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Abstract

Objective: The paper aims to address the problem of massive unlabeled patients in electronic 

health records (EHR) who potentially have undiagnosed diabetic retinopathy (DR). It is desired to 

estimate the actual DR prevalence in EHR with 96 % missing labels.

Materials and methods: The Cerner Health Facts data are used in the study, with 3749 labeled 

DR patients and 97,876 unlabeled diabetic patients. This extensive dataset spans the demographics 

of the United States over the past two decades. We implemented state-of-art positive-unlabeled 

learning methods, including ensemble-based support vector machine, ensemble-based random 

forest, and Bayesian finite mixture modeling.

Results: The estimated DR prevalence in the population represented by Cerner EHR is 

approximately 25 % and the classification techniques generally achieve an AUC of around 87 

%. As a by-product, a predictive inference on the risk of DR based on a patient’s personalized 

medical information is derived.

Discussion: Missing labels is a common issue for EHR data quality. Ignoring these missing 

labels can lead to biased results in the analyses of EHR data. The problem is especially severe in 

the context of DR. It is thus important to use machine learning or statistical tools to identify the 

unlabeled patients. The tool in this paper helps both data analysts and clinicians in their practices.
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1. Introduction

Diabetic retinopathy (DR) is a vision-threatening microvascular complication of diabetes, 

and according to the 2002 American Diabetes Association Position Statement, nearly all 

patients with type 1 diabetes and over 60 % of patients with type 2 diabetes developed 

DR during the first 20 years of diabetes [1,2]. DR has no noticeable symptoms in the 

early stages, when current treatment methods can effectively halt the progression of the 

disease [3]. Treatment for late-stage DR is very expensive, and the vision loss is irreversible. 

Therefore, early detection of DR is vital for preventing disease progression and vision loss.

For the above reason, the American Diabetes Association recommends annual eye 

examinations for individuals with diabetes. However, compliance with the recommended 

examination is low due to the asymptomatic nature of DR and the lack of medical resources, 

especially in rural and medically underserved areas [4,5]. In the absence of imaging 

diagnosis, numerous studies in the literature have explored statistical and machine learning 

methods that utilize clinical information to identify risk factors and biomarkers for DR 

development [6–10]. As most diabetic patients have blood tests at least once per year, the 

data-driven statistical and machine learning approaches are timely and cost-effective and 

thus can be easily applied to clinical practices as decision-support tools.

Data-driven approaches without using imaging diagnosis typically rely on massive electronic 

health records (EHR), which contain rich information on routine laboratory tests and 

other clinical information. Thanks to the increasing computerization and digitization of 

health systems in the past two decades, EHR are digitally archived data from hospitals 

and clinics with massive patients’ medical records. Predictive models and algorithms 

become increasingly valuable given the rich information provided by EHR. These new 

data-analytical approaches utilizing EHR often generate novel insights and are more 

cost-effective compared with traditional methods. However, researchers and developers of 

statistical or machine learning algorithms often overlook the data quality of EHR, leaving 

a potential risk of invalidating their results. It is known that EHR data suffer from heavy 

missing and inaccurate inputs [11].

This paper focuses on the EHR data quality issue of large portion of unlabeled DR patients 

among diabetic patients. The ICD-9 or ICD-10 codes in EHR are typically used to determine 

the patient cohorts. For example, diabetic patients can be defined as subjects having at least 

one of 250.x, E10.x, and/or E11.x diagnosis codes, and further among diabetic patients, 

define DR patients as subjects with 362.0x, E10.31x-E10.35x or E11.31x-E11.35x diagnosis 

codes. An essential question arises: should diabetic patients lacking defined DR codes be 

automatically classified as non-DR? The answer hinges on the severity of the missing 

label problem and how many patients in the control group indeed possess DR but lack the 

appropriate labels (i.e., they remain undiagnosed). In the EHR database we used, only about 
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4 % of diabetic patients have the defined DR diagnosis codes, significantly underestimating 

the actual prevalence of DR among diabetics. In the literature, it is estimated that the DR 

prevalence among US adults with diabetes is 28.5 % (95 % CI 24.9 %–32.5 %) [12], and the 

global prevalence of DR in persons with diabetes is 34.6 % (95 % CI 34.5 %–34.8 %) [13]. 

Thus, machine learning models trained with a data set with 4 % DR and 96 % non-DR may 

be biased and unreliable.

There are two primary objectives in this paper: first, to estimate the prevalence of DR within 

EHR using positive-unlabeled learning approaches, and second, to provide personalized 

risk predictions based on a probabilistic model. We designate patients with the defined 

DR diagnosis codes as positively labeled, while patients without such codes as unlabeled. 

Positive-unlabeled learning aims to classify these unlabeled patients into either the positively 

labeled or the negatively labeled group. A unique challenge in our case is the extreme 

imbalance in labels, with only 4 % being positive, and a stark 96 % remaining unlabeled. 

We found that learning methods without proper splitting-and-combining strategy fail to 

work in such imbalanced scenarios, such as the general two-step approach [14,15] and 

the biased support vector machine (SVM) [16]. In contrast, methods that employ a 

splitting-and-combining strategy produce more reasonable results. For the second objective, 

conventional machine learning solutions, like the ensemble-based bagging-SVM [17,18] or 

bagging random forest often yield prevalence estimates without uncertainty quantification 

(confidence intervals etc.). Recently [19], developed a probabilistic approach using Bayesian 

finite mixture modeling to address the positive-unlabeled learning, which not only produces 

statistical estimates with uncertainties, but also outperforms existing machine learning 

algorithms.

In this paper, we use Cerner Health Facts EHR data and include over 100,000 diabetic 

patients in our study cohort. Following the pre-processing of the original data and feature 

selection, we apply both ensemble-based algorithms [17,18] and Bayesian finite mixture 

modeling [19] to our EHR data. This paper contributes in two key aspects of methodological 

implementation. Firstly, it is the first attempt to use EHR data with massive missing labels 

to estimate the actual DR prevalence in the United States. The tools described in this 

paper produce re-labeled EHR data with improved quality, laying a strong foundation for 

subsequent machine learning studies. Secondly, the proposed learning techniques allow us to 

perform statistical inference and to predict an individual’s risk of developing DR given the 

patient’s personalized medical information. This paper differs from Ref. [19] which uses a 

much smaller illustrative dataset and focuses on the statistical methodology. We leverage a 

more comprehensive dataset and a well-justified feature selection procedure to achieve the 

DR prevalence estimates. It is also worth noting that this paper presents statistical inference 

and personalized risk prediction which have not been discussed previously in Ref. [19].

As for practical contributions, our study provides insights for healthcare professionals, 

enhancing their understanding of the probability of DR development. This, in turn, bolsters 

the confidence of DR diagnosis. Our research has the potential to enhance healthcare 

management for diabetic patients and expedite the DR diagnosis process.
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2. Materials and methods

2.1. Data source and pre-processing

Our data source is Cerner Health Facts EHR data warehouse (Cerner Corporation, Kansas 

City, MO) which contains clinical data from over 200 hospitals across the US in the past 

two decades. Cerner Health Facts data are de-identified and in compliance with Health 

Insurance Portability and Accountability Act (HIPAA). The data are mostly time-stamped 

patients’ clinical records including encounter, diagnosis, procedure, medication, vital signs, 

laboratory results, and other information. We identified diabetic patients as subjects having 

at least one of 250.x, E10.x, and/or E11.x diagnosis codes (ICD-9/10-CM) and DR patients 

as subjects with 362.0x, E10.31x-E10.35x or E11.31x-E11.35x diagnosis codes within 

diabetic patients. The study cohort includes 97,876 diabetic patients, among which 3749 

are labeled with DR diagnosis.

We employed a window-based data aggregation approach described in Ref. [7] to extract 

laboratory results for the included patients. As shown in Fig. 1, laboratory data are averaged 

over a two-year window, ending six months prior to the onset of DR. For patients without 

DR diagnosis, the event of interest is chosen to be the last encounter in the EHR. It is 

noteworthy that, through this data aggregation approach, longitudinal effects and variation 

are not considered in this analysis.

2.2. Feature selection

To select features that will be used to classify unlabeled patients, we consider previous 

studies on the same dataset [7,8] which focused on feature selection [7]. used ensemble 

predictor selection with extreme gradient boosting (XGBoost) and selected the following 

eight essential predictors: creatinine, HbA1c, neuropathy, white blood count, nephropathy, 

glucose, hematocrit, sodium [8]. applied ablation feature selection, also with XGBoost, and 

highlighted features such as creatinine, neuropathy, hematocrit, blood urea nitrogen (BUN), 

nephropathy, albumin, calcium, sodium, anion gap. Based on the two studies, we understand 

that the two categorical features, specifically neuropathy and nephropathy, are important in 

terms of predicting retinopathy. This clinical correlation is not surprising, given that both 

are diabetic complications linked to DR [20]. For the continuous features, which are all lab 

results, we choose four top-ranked ones consistent across both studies for our classification 

task: creatinine, HbA1c, hematocrit and BUN.

While it is possible to include additional features for classification, doing so may reduce 

computational efficiency, offering only marginal gains. Generally, there is a well-established 

understanding of the biological relationship between these algorithm-selected biomarkers 

and DR. In-depth medical discussion on DR-related biomarkers can be found in Ref. [21], 

where HbA1c is notably emphasized.

Table 1 shows summary statistics for the selected variables and their bivariate associations 

with DR. For complications, we computed the odds ratio and its 95 % confidence interval. 

For lab results, we performed a two-sample t-test comparing the DR group and the unlabeled 

group. Statistical significance in terms of P-values is also reported for the selected features.
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2.3. Extremely imbalanced missing labels

As aforementioned, the dataset contains 97,876 diabetic patients, among which 3,749, or 

about 4 %, have been diagnosed with DR. Such a low percentage of DR cases indicates a 

severe missing label problem as referenced in the medical literature. For instance, studies 

have reported substantially higher DR prevalence rates, such as 28.5 % (95 % CI 24.9 

%–32.5 %) for the US [12] and 34.6 % (95 % CI 34.5 %–34.8 %) globally [13].

To estimate the actual DR prevalence in this EHR dataset and classify unlabeled patients 

lacking the ground truth or imaging data, we approach the challenge as a positive-unlabeled 

(PU) learning problem. Patients with DR diagnosis codes are confirmatory positive cases, 

while the unlabeled group is a mixture of positive and negative cases. We need to classify 

patients in the unlabeled group either deterministically or probabilistically based on their 

selected features. The fundamental assumption underlying this approach is that the features 

exhibit statistically significant differences between the positive group and the negative 

group.

Let us denote P  as the collection of positive cases and N as the collection of negative cases. 

A feature vector x is x+ if it belongs to P , or is x− if it belongs to N. Let U denote the 

unlabeled group and xu be an unlabeled feature vector. A PU-learning algorithm will assign 

each xu to either P  or N by a classification rule and learn the probability P xu ∈ P , for 

xu ∈ U. One significant technical challenge here is the extreme label imbalance (only 4 % 

positives), which makes some popular PU-learning algorithms, such as the general two-step 

approach [14,15] and the biased support vector machine (SVM) [16], perform inadequately. 

In this paper, we introduce two PU-learning methods specifically designed to effectively 

handle imbalanced data: the bagging ensemble algorithms [17] and Bayesian finite mixture 

modeling [19].

2.4. Bagging algorithms for positive-unlabeled learning

The bootstrap aggregation (bagging) ensemble algorithm was developed by Ref. [17] to 

solve the PU-learning problem. Specifically, the authors take a bootstrap sample from 

the unlabeled group U and combine it with the positive group P  to train a classifier. 

Subsequently, the trained classifier is applied to out-of-bag samples to generate the 

probability of being positive. This procedure is repeated a certain number of times. At 

the end, each sample in the unlabeled group receives an aggregated score or probability of 

being positive. This score is derived from classifiers whose training sets exclude that specific 

sample.

The performance of the algorithm hinges on two critical parameters: the size of the bootstrap 

samples K and the number of bootstrap samples B. The experiments in Ref. [17] suggest 

that setting K = nP is a default choice, where nP is the size of the positive group P . The 

preliminary results in Ref. [17] also show that the performance improves as B increases, 

but it stabilizes at B = 10 when K > 30. Therefore, in this paper, we implement the bagging 

algorithm with K = nP and B = 10.
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A wide range of popular classification algorithms can be used to train the intermediate 

classifier for discriminating P  from a random subsample of U. In this paper, we choose 

the support vector machine (SVM) and the random forest (RF) as intermediate classifiers, 

which lead to two algorithms for PU-learning, the bagging-SVM and the bagging-RF. 

The SVM is a supervised learning algorithm that identifies an optimal hyperplane in the 

high-dimensional feature space to maximally separate classes. The RF is an ensemble 

classification algorithm that builds multiple decision trees in the training step and combines 

predictions through voting. A pseudocode with training parameters is provided in Appendix 

A.

2.5. Bayesian mixture modeling for positive-unlabeled learning with uncertainty 
quantification

The bagging algorithm, while effective in PU-learning, lacks the capability to provide 

uncertainty quantification, such as error bounds or confidence intervals, for the prevalence 

estimate. Moreover, it doesn’t support inference on quantities of interest. Recently [19], 

developed a probabilistic model-based approach under the Bayesian framework for PU-

learning with imbalanced data.

Let xi = xi
d, xi

c  denote the feature vector for patient i, which contains categorical variables 

xi
d and continuous variables xi

c. In our study, categorical variables are neuropathy and 

nephropathy, the two diabetic complications, and continuous variables are creatinine, 

HbA1c, hematocrit and BUN. Assume that the underlying distribution of xi for the positive 

group is f+ x  and the underlying distribution for the negative group is f− x . Then a patient 

without DR diagnosis codes has a probability of π to be from the positive group and has a 

probability of 1 − π to be from the negative group. Therefore, the parameter π is interpreted 

as the proportion of true positive DR cases in the unlabeled group U, or mathematically, 

π = P xu ∈ P . The finite mixture model assumes that the distribution for the unlabeled group 

is a mixture of f+ x  and f− x :

fu x = πf+ x + 1 − π f− x .

[19] considered a parametric model for f+ x  and f− x . Specifically, let xc xd  conditionally 

follow a multivariate t-distribution, which accommodates outliers that typically exist in 

laboratory measurements, and let xd follow a categorical distribution marginally. The 

specification leads to a conditional multivariate t-distribution for the feature vector.

The finite mixture model is estimated by Bayesian inference, specifically employing a 

Markov Chain Monte Carlo algorithm as developed in Ref. [19]. The Bayesian inference 

allows us to obtain posterior distributions of the model parameters, including the mixing 

proportion π. Technical details of Bayesian computations and posterior inference can be 

found in Ref. [19], and they are not the focus in this paper. A pseudocode of this inference 

procedure is provided in Appendix B.
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The Bayesian inference also provides posterior probabilities for determining whether an 

unlabeled patient belongs to the positive group: P xu, i ∈ P Data . For instance, a patient 

has an estimated probability of 0.9 to be from the positive group and we may interpret 

that this patient is highly likely to be labeled as DR. If a binary classification is desired, 

a hard threshold of 0.5 may be used to classify unlabeled patients. Compared with the 

bagging-based machine learning algorithms, the Bayesian finite mixture model offers a 

twofold advantage: (1) the ability to estimate DR prevalence with a Bayesian confidence 

interval; (2) it supports statistical inference on parameters of interest (e.g., population mean, 

proportion), which is important in in the context of medical decision-making.

3. Results

3.1. Estimating the DR prevalence

The estimated DR prevalence is 25.07 % from Bagging-SVM and 26.38 % from Bagging-

RF (uncertainty not available). The estimated DR prevalence is 24.37 % (95 % C.I. 23.89 

%–24.84 %) from the Bayesian mixture model. The estimated DR prevalence reported in 

Ref. [12] is 28.5 % (95 % CI 24.9 %–32.5 %) for the U.S. from 2005 to 2008. These 

numbers are compared in Fig. 2. These estimates are consistent in general, suggesting that 

around one-quarter of the diabetic population likely have the underlying DR despite that 

diagnoses are not determined or missing for most of them. The result here also confirms that 

the original 4 % labeled DR cases severely underestimates the actual percentage in EHR. 

It is imperative for analysts working with EHR data not to blindly use the 4 % as positive 

cases and the remaining 96 % as negative cases. Such analyses will likely lead to biased 

conclusions.

The Bayesian mixture model not only provides estimates of population parameters but also 

furnishes valuable insights into the data. The posterior means (standard deviations) of lab 

variables under each categorial group are shown in Table 2, where DN denotes diabetic 

nephropathy and DNR denotes diabetic neuropathy. When comparing the proportions of 

patients with and without DR, a notable distinction emerges: 96.43 % of patients in the 

non-DR group have no additional complications, while only 53.85 % of patients in the DR 

group are free from other complications. Applying the Bayes rule and using Table 2, we 

immediately obtain

P DR DN = P DN DR P DR
P DN = 0.2695 0.2437

0.2695 0.2437 + 0.0006 1 − 0.2437 = 0.9931,

and

P DR DNR = P DNR DR P DR
P DNR = 0.32 0.2437

0.32 0.2437 + 0.0354 1 − 0.2437 = 0.7444 .

Given that the patient has DN, the probability that this patient also has DR is 0.9931, and 

given that the patient has DNR, the probability that this patient also has DR is 0.7444. These 

results underscore that these two complications (DN and DNR) are strongly indicative for 
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DR. It is important to note that these probabilities are learned by the algorithm and cannot be 

used as a clinical fact.

The mean creatinine level is significantly higher in patients with DR and DN than other 

patients. The mean HbA1c level is significantly higher in DR patients than non-DR patients. 

The BUN level is significantly higher in DN patients than non-DN patients, and significantly 

higher in DR patients than non-DR patients. The hematocrit level is significantly lower in 

DN patients than non-DN patients, and significantly lower in DR patients than non-DR 

patients. Lab variables creatinine and HbA1c are clearly indicative for DR, while BUN and 

hematocrit show meaningful differences between DR and non-DR. It is noteworthy that, 

given a large sample size of EHR data, a marginal difference can be statistically significant 

and thus can still be selected to distinguish two groups by machine learning algorithms.

3.2. Classification of unlabeled patients

All three techniques (Bagging-SVM, Bagging-RF and mixture model) explored in this study 

are used to classify unlabeled patients into either the positive or negative group. We conduct 

a simulation study to assess their classification performance. Using the data classified by 

a PU-learning algorithm, we simulate artificial datasets by combining positively labeled 

patients from P  with a random sample of negatively labeled patients. We repeatedly simulate 

30 datasets for assessment. In each dataset, we keep the np = 3,749 positive cases and 

resample np negative cases from the patients who have been negatively classified in the 

full data analysis. We acknowledge that the ground truth for those unlabeled patients is 

unknown so that this simulation combines confirmed positive cases with probably negative 

cases. Instead of simulating data from defined statistical distributions, which has been well 

studied in Ref. [19], the simulation here maintains the real data distribution by resampling. 

Then, for each dataset with known positives and negatives, we randomly mask 30 % of the 

positive cases and mix them with negative cases for later classification. The same algorithm 

is used for the full data analysis and the simulated classification under each scenario. We 

evaluate the classification performance by computing their accuracy, AUC, sensitivity, and 

specificity. The results are shown in Table 3. In terms of accuracy and AUC, all three 

techniques perform well. However, the mixture model approach achieves a much higher 

sensitivity than Bagging algorithms without losing much specificity.

3.3. Personalized risk prediction

The Bayesian mixture model enables us to predict an individual’s risk of developing DR 

given the person’s complications and lab results. The probability is given by:

P x ∈ P =
πf+ x, θ

πf+ x, θ + 1 − π f− x, θ

where π is the estimated (posterior mean) mixing probability and θ is the set of estimated 

(posterior mean) distribution parameters. The input x is the individual’s feature vector and 

the output is the probability that the patient has underlying DR. For instance, consider a 

patient diagnosed with DNR but not DN, with specific laboratory values: a creatinine level 
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of 3.5, an HbA1c level of 10.5, a BUN level of 19.7 and a hematocrit level of 39.0. Utilizing 

the aforementioned formula, we calculate the probability of this patient having DR is 0.786. 

Then clinicians can leverage this probability as a risk assessment for individual patients and 

recommend timely eye examinations and proactive care measures.

We have demonstrated that the two complications DN and DNR are strongly indicative 

of DR, with P DR DN = 0.9931 and P DR DNR = 0.7444. Now, let us consider a patient 

who has neither of these complications, and we want to show how lab results can indicate 

the likelihood of DR. Since both creatinine and HbA1c are key biomarkers, Fig. 3 gives 

a comprehensive view of DR probabilities considering different combinations of creatinine 

and HbA1c levels, assuming BUN and hematocrit are held constant at their median levels 

for the population. Fig. 3 can be used to assist clinicians to assess the risk of DR for patients 

without any complications.

In a similar vein, we plot Fig. 4 for patients with neither complication. Fig. 4 displays the 

probability of DR as a function of a single biomarker, while holding other biomarkers at 

the population median levels. The plot shows that BUN and hematocrit are less relevant, as 

they generally do not significantly alter the probability of DR. In contrast, the probability 

is, in general, an increasing function of creatinine and HbA1c. Although the link between 

DR and these biomarkers is well-documented in the literature, our research takes a step 

further by quantifying the associated risk. Furthermore, we have developed software that 

can precisely calculate the DR probability based on learning from the large EHR database. 

This contribution not only underscores the relevance of these biomarkers but also equips 

clinicians with a valuable tool for accurate risk assessment in DR management.

3.4. Clinical decision support

The research in this paper can provide clinical decision support in multiple ways. First, 

it validates the high prevalence of DR among diabetic patients and confirms that more 

than 20 % of diabetic patients already have pathology in their eyes although they may 

be asymptomatic. This result informs healthcare providers the urgent need to identify 

asymptomatic patients with ongoing DR pathology. The early detection and diagnosis of 

DR can help patients to receive effective treatments before the vision loss, thus mitigating 

the threat of a dramatic increase in late-stage DR patients. Second, the personalized risk 

prediction is a part of our non-image-based DR screening tool, which is a clinical decision 

support system. This tool can help primary care physicians to assess patients’ risk for DR 

and recommend ophthalmic exams for at-risk patients confidently. Third, for researchers and 

analysts who wish to develop clinical decision support tools using EHR, the methods in this 

paper can be used to pre-process their data with massive missing labels.

4. Discussion

This paper is the first attempt to estimate the actual DR prevalence using a large EHR 

dataset with over 100,000 patients nationally. By using machine learning and statistical 

models, we estimate the DR prevalence among the diabetic population to be around 25 %. 

This estimation is grounded in the recognition that only 4 % of cases are formally diagnosed 

in the dataset. Simultaneously, we re-classify the unlabeled patients based solely on their 
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comorbidity and laboratory information and achieve an AUC of 87 %. Using the posterior 

inference from the Bayesian model, we developed a tool for calculating a patient’s DR risk 

based on the patient’s unique medical information. This research not only advances our 

understanding of DR prevalence but also equips healthcare professionals with valuable tools 

for enhanced risk assessment and patient care.

We point out previous relevant research using EHR data for studying DR. Recently [22], 

applied machine learning methods on an EHR dataset from the Los Angeles County 

Department of Health Services to identify undiagnosed DR patients. In their study, all 

patients had either teleretinal screening or in-person eye examinations, and hence the 

learning was supervised. The data in Ref. [22] contain 31 % DR patients and 69 % non-DR 

patients, and the authors concluded that machine learning methods could help clinicians 

in safety-net settings to identify unscreened diabetic patients who potentially have DR. 

While there have been other investigations into the application of machine learning for 

DR detection [23–25], they utilized significantly smaller sample sizes (fewer than 1000 

participants). None of these studies above tackled the unique challenge of an extremely 

imbalanced positive-unlabeled learning problem.

The main limitation of our analysis is that the ground truth of the unlabeled patients in the 

Cerner EHR data is unknown, making the validation within the original data impossible. 

While we have done comprehensive simulation studies to evaluate our model’s performance 

as outlined in Ref. [19] and demonstrated in Table 3, we are constrained by resources from 

accessing EHR data with fully labeled patients for external validation. Although completely 

labeled DR data are hard to obtain, the learning methods we have illustrated may be applied 

to and validated with other disease datasets or even non-medical data.

It is well-known that EHR have been designed primarily for the purpose of medical billing 

instead of documenting clinical diagnoses so that the missingness of labels commonly exists. 

The proposed research in this paper is not limited to classifying DR cases but can be 

useful in phenotyping other diseases in EHR. For example [26], considered phenotyping 

positive-unlabeled EHR patients with primary aldosteronism, which is the most common 

cause of secondary hypertension. Our methods or algorithms may be applied to such 

positive-unlabeled scenarios. Besides the medical domain, the PU-learning problem arises 

from a broader spectrum of applications, including biological processes, drug discovery, 

ecological modeling, targeted marketing, remote sensing, recommender systems, etc. [27].

Using machine learning methods with non-imaging-based EHR to assess and predict DR 

risk remains an active and challenging research topic. The benefit of having accurate 

and reliable methods in this domain is tremendous in healthcare practices. Though the 

American Diabetes Association recommends annual eye examinations for individuals with 

diabetes, adherence to such guidelines remains low, especially within socio-economically 

disadvantaged groups, such as racial minority groups and the uninsured population [28,29]. 

Implementing an EHR-based risk assessment and prediction system holds the potential to 

significantly help clinicians and healthcare professionals in prioritizing and recommending 

targeted eye examinations to patients who exhibit a heightened risk of DR. This proactive 
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approach can play a pivotal role in improving early detection, intervention, and ultimately, 

patient outcomes.
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APPENDIX

A. Pseudocode and Training Parameters for Bagging PU Learning

Algorithm 1:

Bagging PU learning

Input: positive group P , unlabeled group U , size of the bootstrap samples K, and number of bootstrap samples B
Output: a function p xu  to assign a probability of being positive to each xu ∈ U
f xu = 0, n xu = 0∀xu ∈ U //Initialize the accumulators

for b = 1 to Bdo:

 Draw a bootstrap sample Ub of size K from U
 Treat Ub as negative and train a classifier fb to discriminate P  from Ub

 Apply fbto generate a probability fb xu  of being positive for all xu ∈ U − Ub

 Update:

  f xu = f xu + fb xu , n xu = n xu + 1, ∀xu ∈ U − Ub

end for

Return p xu = f xu
n xu

∀xu ∈ U

We use K = nP and B = 10 for our training. For the intermediate classifiers SVM and RF, 

we use grid search and cross-validation to determine the optimal parameters within the 

predefined sets. In the SVM, the search range for the cost parameter is {10−12, 10−11, …, 

101, 102}. For the RF model, the predefined search range for the number of trees is {50, 100, 

300}. For the number of variables which are randomly sampled as candidates at each split in 

the RF, the default value of p is used, where p represents the total number of variables.
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B. Pseudocode for Estimating the Bayesian Finite Mixture Model

Algorithm 2.

Consensus Monte Carlo and Markov Chain Monte Carlo

Input: positive group P , unlabeled group U , number of splits S in consensus Monte Carlo, number of iterations T  and 
burn-in size B in MCMC, prior distributions p θ  for the set of all parameters θ in the model

Output: posterior distributions p θ ∣ Data  and classification probabilities p xu ∈ P ∣ Data

Split U  into S subgroups U 1 , …, U S  with equal sizes

fors = 1 to Sdo:

 Combine P  and U s  as data D s

 Perform MCMC on data D s  to obtain T  posterior samples for θt
s , t = 1, …, T  in the loop:

 fort = 1 to T
  For the collection θ = ψ1, …, ψm , where each ψj represents a parameter in the model

  Draw a sample from its full conditional distribution p ψj ∣ ψ−j, D s , denote ψj, t
s

  Let θt
s = ψ1, t

s , …, ψm, t
s

 end for

 Discard B burn-in samples and combine the rest posterior samples from all subgroups

θt = ∑1
S w s θt

s /∑1
S w s  according to certain weights w s  for the subgroups

end for

Returnp θ ∣ Data  approximated by posterior samples θt and p xu ∈ P ∣ Data  computed using posterior samples 
θt

The full conditional distributions p ψj ψ−j, D s  in the MCMC can be found in Section 3 of 

[19], Equations 1 to 11. Weights w s  are proportional to the inverse of posterior variance 

of each parameter. For [0, 1] bounded parameters, weights need to be adjusted to 1. The 

classification probabilities p xu ∈ P Data  are computed by

1
T − B ∑

t = B + 1

T πtf+ xu ∣ θt
πtf+ xu ∣ θt + 1 − πt f− xu ∣ θt
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Fig. 1. 
Data aggregation in the observation window. EOI represents event of interest [7].
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Fig. 2. 
Comparing estimated DR prevalence.
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Fig. 3. 
Probability of DR for a grid of creatinine and HbA1c values (Non-DN, Non-DNR).
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Fig. 4. 
Probability of DR for each biomarker given other biomarkers are at population median levels 

(Non-DN, Non-DNR).
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Table 1

Summary statistics and association inference for selected variables.

Complications Total count (DR group count) Odds ratio (95 % C·I.) P -value

Nephropathy

No 92,153 (2711) Reference

Yes 5723 (1038) 7.3102 (6.6723–7.9032) <0.001

Neuropathy

No 88,657 (2507) Reference

Yes 9219 (1242) 5.3541 <0.001

(4.9835–5.7527)

Lab results DR average (S.D.) Unlabeled average (S.D.) P -value

Creatinine 1.9375 (1.8101) 1.0674 (0.4551) <0.001

HbA1c 8.3644 (2.0316) 7.1374 (1.5094) <0.001

BUN 27.4776 (14.6558) 19.7311 (9.5616) <0.001

Hematocrit 36.2432 (4.7178) 38.9667 (4.7458) <0.001
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Table 2

Posterior means (standard deviations) for parameters of interest in the mixture model. DN: diabetic 

nephropathy; DNR: diabetic neuropathy.

DN, DNR DN, Non-DNR Non-DN, DNR Non-DN, Non-DNR

DR Proportion 0.1280 (0.0010) 0.1415 (0.0011) 0.1920 (0.0012) 0.5385 (0.0016)

Creatinine 2.0728 (0.0117) 2.0380 (0.0099) 1.0967 (0.0031) 1.1217 (0.0021)

HbA1c 8.0920 (0.0157) 7.5310 (0.0148) 8.4472 (0.0145) 7.8591 (0.0096)

BUN 31.906 (0.1195) 33.391 (0.1172) 20.740 (0.0668) 21.450 (0.0462)

Hematocrit 34.060 (0.0350) 34.494 (0.0370) 36.291 (0.0308) 37.059 (0.0217)

Non-DR Proportion 0.0003 (0.0001) 0.0003 (0.0001) 0.0351 (0.0009) 0.9643 (0.0009)

Creatinine 1.4175 (0.0071) 1.2128 (0.0048) 1.0740 (0.0088) 1.1001 (0.0015)

HbA1c 6.8944 (0.0141) 6.7263 (0.0017) 6.9840 (0.0380) 6.7305 (0.0049)

BUN 27.013 (0.2337) 29.245 (0.0426) 16.098 (0.1679) 16.633 (0.0283)

Hematocrit 37.711 (0.0456) 37.758 (0.0312) 38.925 (0.1221) 39.679 (0.0194)
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Table 3

Classification performance in simulations: mean metrics (standard deviations).

Bagging SVM Bagging RF Mixture model

Accuracy 0.8038 (0.0082) 0.8089 (0.0083) 0.8897 (0.0102)

AUC 0.8718 (0.0065) 0.8700 (0.0056) 0.8710 (0.0076)

Sensitivity 0.5543 (0.0082) 0.5643 (0.0159) 0.9106 (0.0785)

Specificity 0.9216 (0.0043) 0.9198 (0.0052) 0.8879 (0.0056)
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