
RESEARCH ARTICLE

Examination of common culture medium for

human hepatocytes and engineered heart

tissue: Towards an evaluation of cardiotoxicity

associated with hepatic drug metabolism in

vitro

Shinichiro Horiuchi1, Nanae Koda1, Yui Ikeda2, Yuto Tanaka2, Yusuke Masuo2,

Yukio KatoID
2, Daiju YamazakiID

1*

1 Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan, 2 Faculty of

Pharmacy, Kanazawa University, Kanazawa, Ishikawa, Japan

* daiju-y@nihs.go.jp

Abstract

Cardiotoxicity associated with hepatic metabolism and drug–drug interactions is a serious con-

cern. Predicting drug toxicity using animals remains challenging due to species and ethical

concerns, necessitating the need to develop alternative approaches. Drug cardiotoxicity asso-

ciated with hepatic metabolism cannot be detected using a cardiomyocyte-only evaluation sys-

tem. Therefore, we aimed to establish a system for evaluating cardiotoxicity via hepatic

metabolism by co-culturing cryopreserved human hepatocytes (cryoheps) and human iPS

cell-derived engineered heart tissues (hiPSC-EHTs) using a stirrer-based microphysiological

system. We investigated candidate media to identify a medium that can be used commonly for

hepatocytes and cardiomyocytes. We found that the contraction length was significantly

greater in the HM Dex (-) medium, the medium used for cryohep culture without dexametha-

sone, than that in the EHT medium used for hiPSC-EHT culture. Additionally, the beating rate,

contraction length, contraction speed, and relaxation speed of hiPSC-EHT cultured in the HM

Dex (-) medium were stable throughout the culture period. Among the major CYPs, the expres-

sion of CYP3A4 alone was low in cryoheps cultured in the HM Dex (-) medium. However,

improved oxygenation using the InnoCell plate increased CYP3A4 expression to levels com-

parable to those found in the human liver. In addition, CYP3A4 activity was also increased by

the improved oxygenation. Furthermore, expression levels of hepatic function-related gene

and nuclear receptors in cryoheps cultured in HM Dex (-) medium were comparable to those in

the human liver. These results suggest that the HM Dex (-) medium can be applied to co-cul-

ture and may allow the evaluation of cardiotoxicity via hepatic metabolism. Moreover, CYP

induction by typical inducers was confirmed in cryoheps cultured in the HM Dex (-) medium,

suggesting that drug–drug interactions could also be evaluated using this medium. Our find-

ings may facilitate the evaluation of cardiotoxicity via hepatic metabolism, potentially reducing

animal testing, lowering costs, and expediting drug development.
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Introduction

Animal experiments are necessary in the preclinical stage of drug development to test drug effi-

cacy and safety. However, there is a need to reduce the number of animal experiments based on

the 3Rs principle (Reduction, Refinement, Replacement) [1]. Additionally, limitations exist in pre-

dicting drug toxicity using animal models because of species differences from humans [2]. Fur-

thermore, reduction of the costs and increasing the efficiency of drug development are necessary.

Therefore, the development of an in vitro evaluation system using human cells is valuable.

Liver metabolism plays a major role in drug efficacy and toxicity [3, 4]. Drug-induced cardio-

toxicity is a major cause of drug withdrawal from the market or discontinuation of development

[5, 6], and several drugs whose toxicity is related to drug–drug interactions have been withdrawn

due to cardiotoxicity [7–9]. For example, terfenadine, a human ether-a-go-go related gene

(hERG) channel blocker, induces torsades de pointes and ventricular arrhythmias by prolonging

the QT interval, whereas fexofenadine, which is a metabolite of terfenadine mediated by CYP3A4,

has hERG channel blocking activity 1/20th that of terfenadine [10]. Therefore, the cardiotoxicity

risk of terfenadine is extremely low when administered alone but increases when administered in

combination with CYP3A4 inhibitors such as cefaclor, ketoconazole, and medroxyprogesterone

[11]. Similarly, while cyclophosphamide itself has limited cardiotoxic effects, its metabolite acro-

lein is primarily responsible for inducing cardiotoxicity [12, 13]. These findings highlight the criti-

cal role of drug metabolism in modulating cardiotoxicity. Therefore, liver drug metabolism

should be considered when evaluating drug cardiotoxicity. Drug cardiotoxicity and hepatic drug

metabolism are currently evaluated separately in vitro [14, 15]. Limitations exist in predicting car-

diotoxicity risk from individual evaluations owing to the complexity of hepatic drug metabolism

[16]. Therefore, evaluation of cardiotoxicity associated with hepatic drug metabolism in a co-cul-

ture system of cardiomyocytes and hepatocytes may improve risk prediction.

Cell culture devices such as microphysiological systems (MPS) are being actively developed

as evaluation systems that mimic in vivo conditions [17–20]. Some methods allow inter-organ

evaluation by connecting culture compartments for cells derived from different organs and

perfusing them with culture medium [21–23]. We aimed to construct an in vitro system to

evaluate cardiotoxicity associated with hepatic drug metabolism by co-culturing cryopreserved

human hepatocytes (cryoheps) and human iPS cell-derived engineered heart tissue (hiPS-

C-EHTs) using an MPS [24, 25]. A key challenge in co-culturing cells from different organs is

the need for distinct culture media tailored to each cell type’s requirements. For in vitro evalu-

ation of cardiotoxicity associated with hepatic drug metabolism, a culture medium compatible

with both hepatocytes and cardiomyocytes is essential. Therefore, in this study, we systemati-

cally investigated the common medium for hepatocytes and cardiomyocytes (HCMM: Hepa-

tocyte-Cardiomyocyte Maintenance Medium). An effective HCMM should support optimal

functionality in both cardiomyocytes and hepatocytes. To ensure this, we evaluated the con-

tractile properties of hiPSC-EHTs and the expression of major CYPs in cryoheps across the

candidate media, to identify a suitable HCMM. Hepatocytes adopt a hypoxic state when cul-

tured on common plastic plates [26]. Therefore, we examined the effect of oxygen concentra-

tion on CYP expression using a culture vessel with an oxygen-permeable membrane [27]. We

also report the effects of oxygenation on CYP expression using cryoheps.

Materials and methods

Culture medium

Hepatocyte Maintenance medium (HM medium) used to culture cryoheps, MH medium

without dexamethasone (HM Dex (-) medium), and EHT medium used to hiPSC-EHT were
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examined as candidate HCMM. Dexamethasone was excluded from the HM medium because

it is known to influence action potential and heart contraction [28, 29].

Cryopreserved human hepatocyte culture

Cryopreserved human hepatocytes (Lot #3–51) were obtained from XenoTech (Lenexa, KS,

USA). The cells were thawed using OptiThaw (XenoTech) and suspended at 7.2 × 105 cells/mL

using OptiPlate (XenoTech). Subsequently, 500 μL of the cell suspension was seeded on a colla-

gen-coated 24-well polystyrene (PS) plate or InnoCell plate. After 4–5 h, the medium was

replaced with 500 μL of HM medium. The medium was replaced with HM medium, HM Dex

(-) medium, or EHT medium on the following day and cultured for 72 h. The compositions of

these media are shown in S1 Table. The InnoCell plate used in this study is a 24-well plate with

an oxygen-permeable membrane on the cell attachment surface (https://jp.mitsuichemicals.

com/en/special/innocell/index.htm).

Stromal cell subculture

The bone marrow stromal cell line HS27a was obtained from the American Type Culture Col-

lection (Rockville, MD, USA) [30]. HS27a cells were cultured in gelatin-coated 10-cm dishes

in Dulbecco’s modified Eagle’s medium (DMEM; Gibco BRL, Paisley, Scotland) supplemented

with 10% FBS (Cytiva, Tokyo, Japan), GlutaMAX (Gibco), MEM non-essential amino acids

(Gibco), and penicillin–streptomycin solution (Fujifilm Wako), and passaged once a week.

Creating human iPS cell-derived engineered heart tissue

Molds were prepared by adding 2 mL 2% agarose in PBS (Invitrogen, Carlsbad, Calif., USA) to

each well of a 24-well plate and placing spacers (C0002, EHT Technologies, Hamburg, Ger-

many). After the agarose solidified, the spacer was removed, and PDMS racks (C0001, EHT

Technologies) were placed into each agarose mold [24, 25]. HS27a cells were collected from a

10-cm dish by trypsinization. iCell cardiomyocyte 2.0 (FUJIFILM Cellular Dynamics, Inc.,

Madison, WI, USA) was thawed according to the manufacturer’s instructions. HS27a cells and

iCell cardiomyocytes2 were mixed at a ratio of 1:10 and centrifuged (200 ×g, 5 min, 23˚C). The

supernatant was discarded and the pellet was suspended in an iCell maintenance medium

(FUJIFILM Cellular Dynamics, Inc.) at a final concentration of 5 mg/mL fibrinogen (Sigma-

Aldrich, St Louis, MO, USA) and 3 U/mL thrombin (Sigma-Aldrich). The suspension con-

tained 5.0 × 104 cells of HS27a and 5.0 × 105 cells of iCell cardiomyocyte 2 per 100 μL. The sus-

pension was then poured into an agarose mold. The constructs were incubated for 90 min at

37˚C and 5% CO2 for fibrinogen polymerization. The polymerized hiPSC-EHTs were trans-

ferred to the wells of a 24-well plate containing a 2 mL iCell maintenance medium.

Human iPS cell-derived engineered heart tissue culture

hiPSC-EHTs were cultured in iCell cardiomyocyte maintenance medium for 3 weeks and in

EHT medium for over 1 week [31]. Thereafter, the medium was replaced with HM medium or

HM Dex (-) medium, and contractile properties were observed.

Evaluation of contractile properties in human iPS cell-derived engineered

heart tissue

Contraction of hiPSC-EHTs was recorded for 10 s using a microscope CKX41 (OLYMPUS,

Tokyo, Japan) equipped with a high-speed camera HAS-U2 (DETECT, Tokyo, Japan) (resolu-

tion: 1920 × 1080, number of frames: 60 fps, shutter speed: 1/700). The recorded moving
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images were analyzed using SI8000 software (SONY, Tokyo, Japan) and a versatile open soft-

ware tool MUSCLEMOTION [32].

RNA isolation

The cultured cells were washed twice with PBS. hiPSC-EHTs were treated with proteinase K

(Thermo Fisher Scientific, Waltham, MA, USA) at a final concentration of 0.22 mg/mL for 10

min at 55˚C before RNA isolation. Total RNA was then isolated from the cells using the

RNeasy1 Total RNA Extraction Kit (Qiagen, Hilden, Germany) according to the manufactur-

er’s instructions.

Real-time polymerase chain reaction

Total RNA was reverse transcribed to cDNA using total RNA and high-capacity RNA-to-

cDNA (Thermo Fisher Scientific) according to the manufacturer’s instructions. Gene expres-

sion in hepatocytes was measured using a QuantStudio 7 Flex Real Time PCR System (Applied

Biosystems, Foster City, CA, USA) with TaqMan Fast Advanced Master Mix (Applied Biosys-

tems). The primer and probe sets used are shown in S2 Table. Pooled RNA derived from

human liver (BioChain Institute, Inc.) was used to generate the standard curve, and the expres-

sion level was set to one. The relative expression levels were calculated using the line equation

for the standard curve. Gene expression in hiPSC-EHTs was measured using the QuantStudio

7 flex Real Time RCR System and THUNDERBIRD1 Next SYBR1 qPCR Mix (TOYOBO,

Osaka, Japan). The primers used are shown in S3 Table. RNA derived from the left ventricle

(BioChain Institute, Inc.) was used to generate the corresponding standard curve, and the

expression level was set to one. The relative expression levels were calculated using the line

equation for the standard curve.

CYP induction in cryoheps

Cryoheps were cultured for 48 h from the second day of seeding and exposed to 20 μM rifam-

picin (Fujifilm Wako Pure Chemicals Co., Osaka, Japan), 50 μM omeprazole (Fujifilm Wako),

and 500 μM phenobarbital (Fujifilm Wako). 0.1% DMSO (Sigma-Aldrich) was used as a

vehicle.

CYP enzyme metabolic activity quantification in cryoheps

Cryoheps were incubated in HM Dex (-) medium containing a cocktail of CYP probe sub-

strates (phenacetin 20 μM (for CYP1A2), diclofenac 1 μM (for CYP2C9), mephenytoin 40 μM

(for CYP2C19), bufuralol 5 μM (for CYP2D6), midazolam 2 μM (for CYP3A)) at 37˚C. After

incubation for 60 min, the incubation media was collected and kept at -80˚C until LC–MS/MS

analyses. The metabolites formed by the CYP probe cocktail were quantified by LC-MS/MS

using a Nexera X2 LC system coupled with an LCMS-8050 (Shimadzu, Kyoto, Japan). The

detected mass numbers and collision energy (CE) were as follows; acetaminophen for CYP1A2

(152.0> 110.0, CE: − 9 V), CE: − 24 V), 40-hydroxydiclofenac for CYP2C9 (312.0> 230.0, CE:

− 32 V), 40-hydroxymephenytoin for CYP2C19 (276.2> 235.1, CE: − 17 V), 10-hydroxybufura-

lol for CYP2D6 (278.0> 186.0 CE: − 19 V), 10-hydroxymidazolam for CYP3A4 (342.0>

203.0, CE − 27 V) [33].

Statistical analysis

Comparisons between two groups were performed using Student’s t-test, assuming equal or

unequal variances based on the f-test with two-tailed, in Excel.

PLOS ONE Hepatocyte–Cardiomyocyte common medium for cardiotoxicity evaluation

PLOS ONE | https://doi.org/10.1371/journal.pone.0315997 December 23, 2024 4 / 18

https://doi.org/10.1371/journal.pone.0315997


Results

Contractile properties in human iPS cell-derived engineered heart tissue

Contractile properties (beating rate, contraction length, contraction speed, and relaxation

speed) were observed in three candidate media to evaluate hiPSC-EHT functions. The contrac-

tile properties of the hiPSC-EHTs were evaluated based on those in the EHT medium, the

choice medium for culturing hiPSC-EHTs. The contraction length exhibited a notable increase

following the transition from the EHT medium (dedicated to hiPSC-EHTs) to both the HM

and HM Dex (-) media (Fig 1). The other parameters did not decrease upon transition to the

HM and HM Dex (-) media. After the transition to the HM medium, the contraction length

increased until 48 h and then decreased. However, all parameters were stable throughout the

culture period in the HM Dex (-) medium. These results suggest that the HM Dex (-) medium

increases the contraction length and stabilizes all parameters, and is the most suitable for hiPS-

C-EHT culture, of the three candidate media.

Expression of myocardial-specific genes in human iPS cell-derived

engineered heart tissue

We measured the expression levels of 17 myocardial-specific genes to compare the characteris-

tics of hiPSC-EHTs cultured in the 3 media. The difference in the expression levels of 16

genes, except MYH6, was within 2-fold across the 3 media (Fig 2 and S1 Fig). The expression

level of MYH6 was 2.2 times lower in the HM than in the EHT medium. Additionally, princi-

pal component analysis based on the expression levels of 17 genes showed that the contribu-

tion rate of the first component was approximately 99%, with similar eigenvalues across the

three candidate media (S2 Fig). These results suggest no significant differences in the myocar-

dial-specific properties of hiPSC-EHTs among the three candidate media.

CYP expression in cryopreserved hepatocytes

The expression of major CYPs, phase I drug metabolizing enzymes, was observed in the three

candidate media to evaluate cryoheps function. CYPs expression in cryoheps was evaluated

based on that in the HM medium. The expression of CYPs other than CYP3A4 in the cryoheps

did not differ by more than 2-fold among the three candidate media (Fig 3). However,

CYP3A4 expression was more than 2-fold lower in the EHT and HM Dex (-) media than that

in the HM medium. This result suggests that dexamethasone significantly contributes to the

expression of CYP3A4 in the HM medium. The CYP expression levels were compared to the

previously reported average values of 22 lots of cryoheps under vendor-recommended condi-

tions to evaluate the adequacy of drug metabolism ability [34]. The expression level of CYP3A4
alone was lower in the HM Dex (-) and EHT media than the average value of 22 lots of cryo-

heps under vendor-recommended conditions. In addition, we attempted to improve CYP
expression using an InnoCell plate, in which the culture bottom is an oxygen-permeable mem-

brane. When cultured on InnoCell plates, the expression level of CYP3A4 in the EHT and HM

Dex (-) media increased to approximately 80% of the expression observed in cells cultured in

HM medium on PS plates and was comparable to the average value of 22 lots of cryoheps

under the vendor-recommended conditions. These results suggest that cryoheps may show

sufficient drug metabolic activity even in the EHT and HM media using InnoCell plates.

Expression of hepatic function-related genes in cryopreserved hepatocytes

We also determined the expression levels of hepatic function-related genes other than CYPs.
When dexamethasone was removed from the HM medium, which is the choice medium for
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culturing hepatocytes, the expression of GSTM1 alone was reduced by half or less (Fig 4).

However, the expression level of GSTM1 in the HM Dex (-) medium was higher than 1, rela-

tive to that in the human liver. Furthermore, the expression levels of other hepatic function-

related genes in the HM Dex (-) medium were comparable to those in the human liver (relative

expression = 1). These results suggest that hepatic function-related genes other than CYPs are

Fig 1. Contractile properties of human iPS cell-derived engineered heart tissues (hiPSC-EHTs). hiPSC-EHTs were cultured in EHT medium for contractile

property analysis and then cultured in the HM or HM Dex (-) media. Thereafter, the contractile properties of hiPSC-EHTs were analyzed after 0.5, 24, 48, and

72 h of culture. Movie images were analyzed using SI8000 software. The graph bar shows the average mean, and the error bar shows the standard error (n = 4).

* Statistically significant change compared to the 0.5 h values (p< 0.05).

https://doi.org/10.1371/journal.pone.0315997.g001
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sufficiently expressed in the HM Dex (-) medium. Additionally, the expression of biliary excre-

tion transporters, such as MRP2 and BSEP, trended to increase in InnoCell cultures.

Expression of nuclear receptors in cryopreserved hepatocytes

The evaluation of contraction in hiPSC-EHTs and the expression of hepatic function-related

genes, including CYPs, in cryoheps, suggests the HM Dex (-) medium as the most fitting

HCMM. Nuclear receptors are activated by exposure to compounds, such as drugs, which reg-

ulate the gene expression of drug-metabolizing enzymes and drug transporters. Therefore,

nuclear receptors are crucial factors in the evaluation of drug–drug interactions. The expres-

sion levels of the nuclear receptors except PXR were higher in the HM Dex (-) medium, our

primary candidate HCMM under consideration, in the human liver (Fig 5). Additionally, the

expression level of PXR was 0.6 relative to that in the human liver, showing no difference in

order of magnitude.

Fig 2. Heatmap showing cardiomyocyte-specific gene expression in human iPS cells-derived engineered heart tissues (hiPSC-EHTs). hiPSC-EHTs were

cultured in EHT medium for over 1 week and then in EHT medium, HM medium, or HM Dex (-) medium for 72 h. RNA was collected from the tissues at the

endpoint and analyzed using qPCR (n = 4). The color of the Heatmap shows the value of log2 (relative expression level compared to the human left ventricle).

https://doi.org/10.1371/journal.pone.0315997.g002
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CYP induction by typical inducers in cryopreserved hepatocytes

CYP induction in cryoheps is required to evaluate drug–drug interactions. Therefore, we

examined CYP induction by a typical inducer in cryoheps cultured in the HM Dex (-)

medium, our primary candidate HCMM. We observed CYP1A2 induction by omeprazole,

CYP2B6 and CYP3A4 induction by phenobarbital, and CYP3A4 induction by rifampicin in

cultures using both the PS and InnoCell plates (Fig 6). Furthermore, the fold-changes after

induction were comparable to those achieved in cryoheps cultured in the HM medium on PS

plates.

CYP activity in cryopreserved hepatocytes

Based on the contractile properties of hiPSC-EHTs and CYPs expression in cryoheps, we

selected the HM Dex (-) medium as the HCMM. Subsequently, we compared the activity of

CYPs in cryoheps cultured in HM Dex (-) medium between PS and InnoCell plates. The activi-

ties of CYP1A, CYP2D6, and CYP3A were significantly enhanced when cryoheps were cul-

tured on InnoCell plates (Fig 7).

Discussion

Drug metabolism in the liver affects the efficacy and toxicity of drugs, and some drugs have

been withdrawn from the market because of drug-induced cardiotoxicity associated with

hepatic drug metabolism [8]. Therefore, consideration of the effects of hepatic drug metabo-

lism is crucial for evaluating the cardiotoxicity risk of drugs. Individual evaluations of hepatic

drug metabolism and cardiotoxicity have limitations in risk prediction owing to the

Fig 3. Cytochrome P450 expression in cryopreserved human hepatocytes (cryoheps). Cryoheps were cultured in

EHT medium, HM medium, or HM Dex (-) medium for 72 h from the day of seeding. Polystyrene (PS) plates and

InnoCell plates were used for the culture. RNA was collected from the cells at the endpoint and analyzed by qPCR. The

graph bar shows the mean of the relative expression levels compared to the human liver, and the error bar shows the

standard error (n = 3). The green, red, and blue lines show the mean, maximum, and minimum values of expression in

the 22 lots of cryoheps under vendor-recommended conditions [34]. * Statistically significant increase in the InnoCell

plate compared with the values in the PS plates (p< 0.01).

https://doi.org/10.1371/journal.pone.0315997.g003
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complexity of hepatic drug metabolism [35]. Therefore, the construction of a risk evaluation

system based on the coculture of hepatocytes and cardiomyocytes is required. Hence, we

aimed to construct a co-culture evaluation system using cryoheps and hiPSC-EHTs based on

our established contractile property-based cardiotoxicity evaluation system using hiPS-

C-EHTs. An ideal co-culture medium, in which both cryoheps and hiPSC-EHTs function

effectively, is crucial for successfully establishing such an evaluation system. Therefore, in this

study, we evaluated different media to identify a common medium suitable for both cryoheps

and hiPSC-EHTs. EHT medium, a medium of choice for culturing hiPSC-EHTs; HM

medium, a medium for culturing cryoheps; and HM Dex (-) medium, an HM medium without

dexamethasone, were assessed as candidate HCMM. Large changes in contraction are

Fig 4. Expression of genes related to liver function in cryopreserved human hepatocytes (cryoheps). Cryoheps were cultured in the EHT medium, HM

medium, or HM Dex (-) medium for 72 h from the day of seeding. PS plates and InnoCell plates were used for the culture. RNA was collected from the cells at

the endpoint and analyzed by qPCR. The graph bar shows the average mean of the relative expression levels compared with the human liver, and the error bar

shows the standard error (n = 3).

https://doi.org/10.1371/journal.pone.0315997.g004
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advantageous for evaluating the contraction of hiPSC-EHTs. The contraction length was sig-

nificantly larger in the HM and HM Dex (-) media than in the EHT medium, which is a dedi-

cated culture medium for hiPSC-EHTs. This difference may be due to varying Ca2⁺
concentrations in the media. The HM and HM Dex (-) media are based on William’s E

medium with 1.8 mM Ca2⁺, whereas EHT medium is based on RPMI medium with 0.4 mM

Ca2⁺. Hansen et al. reported that the contraction force in the EHT medium is Ca2+-concentra-

tion dependent [25]. This suggests that the contraction length for 3D cardiac tissue was larger

in the HM or HM Dex (-) media because of the higher Ca
2+

concentration, compared with that

in the EHT medium. Moreover, we confirmed that the EHT medium with a Ca2+ concentra-

tion adjusted to 1.8 mM was not suitable as an HCMM because of cryohep detachment. Addi-

tionally, stable contraction properties are important for a robust evaluation. While changes in

contraction length were observed over time in the HM medium, all parameters remained sta-

ble until 72 h in the HM Dex (-) medium. Furthermore, the expression of 17 cardiac-specific

genes indicated no significant differences in the cardiac characteristics of hiPSC-EHTs cul-

tured in the three candidate media. Moreover, arrhythmia caused by paliperidone and con-

traction suppression and arrhythmia caused by terfenadine were detected in hiPSC-EHTs

cultured in HM Dex (-) medium (S3 Fig), as previously reported [36, 37]. Therefore, we con-

clude that the HM Dex (-) medium is the most suitable medium for evaluating contraction

properties in hiPSC-EHTs.

Fig 5. Expression of nuclear receptors in human cryopreserved hepatocytes (cryoheps). Cryoheps were cultured in the EHT medium, HM medium, or HM

Dex (-) medium for 72 h from the day of seeding. Polystyrene plates and InnoCell plates were used for the culture. RNA was collected from the cells at the

endpoint and analyzed using qPCR. The graph bar shows the average mean of the relative expression levels compared with the human liver, and the error bar

shows the standard error (n = 3).

https://doi.org/10.1371/journal.pone.0315997.g005
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Fig 6. Induction of cytochrome P450 expression in human cryopreserved hepatocytes (cryoheps). Cryoheps were cultured in the HM or HM Dex (-) media

with inducer for 48 h from day 2 after seeding. Polystyrene and InnoCell plates were used for the culture. RNA was collected from the cells at the endpoint and

analyzed by qPCR. The graph bar shows the average mean gene expression fold change upon exposure to the inducer (OM: Omeprazole, RIF: Rifampicin, PB:

Phenobarbital), and the error bar shows standard error (n = 3).

https://doi.org/10.1371/journal.pone.0315997.g006
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Although many enzymes are involved in drug metabolism, CYPs are primarily involved in

the metabolism of approximately 75% of the drugs [38]. CYP3A4, CYP2D6, CYP2C9,

CYP2C19, and CYP1A2 are the most important CYPs enzymes, accounting for approximately

60% of the total amount of CYPs in the liver [39, 40]. In this study, we evaluated the drug-

metabolizing abilities of cryoheps cultured in three candidate media by comparing the expres-

sion levels of CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2. The difference in the

expression of CYPs other than CYP3A4 was less than 2-fold among the three candidate media.

Furthermore, the expression levels of these CYPs were the same as the average value of 22 lots

of cells under the conditions recommended by the vendor. The expression level of CYP3A4
was more than 2-fold lower when dexamethasone was removed from the HM medium. Dexa-

methasone has been reported to suppress the expression of IL6 [41], which negatively regulates

CYP3A4 expression [42]. In this study, IL6 expression was increased when dexamethasone was

Fig 7. Cytochrome P450 (CYP) activity in human cryopreserved hepatocytes (cryoheps). Cryoheps were cultured in the HM Dex (-) medium on

polystyrene (PS) or InnoCell plates for 72 h from the day of seeding. PS and InnoCell plates were used for the culture. Cryoheps were incubated in the HM

medium Dex (-) containing a cocktail of CYP probe substrates. After 60 min of incubation, the incubation media were collected and the metabolites were

measured using LC-MS/MS. The graph bar shows the average mean CYP activity and the error bar shows the standard error (n = 4). * Statistically significant

increase in the InnoCell plate compared to the values in the PS plates (p< 0.01).

https://doi.org/10.1371/journal.pone.0315997.g007
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removed (S4 Fig), suggesting that the decreased expression of CYP3A4 in HM Dex (-) medium

is mediated by the elevated IL6 levels. However, the expression level of CYP3A4 in the HM

Dex (-) medium showed a notable increase, reaching approximately 80% of the expression

observed in cells cultured in the HM medium on PS plates by optimizing the oxygen supply to

the cells using InnoCell plates. The expression level was similar to the average value of 22 lots

of cells cultured under the conditions recommended by the vendor. These results suggest that

sufficient metabolic activity can be obtained using the HM Dex (-) medium by improving oxy-

gen supply. The next step is to demonstrate that the test drugs are metabolised in the HM Dex

(-) medium as much as in the HM medium, in order to evaluate cardiotoxicity via hepatic

metabolism. We are considering the use of the kinetic pump-integrated microfluidic plate

(KIM-Plate) developed by Kimura et al. [43] as a culture vessel for co-culturing cryoheps and

hiPSC-EHTs. This device has a microstirrer installed in the microchannel between two wells

to allow medium perfusion. The device is being studied to replace the plastic bottom of the

normal case with an oxygen-permeable membrane, such as that used in InnoCell plates, to

improve the oxygen supply. An improved oxygen supply will allow us to obtain results that

more closely reflect drug metabolism.

An optimized HCMM is essential to ensure optimal functionality for cryoheps and hiPS-

C-EHT. The HM Dex (-) medium is the most suitable for hiPSC-EHTs because the contrac-

tion length is larger than that achieved with the EHT medium, which is a medium for

cardiomyocytes. A longer contraction length is advantageous in detecting more definite nega-

tive inotropic action. Moreover, the contraction length, contraction speed, relaxation speed,

and number of beats are stable during 72 h of culture in the HM Dex (-) medium. In contrast,

contraction parameters of hiPSC-EHTs cultured in HM medium with dexamethasone were

more unstable than those in HM Dex(-) medium, especially the contraction length, which

drastically increased until 48 h and then decreased. Therefore, dexamethasone should be

removed from HM medium for stable cardiotoxicity evaluation. The expression of CYP3A4
was significantly lower in cryoheps cultured in the HM Dex (-) medium than in those cultured

in the HM medium, a medium for hepatocytes; however, the expression was restored with the

use of an InnoCell plate. In addition, when cryoheps were cultured in HM Dex (-) medium on

InnoCell plates, the expression levels of all CYP genes were comparable to or higher than the

average value of 22 lots of cryoheps under optimal conditions. Moreover, the expression levels

of phase II drug metabolizing enzymes and bile acid uptake/excretion transporters in the HM

Dex (-) medium were one or more relative to the liver. These results reinforce that the HM

Dex (-) medium is the most optimal HCMM.

Drug–drug interactions in the liver have been reported to affect drug toxicity. Terfenadine

can cause cardiac arrhythmias when used in combination with drugs that inhibit CYP3A4

activity [44]. Acetaminophen can cause hepatotoxicity when used in combination with rifam-

picin by increasing the metabolite NAPQI [45]. This reaction involves the induction of CYP

by rifampicin. Therefore, the ability to induce CYPs is important when evaluating drug–drug

interactions. In addition, drugs induce CYPs by activating the nuclear receptor [46, 47]. The

expression of nuclear receptors comparable to liver levels and the induction of CYP expression

by typical inducers were confirmed in the HM Dex (-) medium, the primary medium of choice

for co-culturing cryoheps and hiPSC-EHTs. This ability to induce CYPs was also observed in

the InnoCell culture. These results suggest that the HM Dex (-) medium is also useful for eval-

uating cardiotoxicity via drug–drug interactions.

Hepatocytes cultured on normal plastic plates experience hypoxia [26]. Moreover, primary

human hepatocytes require high oxygen levels, approximately 12 times higher than those in

HepaG2 cells and five times higher than those in HepaRG cells [48]. We hypothesized that

CYP metabolism may be improved using an InnoCell plate, which features an oxygen-
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permeable membrane. InnoCell plate-mediated improvement of oxygen supply significantly

increased the expression of CYP3A4 and the activities of CYP1A, CYP2D6, and CYP3A in the

HM Dex (-) medium. The change in CYP3A activity due to the improved oxygen supply corre-

lated with changes in expression. However, the changes in CYP1A and CYP2D6 activities due

to improved oxygen could not be explained by changes in gene expression, suggesting that

improved oxygen supply causes changes at the enzyme level. Niklas et al. found that CYP3A4

activity was correlated with the amount of protein in various media, but no correlation was

found between CYP2C9, CYP2C19, and CYP2D6 protein levels and activity [49]. This is con-

sistent with our results. Not only the expression but also the half-life of CYP and cofactors

such as NADPH are involved in CYP activity. Improved oxygen supply in InnoCell cultures is

likely to enhance aerobic metabolism, suggesting that changes in NADPH production may be

involved in enhancing CYP activity through improved oxygen supply.

The insights gained in this study on HCMM lay the groundwork for the construction of

co-culture systems for hepatocytes and cardiomyocytes using MPS, such as the KIM-plate.

However, further studies using the HM Dex (-) medium are necessary to optimize cardio-

toxicity evaluations via hepatic drug metabolism in co-culture settings. Selecting an appro-

priate co-culture medium is an important consideration in cardiotoxicity evaluation via

hepatic metabolism using MPS. Among the media evaluated, HM Dex (-) emerged as the

best HCMM and the most promising candidate medium for co-culturing cryoheps and

hiPSC-EHT. In the future, we plan on co-culturing cryoheps and iPSC-EHT in HM Dex (-)

medium using the KIM-plate. It is important to consider cell–cell interaction in co-culture

because secretions from each cell type can affect the function of other cells. In this study,

the cardiotoxicity of terfenadine and paliperidone was evaluated in mono-culture of hiPS-

C-EHT using HM Dex (-) medium as described in a previous report (S3 Fig) [36, 37], but

these evaluations have not been conducted in co-culture of cryoheps and hiPSC-EHT.

Future work will focus on evaluating the cardiotoxicity of several drugs whose cardiotoxici-

ties are known in the co-culture of cryoheps and hiPSC-EHT to further verify the utility of

HM Dex (-) medium for cardiotoxicity evaluation via hepatic metabolism. Furthermore, we

aim to investigate the correlation between our in vitro findings and in vivo data. Through

these studies, we hope to contribute to reducing the number of drugs withdrawn from the

market owing to cardiotoxicity, as well as minimizing reliance on animal testing, cutting

development costs, and shortening development time.

Supporting information

S1 Fig. Relative expression levels of 17 myocardial-specific genes in human iPS cell-derived

engineered heart tissues (hiPSC-EHTs) cultured in three candidate media compared to

that in the left ventricle. hiPSC-EHTs were cultured in iCell cardiomyocyte maintenance

medium for 3 weeks and then in the EHT medium for over 1 week. Thereafter, hiPSC-EHTs

were cultured in the three candidate media for 72 h. The graph bar shows the average mean,

and the error bar shows the standard error (n = 4).

(TIF)

S2 Fig. Two dimensional plot of the eigenvalues in the first and second components of the

Principal Component Analysis (PCA). PCA was conducted based on the log2 values (relative

expression levels compared with the left ventricle) of the 17 genes using MetaboaAnalyst 6.0.

2D plot of eigenvalues in the first component and second component. (https://www.

metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtmL).

(TIF)
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S3 Fig. Cardiotoxicity evaluation to paliperidone or terfenadine of human iPS cell-derived

engineered heart tissues (hiPSC-EHTs). hiPSC-EHTs were cultured in HM Dex (-) medium.

hiPSC-EHTs were cumulatively exposed to paliperidone or terfenadine and movies were

recorded 15 min after exposure. Movie images were analyzed using SI8000 or MUSCLEMO-

TION software. A) Changes in contraction waveform to paliperidone (0, 0.1 and 0.3 mM). B)

Changes in contraction length and C) contraction waveform to 1 and 3 mM terfenadine.

Arrows indicate arrythmia waveform.

(TIF)

S4 Fig. IL6 expression in human cryopreserved hepatocytes (cryoheps). Cryoheps were cul-

tured in HM medium, or HM Dex (-) medium on polystyrene plates for 72 h from the day of

seeding. RNA was collected from the cells at the endpoint and analyzed using qPCR. The

graph bar shows the average mean of the relative expression levels compared with the human

liver, and the error bar shows the standard error (n = 3).

(TIF)

S1 Table. Candidate common media for the co-culture of human cryopreserved hepato-

cytes and human iPS cell-derived engineered heart tissues.

(XLSX)

S2 Table. Primer and probe sets used to evaluate human cryopreserved hepatocytes.

(XLSX)

S3 Table. Primers used to evaluate human iPS cell-derived engineered heart tissues.

(XLSX)
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