several sequential stages: initiation, nucleation, elongation, maturation, and degradation. Two

protein conjugation systems, composed of ATG12/ATG7/ATG10/ATG5 and LC3/ATG3,

which are respectively triggered by ubiquitin-like molecules ATG12 and LC3, are required to
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autophagosome elongation and maturation [44]. Initially, ATG12 is activated by ATG7, trans-

ferred to ATG10, and then conjugated to ATG5 [45, 46]. The ATG12-ATG5 complex exhibits

E3-like activity, facilitating the lipidation of phosphatidylethanolamine to LC3, thereby pro-

moting the conversion of LC3-I into LC3-II [47], ATG12 is central to autophagy, with its

knockdown disrupting autophagosome formation. ATG10, functioning as an E2-like conju-

gating enzyme, plays a crucial role in recruiting molecules for complex conjugation and is vital

for autophagosome formation [48]. HuR has been shown to enhance the translation of ATG12

mRNA by binding to its 3’-UTR, thus facilitating autophagosome formation in hepatocellular

carcinoma cells [49]. Additionally, CELF2 has been reported to increase ATG12 levels by mod-

ulating mRNA stability, thereby enhancing autophagic flux in colorectal cancer [50]. Further-

more, PTPB1 directly interacts with ATG10 mRNA and negatively regulates its expression,

promoting tumor metastasis in colorectal cancer cells [51]. These findings highlight how

upstream regulators influence autophagy by interacting with mRNAs of ATG12 and ATG10.

In our study, we demonstrated that NEAT1 and TAF15 synergistically stabilized the mRNA of

ATG10 and ATG12, enhancing autophagy during granulocytic differentiation of APL cells.

Whereas knocking down NEAT1 or TAF15 reduces both the expression level and stability of

ATG10 and ATG12 mRNA. Given that ATG10 and ATG12 are upstream regulators of LC3

and play a core role in autophagosome maturation, knockdown of TAF15 reduced the levels of

ATG10 and ATG12, so silencing TAF15 would result in a reduction in LC3B-II levels and

impair autophagic activity. Additionally, the combination of shNEAT1 and bafilomycin A1

appeared less effective than bafilomycin A1 alone in mitigating the effects of ATRA, which

may be attributed to distinct mechanisms of autophagy regulation.

A key feature of the ATRA response in APL is the degradation of the PML-RARα oncopro-

tein, which facilitates cell differentiation and contributes to clinical remission. Besides autop-

hagy, the proteasome and caspase pathways are also implicated in the degradation of

PML-RARα [52–54]. The involvement of multiple pathways may explain why NEAT1 knock-

down does not completely prevent the ATRA-induced degradation of PML-RARα. Addition-

ally, the inability to fully reverse PML-RARα degradation could be attributed to the

incomplete silencing of NEAT1 by shRNA.

A limitation of our study is that the findings were solely demonstrated using the NB4 cell

line, derived from an APL patient, without validation in patient samples or mouse models.

Collecting samples from APL patients is challenging due to the rarity of this subtype of acute

myeloid leukemia. Additionally, the limited number of cells typically obtained from clinical

samples and the significant variation between individual cases complicate the execution of

mechanistic studies using patient-derived materials. Furthermore, there is currently no estab-

lished appropriate mouse model for APL. Consequently, similar to many mechanistic studies,

we relied on a cell line model to conduct our experiments. Moreover, due to the large size of

NEAT1_2 (23 kb), constructing an overexpression plasmid is challenging, which has pre-

vented us from conducting overexpression or inducible NEAT1 experiments.

In summary, our results not only highlight the crucial role of NEAT1-mediated autophagy

in the granulocytic differentiation of APL cells but also elucidate the molecular mechanism by

which NEAT1 upregulation enhances autophagy. Specifically, NEAT1 interacts with TAF15 to

stabilize the mRNAs of ATG10 and ATG12, thereby promoting autophagy (Fig 5). This study

underscores a novel regulatory pathway that may be targeted therapeutically to modulate dif-

ferentiation in APL.
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Supporting information

S1 Fig. The representative flow cytometry plots of NB4 cells stained with CD11c and CD18

both before and after ATRA treatment.

(TIF)

Fig 5. Schematic diagram illustrating the role of NEAT1 in enhancing autophagy during granulocytic differentiation in APL

cells.

https://doi.org/10.1371/journal.pone.0316109.g005
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S2 Fig. The correlations between NEAT1 and ATG10 and ATG12 in APL were analyzed

using data retrieved from the GEO datasets GSE10358 and GSE12662.

(TIF)

S3 Fig. The correlations between TAF15 and ATG10 and ATG12 in APL were analyzed

using data retrieved from the GEO datasets GSE10358 and GSE12662.

(TIF)

S1 Table. Primers used for RT-qPCR.

(XLSX)

S2 Table. ENCORI predicted NEAT1 interacted RNA binding proteins.

(XLSX)

S3 Table. ENCORI predicted ATG10 interacted RNA binding proteins.

(XLSX)

S4 Table. ENCORI predicted ATG12 interacted RNA binding proteins.

(XLSX)

S1 File. Original western blot figures.
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