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Abstract

U-shaped networks and its variants have demonstrated exceptional results for medical image 

segmentation. In this paper, we propose a novel dual self-distillation (DSD) framework for 

U-shaped networks for 3D medical image segmentation. DSD distills knowledge from the ground-

truth segmentation labels to the decoder layers and also between the encoder and decoder layers 

of a single U-shaped network. DSD is a generalized training strategy that could be attached to the 

backbone architecture of any U-shaped network to further improve its segmentation performance. 

We attached DSD on two state-of-the-art U-shaped backbones, and extensive experiments on two 

public 3D medical image segmentation datasets demonstrated significant improvement over those 

backbones, with negligible increase in trainable parameters and training time. The source code is 

publicly available at https://github.com/soumbane/DualSelfDistillation.

Index Terms—
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1. INTRODUCTION

Deep learning algorithms such as Convolutional Neural Networks (CNNs) have proven to be 

extremely useful in performing medical image segmentation [1], which is a very important 

and challenging task in medical image analysis. One of the breakthrough algorithms which 

produced state-of-the-art results for end-to-end 2D and 3D medical image segmentation task 

is the U-Net [2] and the 3D U-Net [3], respectively. These U-shaped architectures consist 

of a CNN-based contracting encoder to capture the context of the input image and a CNN-

based expanding decoder to localize the object in the image. Skip-connections between the 

encoder and decoder layers allow U-Nets to use the fine-grained details learned from the 

encoder blocks and construct a localized image in the decoder blocks. More recently, vision 

transformers (ViT) [4] have been used in the encoder of U-shaped networks [5].

Knowledge distillation is the process by which a large pre-trained model (teacher network) 

can transfer its knowledge to a smaller, lightweight model (student network) during its 

training [6, 7]. Recently, knowledge distillation has been used to improve the performance 

of lightweight networks for medical image segmentation [8]. The need of transferring 

knowledge from a large teacher network to a smaller student network was later eliminated 
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by the process of self-distillation [9]. Self-distillation uses the deepest layer of a single 

model which acts as the teacher network to distill the knowledge to the shallower layers of 

the same model which acts as the student network [9]. Self-distillation has been applied for 

numerous computer vision tasks such as image classification [9].

In this paper, we propose a novel 3D dual self-distillation (DSD) framework that could be 

attached to any U-shaped image segmentation backbones. In DSD, the deepest encoder and 

decoder of the U-shaped backbones act as the teacher network for the shallower encoders 

and decoders which act as student networks. We found that the deepest encoder which 

is at the bottom of the contracting encoder path of the U-shaped network contains more 

contextual information compared to the shallower encoder layers. Similarly, the deepest 

decoder which is at the top of the expanding decoder path of the U-shaped network contains 

more semantic information than the shallower decoder layers. Thus, in our DSD framework, 

the information distills in a bottom-up manner on the encoder side and in a reverse top-down 

manner on the decoder side of an U-shaped backbone. Additionally, DSD also includes 

the distillation of the knowledge from the ground-truth labels to the decoder layers of 

the U-shaped network, which is a process known as deep supervision in medical image 

segmentation [10]. Thus, DSD leverages the benefits of deep supervision by overcoming 

optimization difficulties and achieving faster convergence [10].

Our major contributions are: (i) We incorporated the self-distillation process to U-shaped 

networks for medical image segmentation. Our novel design of DSD between encoders 

and decoders could be generalized to any U-shaped segmentation backbones. (ii) The 

self-distillation process in our DSD framework is a more general training approach than 

the deep supervision, which can be considered a special case of our framework. (iii) We 

performed extensive experiments on two public 3D medical image segmentation datasets, 

with DSD attached to two state-of-the-art U-shaped backbones (one ViT-based and the other 

CNN-based encoder) and demonstrated significant improvements over those backbones with 

negligible increase in trainable parameters and training time.

2. METHODOLOGY

In the following sections, we provide a detailed explanation of our proposed DSD 

framework as shown in Fig. 1.

2.1. U-shaped backbone

The U-shaped backbone maps an input image I to the ground-truth (GT) labels G, where 

I ∈ ℝC × H × W × D is the image with H, W, D as the height, width and depth, respectively 

and C is the number of imaging modalities and G ∈ ℝK × H × W × D is the ground-truth 

labels with K classes.

The most common loss function used by a U-shaped network [11, 5] is the Dice Cross-

Entropy (CE) loss (LDCE), which is a compound loss function defined as follows:

LDCE
Y = Ldice

Y + LCE
Y
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(1)

where, the Dice loss Ldice
Y  measures the pixel-wise similarity and the cross-entropy loss 

LCE
Y  measures the pixel-wise difference in distributions between the network output Y and 

ground-truth labels G. This loss is back-propagated to the network to update the weights of 

the encoders and decoders.

2.2. Bottleneck Module

The bottleneck module shown by the red colored boxes in Fig. 1 constitutes an 

integral component of our proposed framework, which converts the feature maps 

F F ∈ ℝK′ × H′ × W ′ × D′  obtained from different encoder and decoder layers to a probability 

distribution P ∈ ℝK × H × W × D of the same shape as the network output Y. For the feature 

maps F, K′, H′, W′ and D′ denote the number of channels, height, width and depth 

respectively at a given layer, and they vary depending on the position of the encoder 

(Encoder i i = 1
Z ) and decoder (Decoder i i = 1

Z  layers.

The bottleneck module consist of three layers: (i) 1D convolution layer: this layer 

changes the number of channels of feature maps obtained from the encoder and 

decoder layers to match the number of output classes K (from F ∈ ℝK′ × H′ × W ′ × D′ to 

F′ ∈ ℝK × H′ × W ′ × D′), (ii) Deconvolution layer: this layer upsamples the feature maps 

obtained from the 1D convolution layer to generate logits (L) that match the dimension 

of the output Y (from F′ ∈ ℝK × H′ × W ′ × D′ to L ∈ ℝK × H × W × D), (iii) Softmax layer: 

this layer converts the logits L L ∈ ℝK × H × W × D  to soft labels which is a probability 

distribution P of the same shape as L, i.e. P p, k = expLp, k/τ

∑j = 1
K expLp, j/τ , where τ (τ > 1) denotes the 

temperature to generate the soft labels, and p ∈ N and k ∈ K are indices for pixels and 

classes, respectively, with N = H * W * D denoting the total number of pixels.

2.3. U-shaped backbone with Dual Self-distillation (DSD)

We propose a novel dual self-distillation (DSD) framework for U-shaped backbones as 

shown by the purple and blue dashed arrows in Fig. 1. Our DSD framework consists of two 

main components.

i. Distillation from ground-truth labels: the first part (purple dashed arrows in 

Fig. 1) is the distillation of knowledge from the ground-truth labels G to each 

decoder of the U-shaped network. This process is known as deep supervision 

in medical image segmentation [10]. For our DSD framework, we calculate the 

Dice Cross-Entropy (DCE) loss (Eq. 1) between each decoder layer’s softmax 

output Di i = 1
Z  and the ground-truth labels G. This loss is defined as:

LDS = LDCE
Y + η

i = 1

Z
LDCE

Di

(2)
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where, LDS denotes the deep supervision loss, Z denotes the number of decoders 

in the U-shaped architecture, LDCE
Di  denotes the Dice cross-entropy loss between 

ith decoder and G, and η denotes the coefficient that controls the amount of 

supervision from G to Di i = 1
Z .

ii. Distillation between encoder and decoder layers: the second part (blue dashed 

arrows in Fig. 1) is the distillation of knowledge between encoder and decoder 

layers of the U-shaped network. On the encoder side, the deepest encoder 

(Encoder Z) forms the teacher network to the shallower encoders (Encoder 1, 

2, …, (Z-1)) which form the student networks. We reverse the order of teacher 

and student on the decoder side due to the deconvolution operation. Hence, 

the deepest decoder (Decoder 1) forms the teacher network to the shallower 

decoders (Decoder 2, 3, …, Z) which form the student networks. For all the 

teacher-student pairs in the encoders and decoders of the U-shaped network, 

we compute the pixel-wise Kullback–Leibler (KL) divergence [12] between the 

output probability distributions (softmax) of teacher and student as follows:

LKL = α1
i = 1

Z − 1
DKL Ei, EZ + α2

i = 2

Z
DKL Di, D1

(3)

where DKL(PS, PT) is the KL divergence between student (PS) and teacher (PT ) 

probability distributions, Ei and Di are the ith shallow encoder and decoder’s 

(student’s) softmax output (PS) respectively, EZ and D1 are the deepest encoder 

and decoder’s (teacher’s) softmax output (PT), respectively, Z is the number of 

encoders and decoders.

We define our proposed dual self-distillation loss LDSD as follows:

LDSD = LDCE
Y + η ∑

i = 1

Z
LDCE

Di

+ α1 ∑
i = 1

Z − 1
DKL Ei, EZ + α2 ∑

i = 2

Z
DKL Di, D1

(4)

where α1 and α2 denote the coefficients that controls the amount of self-

distillation between the encoder and decoder layers, respectively. Note that our 

generalized DSD framework is reduced to deep supervision when α1, α2 = 0.

Therefore, our objective function is to minimize the LDSD loss function in Eq. 4. Note 

that the training with our DSD framework (shown by dashed arrows in Fig. 1) uses very 

few extra parameters (brought by the bottleneck modules) and hence performs end-to-end 

training without increasing the training time when compared to the backbone architectures. 

During inference, the DSD framework is removed and hence it takes the same inference time 

as the U-shaped backbones.
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3. EXPERIMENTS AND RESULTS

We attached our dual self-distillation (DSD) framework on two state-of-the-art U-shaped 

backbones and applied it on two benchmark datasets for medical image segmentation tasks, 

specifically whole heart and brain tumor segmentation.

3.1. Datasets

MMWHS dataset (Heart) –—High resolution 3D CT angiography datasets of 20 patients 

from the Multi-Modal Whole Heart Segmentation (MMWHS) dataset [13], with 7 classes 

of ground-truth labels of cardiac substructures was used. We split the data into a train and 

validation set of 16 and 4 patients respectively and then performed a 5-fold cross validation.

MSD dataset (Brain) –—The brain tumor segmentation task [14] was used from the 

Medical Segmentation Decathlon (MSD) dataset [15]. This task comprised of 484 patients 

having multi-modal multi-site MRI data with 3 classes of ground truth labels and 4-channel 

multi-modal input (FLAIR, T1w, T1gd, T2w). We split the data into a train/validation/test 

set of 388/72/24 patients following the split in [5].

3.2. Experimental setup and implementation details

In our experiments, we selected the UNETR [5] and nnU-Net [16] as our U-shaped 

backbones and attached the DSD framework to them. These backbones are selected 

because they have recently shown promising and state-of-the-art results for several medical 

image segmentation tasks. For all experiments, the training was performed including the 

background and evaluated only on the foreground classes. All DSD experiments were 

performed with η = 1, α1, α2 = 1 and temperature (τ = 3). These hyperparameters were 

empirically decided based on the performance on the validation set. The experiments were 

conducted with PyTorch v1.12, TorchManager v1.2 [17] and MONAI v0.9 [18] framework 

using a NVIDIA Quadro RTX 6000 GPU. Quantitative evaluations between predicted and 

ground truth segmentation regions were performed using the Dice similarity coefficient 

(Dice score) and 95th percentile of the Hausdorff distance (HD95 in mm)[5].

3.3. Ablation study

Table 1 presents an ablation study comparing the following components of DSD framework: 

(i) Basic (η = 0 and α1, α2 = 0 in Eq. 4): This is the basic U-shaped backbone without any 

deep supervision and self-distillation. (ii) DS (η = 1 and α1, α2 = 0 in Eq. 4): DSD in this 

case is reduced to deep supervision (DS). (iii) SDD (η = 1, α1 = 0, α2 = 1): This shows the 

effect of self-distillation only between the decoder layers along with DS. (iv) SDE (η = 1, 

α1 = 1, α2 = 0): This shows the effect of self-distillation only between the encoder layers 

along with DS. (v) DSD (η = 1, α1 = 1, α2 = 1): This shows the effect of our proposed 

dual self-distillation which achieves the best performance. Lastly, we did not observe any 

noticeable improvement in performance with feature-map distillation [9] since it becomes 

redundant for pixel-level classification tasks.
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3.4. Prediction with MMWHS dataset

Tables 2 presents the 5-fold cross validation results and summarizes the mean dice score 

and HD95 of the 7 classes of cardiac substructures for the CT angiography (CTA) MMWHS 

dataset using UNETR and nnU-Net as the backbone along with the DSD framework. On 

average, across the 5-folds, when our proposed DSD framework is attached to the UNETR 

architecture, it outperforms the UNETR backbone with just 0.017% increase in the number 

of trainable parameters (and thus almost same training time) and when DSD is attached to 

the nnU-Net architecture, it outperforms the nnU-Net backbone with just 0.052% increase 

in the number of trainable parameters. A qualitative comparison (both on a 2D axial slice 

and 3D volume) between the predictions with UNETR, UNETR with DSD, nnU-Net and 

nnU-Net with DSD is shown in Fig. 2.

3.5. Prediction with Brain Tumor dataset

Table 3 summarizes the prediction results for the MSD-BraTS dataset using UNETR and 

nnU-Net as the backbone. When the DSD framework is attached to a UNETR backbone, 

it significantly outperforms the UNETR backbone with a higher dice score and lower 

HD95, obtained with just 0.008% increase in the number of training parameters. When the 

DSD framework is attached to the nnU-Net, it outperforms the nnU-Net backbone with 

just 0.066% increase in the number of training parameters. Note that on this dataset, our 

method also outperformed the state-of-the-art segmentation methods with a big margin. Fig. 

3 shows a qualitative comparison between the predictions with UNETR, UNETR with DSD, 

nnU-Net, and nnU-Net with DSD on a 2D slice.

4. CONCLUSION

In this paper, we introduced a novel DSD framework that was attached to UNETR and 

nnU-Net backbones and evaluated on two benchmark datasets. Our results demonstrated that 

DSD could boost the segmentation performance of these U-shaped networks by a significant 

margin.

5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using human subject data made available 
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Fig. 1: 
Self-distillation demonstrated with an U-shaped network for 3D medical image 

segmentation. All dashed lines shown are only used during training and removed during 

inference.
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Fig. 2: 
Qualitative comparison of an axial slice with ground-truth (GT) labels (on CTA) and 

predictions with UNETR and nnU-Net, highlighting the improvements with DSD.
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Fig. 3: 
Qualitative comparison of an axial slice with ground-truth (GT) labels (on FLAIR MRI) and 

predictions from UNETR and nnU-Net, highlighting the improvements with DSD.
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Table 1:

Ablation study showing the mean Dice score of all 7 cardiac substructures of one fold of MMWHS validation 

set obtained by different components of our DSD framework.

Study settings Basic DS SDD SDE DSD

Network Dice↑ Dice↑ Dice↑ Dice↑ Dice↑

UNETR 76.12 78.29 80.13 79.90 80.93

nnU-Net 76.97 83.74 84.02 84.42 86.10

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2024 December 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Banerjee et al. Page 12

Ta
b

le
 2

:

Q
ua

nt
ita

tiv
e 

co
m

pa
ri

so
n 

(5
-f

ol
d 

m
ea

n 
an

d 
st

d 
of

 D
ic

e 
sc

or
e 

(%
) 

an
d 

H
D

95
 (

m
m

))
 o

n 
hi

gh
-r

es
ol

ut
io

n 
ca

rd
ia

c 
C

TA
 M

M
W

H
S 

da
ta

se
t w

ith
 U

N
E

T
R

 a
nd

 

nn
U

-N
et

 w
ith

 a
nd

 w
ith

ou
t t

he
 D

SD
 f

ra
m

ew
or

k.

N
et

w
or

k
U

N
E

T
R

 [
5]

nn
U

-N
et

 [
16

]
U

N
E

T
R

 w
it

h 
D

SD
nn

U
-N

et
 w

it
h 

D
SD

D
ic

e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

m
ea

n 
±

 s
td

78
.2

4 
±

 3
.8

5
23

.4
8 

±
 9

.0
0

83
.5

5 
±

 4
.5

3
26

.3
1 

±
 6

.9
8

80
.9

4 
±

 3
.6

2
20

.2
6 

±
 8

.2
3

86
.4

9 
± 

2.
28

15
.2

3 
± 

5.
11

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2024 December 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Banerjee et al. Page 13

Ta
b

le
 3

:

Q
ua

nt
ita

tiv
e 

co
m

pa
ri

so
n 

(D
ic

e 
sc

or
e 

(%
) 

an
d 

H
D

95
 (

m
m

))
 f

or
 b

ra
in

 tu
m

or
 s

eg
m

en
ta

tio
n 

ta
sk

 o
f 

M
SD

 d
at

as
et

 w
ith

 s
ta

te
-o

f-
th

e-
ar

t m
et

ho
ds

. O
ur

 D
SD

 

fr
am

ew
or

k 
is

 a
tta

ch
ed

 to
 th

e 
U

N
E

T
R

 a
nd

 n
nU

-N
et

 b
ac

kb
on

es
.

N
et

w
or

k
U

N
et

 [
2]

T
ra

ns
U

N
et

 [
19

]
C

oT
r 

[2
0]

U
N

E
T

R
 [

5]
nn

U
-N

et
 [

16
]

U
N

E
T

R
 w

it
h 

D
SD

nn
U

-N
et

 w
it

h 
D

SD

St
ru

ct
ur

e
D

ic
e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

D
ic

e 
↑

H
D

95
 ↓

W
T

76
.6

9.
2

70
.6

14
.0

74
.6

9.
2

75
.2

22
.6

75
.7

25
.7

80
.4

9.
8

78
.5

19
.0

E
T

56
.1

11
.1

54
.2

10
.4

55
.7

9.
4

53
.6

9.
8

65
.1

18
.8

64
.1

8.
0

67
.8

15
.7

T
C

66
.5

10
.2

68
.4

14
.5

74
.8

10
.4

78
.1

14
.8

81
.8

10
.9

85
.2

3.
6

84
.4

9.
6

m
ea

n
66

.4
10

.2
64

.4
13

.0
68

.3
9.

7
68

.9
15

.7
74

.2
18

.5
76

.6
7.

1
76

.9
14

.8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2024 December 23.


	Abstract
	INTRODUCTION
	METHODOLOGY
	U-shaped backbone
	Bottleneck Module
	U-shaped backbone with Dual Self-distillation DSD

	EXPERIMENTS AND RESULTS
	Datasets
	MMWHS dataset (Heart) –
	MSD dataset (Brain) –

	Experimental setup and implementation details
	Ablation study
	Prediction with MMWHS dataset
	Prediction with Brain Tumor dataset

	CONCLUSION
	COMPLIANCE WITH ETHICAL STANDARDS
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Table 1:
	Table 2:
	Table 3:

