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Abstract

A key challenge in analyzing single-cell RNA sequencing data is the large number of false zeros, known as “dropout zeros”, which
are caused by technical limitations such as shallow sequencing depth or inefficient mRNA capture. To address this challenge, we
propose a novel imputation model called CPARI, which combines cell partitioning with our designed absolute and relative imputation
methods. Initially, CPARI employs a new approach to select highly variable genes and constructs an average consensus matrix
using C-mean fuzzy clustering-based blockchain technology to obtain results at different resolutions. Hierarchical clustering is then
applied to further refine these blocks, resulting in well-defined cellular partitions. Subsequently, CPARI identifies dropout events and
determines the imputation positions of these identified zeros. An autoencoder is trained within each cellular block to learn gene
features and reconstruct data. Our uniquely defined absolute imputation technique is first applied to the identified positions, followed
by our relative imputation technique to address remaining dropout zeros, ensuring that both global consistency and local variation
are maintained. Through comprehensive analyses conducted on simulated and real scRNA-seq datasets, including quantitative
assessment, differential expression analysis, cell clustering, cell trajectory inference, robustness evaluation, and large-scale data
imputation, CPARI demonstrates superior performance compared to 12 other art-of-state imputation models. Additionally, ablation
experiments further confirm the significance and necessity of both the cell partitioning and relative imputation components of CPARI.
Notably, CPARI as a new denoising approach could distinguish between real biological zeros and dropout zeros and minimize false
positives, and maximize the accuracy of imputation.

Keywords: single-cell RNA-seq; cell partitioning; average consensus matrix; absolute imputation; relative imputation

Introduction
Single-cell RNA sequencing (scRNA-seq) technology represents a
powerful tool for researchers, offering a profound insight into the
complexity of cell biology, disease occurrence, and developmental
processes at the individual cell level. This technology overcomes
the limitations inherent in traditional whole-tissue block RNA
(bulk RNA) based sequencing, allowing for the resolution of cel-
lular heterogeneity and facilitating the detection of gene expres-
sion patterns at single-cell resolution. This capability empowers
researchers to discern tissue states with unprecedented preci-
sion, encompassing cell occupancy, cell-specific gene expression,
and beyond. Despite the growing prominence of scRNA-seq tech-
nology in diverse biological fields, such as embryonic develop-
ment and neuronal diversity [1, 2], the number of genes detected
per cell remains constrained by technical constraints [3]. During
sequencing experiments, the minute mRNA content within indi-
vidual cells undergoes reverse transcription to cDNA, resulting
in substantial mRNA loss and subsequent cDNA amplification.
Consequently, technical factors, including amplification bias and

a low RNA capture rate, result in the emergence of zero values
within scRNA-seq data, commonly referred to as “dropout” events.
These events signify the failure to detect the genuine expression
of transcripts in certain cells during the sequencing process [4, 5].
And these zeros called “dropout zeros” can impact cell clustering,
differential gene expression analysis, and inference of pseudo-
temporal trajectories [6, 7]. Therefore, it is necessary to develop
effective algorithms to identify dropout events within scRNA-
seq data, thereby mitigating their adverse effects on downstream
analyses.

In recent years, scholars have developed various algorithms
aimed at addressing the dropout events in expression matrices
within scRNA-seq data. These methods can be broadly catego-
rized into four groups. The first category is based on modeling
the expression value of each gene in each cell as a random vari-
able, assumed to conform to a specific distribution model. Sub-
sequently, the parameters of these distributions are estimated,
often utilizing internal or external information, to facilitate impu-
tation. For example, VIPER [8] assumes a zero-inflated Poisson
distribution for gene expression levels, employing non-negative
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sparse regression and expectation-maximization (EM) algorithms
for imputation. bayNorm [9] and SAVER [10] assume a Poisson-
Gamma distribution for gene expression levels. While bayNorm
employs an empirical Bayesian method for imputation, SAVER
employs penalized Poisson LASSO regression. TsImpute [11] pro-
poses a two-step imputation method to impute scRNA-seq data
(ZINB imputation and IDW imputation). Despite their effective-
ness, these model-based approaches lack consensus and may not
be universally applicable to all datasets.

The second category comprises methods that utilize smoothing
techniques by leveraging information from similar cells for impu-
tation (smoothing model). For example, scImpute [12] utilizes
cell similarity to impute values using non-negative least squares
regression, sparse regression models, and EM algorithms. MAGIC
[13] spreads data between similar cells using Markov transfer
matrices for imputation. To distinguish dropout and real bio-
logical zeros, scRecover [14] employs the Zero-Inflated Negative
Binomial (ZINB) model for dropout probability estimation of each
gene and accumulation curves for prediction of dropout number
in each cell. However, these smoothing-based methods typically
require prior clustering of data, which can be challenging due to
a lack of a priori information such as the number of clusters.

The third category involves methods based on the matrix fac-
torization (matrix factorization model). These methods treat the
imputation of dropout events as a low-rank matrix completion
problem. For example, ALRA [15] obtains a low-rank approxima-
tion of the observed gene expression matrix through singular
vector decomposition and imputes values by setting thresholds
for gene expression entries. Nevertheless, these methods rely
on the low-rank assumption of matrix, and many exhibit high
computational complexity.

The fourth category encompasses methods based on deep
learning to capture nonlinear relationships using nonlinear rela-
tionships for the imputation of dropout events (deep learning
model). For example, DeepImpute [16] employs an autoencoder
to compress expression matrices containing dropout events into
a potentially low-dimensional space, corrects them in this space,
and reconstructs the expression matrices using a decoder. DCA
[17] extends this approach by incorporating a negative binomial
distribution model for imputation. GE-Impute [18] utilizes graph
embedding, specifically cellular graph, and biased random wan-
dering for imputation. CL–Impute [19] proposes an approach (Con-
trastive Learning–based Impute) model for estimating missing
genes without relying on preconstructed cell relationships.

Among the aforementioned methods, only scImpute, VIPER,
scRecover, and TsImpute have the capability to distinguish
between real biological zeros and dropout zeros [20]. However,
none of these methods are based on deep learning models,
which may limit their ability to fully capture data characteristics.
In contrast, autoencoders, a fundamental component of deep
learning, offer a promising solution for this challenge [21].
Their unsupervised feature learning and data reconstruction
capabilities, combined with high computational efficiency, make
them well-suited for scRNA-seq data imputation. Although
TsImpute addresses the issue of insufficient imputation, it fails to
account for local variations between cells. Consequently, it may
struggle to capture subtle differences within cells, potentially
compromising the accuracy of data analysis.

To overcome these limitations, we propose a novel imputation
model, CPARI, which integrates cell partitioning with specifically
designed absolute and relative imputation. CPARI not only lever-
ages smoothing techniques and deep learning models but also
accurately identifies dropout zeros. CPARI initially employs a
refined approach to select highly variable genes and constructs an

average consensus matrix using C-mean fuzzy clustering-based
blockchain technology to obtain results at various resolutions.
Hierarchical clustering is then used to identify distinct cellular
blocks. Within each cellular block, CPARI trains an autoencoder
to learn gene features and reconstruct data, focusing on local cell
populations. Our uniquely defined absolute imputation technique
is first applied to identified dropout positions, followed by rela-
tive imputation to address any remaining zeros. This approach
ensures that both global consistency and local variation are pre-
served. Furthermore, by using cell relationship matrices to focus
on local changes between cells, relative imputation captures sub-
tle differences within cells, thereby improving the accuracy of pre-
dictions relative to the true values. Through comprehensive anal-
yses on simulated and real scRNA-seq datasets, CPARI demon-
strates superior performance compared to 12 other imputation
models. It facilitates single-cell differential expression analysis,
enhances unsupervised clustering performance, and improves
the accuracy of inferred cell trajectories. Notably, CPARI effec-
tively identifies dropout zeros and real biological zeros, recovers
expression data, and preserves gene-to-gene and cell-to-cell con-
sistency. Additionally, CPARI demonstrates strong robustness and
is highly suitable for large-scale data imputation.

Materials and methods
Framework of CPARI
Our proposed model, CPARI, utilizes a block autoencoder archi-
tecture, integrating both cellular similarity metrics and gene-
specific features to discern and address dropout events within
scRNA-seq data (see Fig. 1). CPARI framework encompasses four
primary steps: (i) data preprocessing and normalization, (ii) cell
partitioning, (iii) absolute imputation, and (iv) relative imputation.

Preprocessing and normalization
Prior to imputation, the original scRNA-seq dataset undergoes rig-
orous preprocessing to ensure data quality and consistency. This
preprocessing includes quality control, filtering, and normaliza-
tion. As part of the preparation for the cell partitioning step, genes
expressed in fewer than 3 cells and cells expressing fewer than
200 genes are excluded from further analysis. Subsequently, each
gene’s expression level is normalized by dividing it by the total
expression of the respective cell. The normalized expression val-
ues are then scaled by a factor of 1000 and logarithmically trans-
formed, with the addition of a pseudo-count of 1. The “LogNormal-
ize” method within the Seurat v4.3 software package [22] needs to
be employed for the absolute imputation step, with a scale factor
of 10000 to fine-tune the normalization process and results.

Cell partitioning
Highly variable gene matrix construction
Cell partitioning begins with the processing of original scRNA-
seq data, which often contains missing values. Therefore, direct
utilization of the original data for cell partitioning is not feasible.
The initial step involves the identification of highly variable genes
by computing the mean expression level of each gene across all
cells:

u(gi) = 1
n

n∑
j=1

X(gi, cj) (1)

where X(gi, cj) represents the original expression value of gene
gi in cell cj within the original single-cell data matrix X (where
X ∈ R

m×n, m represents the number of genes, and n represents
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Figure 1. Step-by-step workflow of CPARI. Step 1, the original count matrix is normalized to produce matrix X. Step 2, cells are partitioned by selecting
the highly variable gene matrix G, constructing a consensus matrix D from clustering results at various resolutions, and deriving the block matrix X(bk).
Step 3, absolute imputation is performed by identifying imputation locations to generate matrix X′. An autoencoder is trained within each block to
obtain the reconstructed matrix Z, from which the imputed result A is derived. Step 4, relative imputation is conducted by analyzing the correlation of
the reconstructed matrix to produce matrix B. The final imputation matrix C is constructed by integrating the results from both relative and absolute
imputation.

the number of cells). The original single-cell data matrix is sub-
sequently divided into 20 uniformly sized groups based on u(gi).
Furthermore, the Fano factor [23] of each gene within each group
is standardized as follows:

f (gi) = σ(X(gi))

u(X(gi))
(2)

where σ(X(gi)) represents the variance of the expression value
of gene gi across all cells, and u(X(gi)) represents the average
expression level of gene gi across all cells. Highly variable genes
are selected based on the criterion that f (gi) is greater than
0.05 and u(X(gi)) within the range [0.01,3.5]. The resulting highly
variable gene matrix is denoted as G ∈ R

l×n, where l represents the
number of highly variable genes.

Average consensus matrix construction
The subsequent step in the partitioning process involves trans-
forming the highly variable gene matrix G into an average consen-
sus matrix. Specifically, due to a lack of a priori information such
as the number of clusters, we applied C-mean fuzzy clustering
based blockchain technology [24] to matrix G to obtain cell labels
at various resolutions, with the optimal value set to 5.

To enhance the robustness and consistency of these cell labels
across resolutions, a consistency consensus matrix, denoted by
Da ∈ R

n×n, is constructed for each resolution level a, where a ∈
{1, 2, 3, 4, 5}. Each element Da(j, k) within this matrix represents
the number of times cell cj and cell ck are clustered into the same
category. Specifically:

Da(j, k) =

⎧⎪⎪⎨
⎪⎪⎩

Da(j, k) + 1, if label (cj) = label (ck) and j ≤ k,

Da(j, k) + 1, if label (cj) = label (ck) and j > k,

Da(j, k), otherwise.

(3)

where label (cj) and label (ck) represent the cluster assignments
for cell cj and cell ck at resolution level a.

Finally, to obtain a comprehensive view of cell co-clustering
behavior across all resolutions, an average consensus matrix,
denoted by D̄ ∈ R

n×n, is calculated by averaging the corresponding
entries across all consistency consensus matrices:

D̄(j, k) = 1
5

5∑
a=1

Da(j, k) (4)

Block count calculation
In the final step of partitioning, the original matrix X is divided
into o subsets along the column direction, with each subset
referred to as a block. To determine the optimal value of o, we
first employed singular value decomposition (SVD) for D̄:

D̄ = L�PT (5)

where L ∈ R
n×n and P ∈ R

n×n represent orthogonal matrices cap-
turing the spatial structure of the data, and � ∈ R

n×n represents
a diagonal matrix whose elements on the diagonal represent the
singular values of the matrix D̄. We retained the first 30 singular
values for the cell partitioning, and the value of o is then identified
as the smallest integer satisfying the following condition:

o∑
i=1

�i∑30
j=1 �j

< tol (6)

where tol represents a predefined threshold value. �i represents
the ith value of the diagonal elements of �, listed in descending
order.
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Similarity assessment
To assess the fidelity of the cell partitioning process, the cophe-
netic correlation coefficient [25, 26] is employed. As shown in
Supplementary Table S1, the cophenetic correlation coefficients
calculated on both the dropout and complete datasets closely
approach 1. This finding suggests a high degree of similarity
between the partitioned data and the original single-cell data,
validating its suitability for imputation purposes.

Absolute imputation
Imputation position determination
A block obtained from cell partitioning is denoted as X(bk) ∈ R

m′×n′

(k ∈ {1, 2, . . . , o} ), where m′ denotes the number of genes within
the block and n′ denotes the number of cells within the block. The
dropout rate d(gi) and the coefficient of variation v(gi) of each gene
within the block are calculated as follows:

δ(i, j) =
⎧⎨
⎩

1, if X(bk)(gi, cj) = 0

0, otherwise
(7)

d(gi) = 1
n′

n′∑
j=1

δ(i, j) (8)

v(gi) = σ(X(bk)(gi))

u(X(bk)(gi))
(9)

where X(bk)(gi, cj) represents the expression value of gene gi in cell
cj within the kth block X(bk). Vector X(bk)(gi) ∈ R

1×n′
represents the

expression values of gene gi across all cells within the kth block.

Imputation process
Genes characterized by a greater d(gi) and smaller v(gi) are
deemed more susceptible to the effects of dropout events.
A curated indexed collection, denoted as I, is formulated to
encompass such genes as follows:

I =
{
(gi, cj) | if X(bk)(gi, cj) = 0, d(gi) > d̂(gi), v(gi) < v̂(gi)

}

where d̂(gi) denotes the median of d(gi), and v̂(gi) denotes the
median of v(gi). The expression value of (gi, cj) in set I is identified
as the dropout zero. These dropout zeros in the original single-
cell data matrix X are marked with -1. Consequently, a resulting
matrix, denoted as X′ ∈ R

m×n, is constructed, with its elements
defined as follows:

X′(gi, cj) =
⎧⎨
⎩

−1, if (gi, cj) ∈ I

X(gi, cj), otherwise
(10)

where X′(gi, cj) represents any element within the matrix X′. This
strategy fully ensures the preservation of non-zero values in the
original single-cell data matrix possible, thereby mitigating undue
bias. An autoencoder, consisting of an encoder and a decoder, is
employed to reconstruct gene features. The encoder comprises
three fully connected layers and utilizes rectified linear units
(ReLU) as activation functions to map the input data to a low-
dimensional latent space. Specifically, the output H(gi) of the
encoder is computed as follows:

H(gi) = ReLU
(
ReLU (ReLU(X(bk)(gi)W

(e)
1 )W(e)

2 )W(e)
3

)
(11)

where X(bk)(gi) ∈ R
1′×n′

represents the row vector within matrix
X(bk) relating to gene gi, W(e)

1 , W(e)
2 , W(e)

3 ∈ R
n′×n′

denote the weight
matrices of the three fully connected layers in the encoder. Subse-
quently, the decoder also consists of three fully connected layers
to reconstruct the representation back to the original input space.
The output (X̂(bk)(gi)) of the decoder is calculated as follows:

X̂(bk)(gi) = ReLU (ReLU (ReLU(H(gi)W
(d)

1 )W(d)

2 )W(d))

3 (12)

where vector X̂(bk)(gi) ∈ R
1×n′

represents the reconstructed
expression values of gene gi across all cells within a block,
W(d)

1 , W(d)

2 , W(d)

3 ∈ R
n′×n′

represent the weight matrices of the three
fully connected layers in the decoder.

Autoencoder model training
To train the autoencoder model, the backpropagation algorithm
is employed. The training objective is to optimize a loss function
which consists of two parts: a reconstruction error term and a
regularization term. The reconstruction error term measures the
difference between the data (X(bk)) and the decoder-reconstructed
data ((X̂(bk)) ∈ R

m′×n′
), using the squared Euclidean distance as the

metric. The regularization term controls the model complexity to
prevent overfitting. The specific definition of the loss function is
as follows:

LOSS = min
∥∥∥X(bk) − X̂(bk)

∥∥∥
2

2
+ θ‖E‖2

2 (13)

where ‖ · ‖2
2 denotes the squared Euclidean distance, E is the

regularization term, and θ is the regularization parameter used
to balance the weight between the reconstruction error and the
regularization term.

Throughout the training process, an Adam optimizer is
employed to adjust the model parameters with a learning rate
set at 0.0001, iterated until a predefined number of epochs is
attained. Optimal model parameters are retained during training.
Subsequently, upon training all blocks, the final reconstruction
matrix Z ∈ R

m×n is constructed as:

Z(gi, cj) = (X̂(bk)(gi, cj)) for k ∈ {1, 2, . . . , o} (14)

where Z(gi, cj) represents an element in matrix Z corresponding
to the reconstructed expression value of gene gi in cell cj within
the relevant block (X̂(bk)). Finally, a matrix A ∈ R

m×n is generated,
wherein each element is defined as:

A(gi, cj) =
⎧⎨
⎩

Z(gi, cj), if X′(gi, cj) = −1

X′(gi, cj), otherwise
(15)

Relative imputation
Absolute imputation alone cannot guarantee the identification of
all dropout zero values. Therefore, relative imputation performs
secondary imputation on dropout zero values that remain unrec-
ognized after the initial process.

Correlation matrix construction
We conducted principal components analysis (PCA) to reduce
dimensionality on the reconstruction matrix Z, yielding the
dimensionality reduction matrix J ∈ R

30×n, where 30 denotes
the number of principal components. Subsequently, to compute

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
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the correlation coefficient for each cell, we derive the correlation
matrix Q ∈ R

n×n:

Q(ci, cj) = cov(J(ci), J(cj))

σ (J(ci))σ (J(cj))
(16)

Q′ = Q − I (17)

where cov(J(ci), J(cj)) represents the covariance between column ci

and column cj in matrix J. The diagonal elements of matrix Q are
set to 1. I ∈ R

n×n represents the unit matrix.
To obtain the top t correlated columns with the current column,

each row in matrix Q′ retains only the t largest values, where t is
set to the optimal value of 4. The column index values of the t
largest values in each row form the matrix S ∈ R

n×t.

Reconstructed matrix repair
By examining whether the elements corresponding to the top t
correlated columns in matrix Z are zero, the matrix B ∈ R

m×n was
derived, with its elements defined as follows:

B(gi, cj) =
⎧⎨
⎩

0, if Z(gi, cj) �= 0, Z(gi, cS(cj ,l)) = 0

Z(gi, cj), otherwise
(18)

where ∀l ∈ {1, 2, . . . , t}, S(cj, l) denotes the index value of a particu-
lar cell within the top t correlated cells with cell cj.

Final imputation
The remaining dropout zeros after absolute imputation can be
imputed according to matrix B to obtain the final imputation
matrix C ∈ R

m×n:

C(gi, cj) =
⎧⎨
⎩

B(gi, cj), if A(gi, cj) = 0 and B(gi, cj) �= 0

A(gi, cj), otherwise
(19)

In conclusion, accurate imputation position determination is
crucial to avoid imputing non-zero or real zero values. Following
the identification of imputation positions, data reconstruction is
performed using an autoencoder within each block. To further
enhance the reliability of the reconstructed data, relative impu-
tation is employed. Relative imputation not only addresses the
remaining dropout zeros from absolute imputation but also lever-
ages correlation analysis to distinguish between real biological
zeros and false positives, thereby minimizing the occurrence of
false positives.

Datasets
The real dataset contains inherent missing values, rendering it
incomplete and precluding a comprehensive evaluation of model
performance. To address the limitations posed by the presence
of missing values in the real dataset, we simulated complete
datasets without any missing values. Therefore, the datasets used
for our experiments contain two parts.

Simulated datasets
Inspired by Bubble [27], we utilized Splatter R package [28] to
generate two distinct types of datasets using varied random seeds,
as outlined in Table 1. Type 1 comprises Dataset1, Dataset2, and
Dataset3, each consisting of 3000 cells and 1500 genes, segmented
into 3 subtypes, and without any missing values. Subse-
quently, we identified differentially expressed genes within each

subtype and introduced two constraints (mean offset and
variance change) to the expressions of these genes [33]. After
simulating the complete Datasets (Dataset1, Dataset2, and
Dataset3), we proceeded to generate corresponding dropout
datasets for each. These dropout datasets (Dataset1∗, Dataset2∗,
and Dataset3∗) mimicked the effects of missing data by randomly
removing entries at predefined rates. The dropout rates utilized
were 30%, 40%, 50%, 65%, 80%, and 90%. Type 2 comprises
dataset4, dataset5, dataset6, which closely resemble real datasets
in terms of gene and cell counts. Each dataset contains 4000 cells
and 10000 genes, categorized into 8 subtypes, is devoid of any
missing values. For all complete datasets of type 2, we generated
corresponding dropout datasets to simulate the effects of missing
data by randomly removing entries at pre-defined rates of 80%.

Real datasets
Four real datasets originating from four different sequencing
platforms, with relevant information detailed in Table 2. These
datasets encompass a diverse range of cell types and biological
processes, having been generated using well-established and val-
idated sequencing platforms. Such rigorous methodology ensures
the accuracy and reliability of the data.

Results
We conducted a comparative analysis of CPARI against 12 state-
of-the-art imputation methods, which include ALRA [15], SAVER
[10], scImpute [12], bayNorm [9], VIPER [8], scRecover [14], MAGIC
[13], DeepImpute [16], GE-Impute [18], DCA [17], TsImpute [11],
and CL-Impute [19]. SAVER, VIPER, bayNorm, and TsImpute
belong to the category of distributional models, while ALRA
operates as a matrix factorization model. MAGIC, scImpute, and
scRecover are classified as smoothing models, and DCA, GE-
Impute, DeepImpute, and CL-Impute are categorized as deep
learning models. In the comparative analysis, a model denoted
as “No-Imputation” is referenced, wherein diverse evaluation
metrics are directly calculated on simulated datasets that
include both complete and dropout datasets without using
any imputation methods. Specific evaluation metrics include
Standard F1 Score, Correlation (gene), Correlation (cell), Error,
CMD (gene), CMD (cell), Modified F1 Score [34, 35], ARI [36, 37],
NMI [38], POS [39–42]. For detailed metrics calculations, please
refer to the Supplementary evaluation metrics.

CPARI effectively identifies dropout zeros
and real biological zeros
As shown in Supplementary Table S2 and Fig. 2, CPARI con-
sistently achieves the highest standard F1 scores across three
simulated dropout datasets with identical dropout rates. As
illustrated in Fig. 2A, for simulated dropout datasets (Dataset1∗,
Dataset2∗, and Dataset3∗), CPARI consistently achieves the
highest standard F1 scores, indicating superior efficacy in
identifying both dropout zeros and real biological zeros. At the
lowest dropout rate, CPARI, GE-impute, and VIPER significantly
outperform other imputation models. As the rate of missing
data increases, the performance of most imputation models
gradually improves. However, scImpute, VIPER, GE-Impute, and
scRecover exhibit a decline in performance, with scRecover’s
performance approaching zero at the highest rate of missing data.
Fig. 2B demonstrates that among models capable of identifying
dropout zeros and real biological zeros (CPARI, ScImpute, VIPER,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
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Table 1. Summary of the simulated scRNA-seq datasets

Dataset name Cell type Subtype number Gene number Cell number Source

Dataset 1, Dataset 2, Dataset 3 Type1 3 1500 3000 Bubble [27]
Dataset 4, Dataset 5, Dataset 6 Type2 8 10000 4000 Splatter [28]

Table 2. Summary of the real scRNA-seq datasets

Dataset name Cell type Subtype number Gene number Cell number Sequencing platform

PBMC [29] Peripheral blood mononuclear cells 8 16449 4271 10X Genomics
Worm neuron cells [30] Worm neuronal cells 10 13488 4186 Sci-RNA-seq
Mouse bladder cells [31] Mouse bladder cells 16 20670 2746 Microwell-seq
LPS [32] Various cells 4 2047 306 Array

Figure 2. Evaluation of imputation methods for dropout zero identification. (A) Bar plots illustrating the imputation F1 score for various imputation
methods across different dropout levels. (B) Line graphs depicting the trends of precision, recall, accuracy, and F1 score for different imputation methods
under each dropout level. (C) Box plots representing the distribution of F1 scores for imputation methods across different dropout datasets.

scRecover, and TsImpute), CPARI not only consistently improves
but also outperforms other models across various dropout rates.
Even at high dropout rates, CPARI maintains a clear advantage
over other methods. Typically, as the missing rate increases,
performance tends to decline due to reduced information.
However, the F1 score, which focuses on the ratio of zeros and
non-zeros, can improve at higher missing rates. This is because
with more missing data, there are more opportunities to correctly
impute “dropout events” (TP). Both CPARI and TsImpute address
insufficient imputation, but CPARI’s superior performance stems
from its selection of highly variable genes. This strategy effectively
captures critical information, leading to improved F1 scores. In
additional, the model’s accuracy and recall gradually increase
with higher dropout rates, while precision remains relatively
stable. This suggests that CPARI effectively captures crucial
information by selecting highly variable genes, and its relative
imputation method effectively addresses remaining dropout
zeros and minimizes false positives, even under challenging
conditions. As depicted in Fig. 2C, the robustness of CPARI to
varying levels of missing data is further evident in the minimal
fluctuation of its standard F1 score across different datasets.
Supplementary Table S3 and Supplementary Fig. S1 confirm
CPARI’s superior performance, even at 90% dropout rate for
datasets (Dataset1∗, Dataset2∗, and Dataset3∗) and 80% dropout
rate for larger datasets (Dataset4∗, Dataset5∗, and Dataset6∗).

These analytical results demonstrate that CPARI represents
a robust and effective imputation model for scRNA-seq data,

capable of handling high levels of missing data while accurately
identifying dropout zeros and preserving the integrity of biological
information.

CPARI effectively recovers expression data
To assess the model’s ability to recover data, Correlation(gene),
Correlation(cell), and Error were calculated on both simulated
complete datasets and their corresponding dropout datasets.
The average of each metric across dropout datasets with the
same dropout rate was taken to obtain the final evaluation
results.

CPARI effectively recovers gene expression data
As demonstrated in Fig. 3A and Supplementary Table S4, for
simulated dropout datasets (Dataset1∗, Dataset2∗, and Dataset3∗),
our CPARI consistently achieves the highest Correlation(gene)
values compared to other models across different dropout
rates. This indicates that CPARI performs best in recovering
inter-gene correlation coefficients, possibly due to its effective
reconstruction of genetic features during the imputation pro-
cess. Compared to the No-Imputation model, CPARI exhibits
performance improvements of 25%, 39%, 61%, 77%, and 79%
at 30%, 40%, 50%, 65%, and 80% dropout rates, respectively.
This suggests that CPARI’s data reconstruction capabilities
effectively capture the underlying relationships between genes,
even in the presence of extensive missing data. Conversely, ALRA,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
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MAGIC, and DCA show Correlation(gene) values lower than the
No-Imputation model, demonstrating their ineffectiveness in
recovering inter-gene correlation coefficients. Supplementary
Table S5 and Supplementary Fig. S2 further confirm CPARI’s
superior performance, even at a 90% dropout rate for datasets
(Dataset1∗, Dataset2∗, and Dataset3∗) and an 80% dropout rate
for larger datasets (Dataset4∗, Dataset5∗, and Dataset6∗). These
results underscore CPARI’s ability to accurately recover inter-
gene correlation coefficients under high dropout rates and with
relatively large datasets.

CPARI effectively recovers cell expression data
As shown in Fig. 3B and Supplementary Table S6, analysis of
simulated dropout datasets (Dataset1∗, Dataset2∗, and Dataset3∗)
reveals that nearly all imputation methods yield Correlation(cell)
values exceeding those of the No-Imputation model. Notably,
CPARI consistently achieves the highest Correlation(cell) values
across various dropout rates, indicating its superior performance
in recovering inter-cell correlation coefficients. This might be
attributed to CPARI’s selection of highly variable gene pairs to
partition cells, thereby effectively preserving inter-cellular corre-
lations. Compared to the No-Imputation model, CPARI exhibits
performance improvements of 2%, 4%, 9%, 17%, and 29% across
different dropout rates. This indicates that CPARI’s ability to
recover inter-cellular correlation coefficients strengthens as the
dropout rate increases. At an 80% dropout rate, the advantages
of imputation methods like SAVER, bayNorm, and scRecover over
the No-Imputation model become less evident, while CPARI’s
superiority remains pronounced. Supplementary Table S7 and
Supplementary Fig. S3 further confirm CPARI’s exceptional abil-
ity to recover inter-cell correlation coefficients, even at a 90%
dropout rate for datasets (Dataset1∗, Dataset2∗, and Dataset3∗)
and an 80% dropout rate for larger datasets (Dataset4∗, Dataset5∗,
and Dataset6∗). These results underscore CPARI’s robustness and
effectiveness in preserving the integrity of cellular relationships
in scRNA-seq data.

CPARI effectively reduces errors
Fig. 3C and Supplementary Table S8 demonstrate that for
Dataset1∗, Dataset2∗, and Dataset3∗, almost all models consis-
tently reduced the Error value compared to the No-Imputation
model. However, as the dropout rate increased, CPARI’s Error
value remained the lowest, indicating that CPARI can recover
data with minimal error. This is likely because CPARI only impute
dropout zeros while preserving non-zero values. Compared to
the No-Imputation model, CPARI’s Error value decreased by 82%,
82%, 88%, 91%, and 92% at different dropout rates, respectively,
indicating that higher dropout rates correspond to smaller errors
in data recovery by CPARI. In Fig. 3D, across varying dropout
rates in Dataset1∗, Dataset2∗, and Dataset3∗, CPARI consistently
outperforms in terms of Correlation(gene), Correlation(cell), and
Error metrics, with minimal fluctuations. This highlights CPARI’s
robustness and ability to consistently maintain data integrity
even under challenging conditions.

CPARI effectively improves imputation accuracy
Fig. 3E presents scatter plots comparing true values (x-axis) to
imputed values (y-axis) under an 80% dropout rate. The optimal
accuracy baseline is represented by a red dashed line. While
no model perfectly aligns with this baseline, likely due to the
inherent challenges of accurate recovery at high dropout rates,
CPARI exhibits a notable improvement over other methods. The
scatter plot for CPARI demonstrates a strong symmetry around

the baseline, suggesting its stability and ability to accurately
recover the original data distribution. In contrast, other impu-
tation methods, such as bayNorm and scRecover, show limited
effectiveness in improving accuracy, as evidenced by their scatter
plots that closely resemble the Original (non-imputed) plot. These
methods may struggle to restore the original data distribution,
potentially leading to decreased accuracy. Among all the models
evaluated, only CPARI, DeepImpute, and ALRA exhibit scatter
plots that are relatively close to the baseline. This indicates their
superior performance in recovering expression data, even under
high dropout rates.

CPARI effectively preserves gene-to-gene
and cell-to-cell consistency
Although Correlation (gene) and Correlation (cell) can measure
correlations, they do not provide detailed information about the
structure of gene–gene correlations and cell–cell correlations.
Therefore, to comprehensively evaluate the consistency of gene
and cell expressions across two datasets, we employed the
CMD(gene) and CMD(cell). Fig. 4A and Fig. 4B demonstrates that
across Datasets 1∗, Dataset 2∗, and Dataset 3∗, CPARI consistently
achieves the lowest CMD (gene) and CMD (cell) values under
varying dropout rates compared to other imputation methods.
This indicates that CPARI effectively preserves both gene–
gene and cell–cell consistency. Supplementary Table S9 further
highlights CPARI’s superior performance in preserving cell-cell
consistency. Compared to the No-Imputation model, CPARI’s
CMD (cell) values decrease by 94%, 94%, 94%, 96%, and 97%
at varying dropout rates, respectively. This trend suggests that
CPARI’s ability to strengthen cell-level consistency becomes more
pronounced as the dropout rate increases. Additionally, among
the different dropout rates, CPARI, MAGIC, DeepImpute, CL-
Impute, and TsImpute exhibit similar CMD (cell) values, indicating
that their performance in preserving cell-level consistency is
comparable. However, as demonstrated in Supplementary Table
S10, CPARI uniquely achieves the lowest CMD(gene) values,
suggesting its superior performance when considering both gene
and cell expression consistency simultaneously. Fig. 4C further
illustrates CPARI’s exceptional robustness in CMD (cell) and
CMD (gene), with both medians reaching the lowest values.
Additionally, Supplementary Tables S11 and S12, along with
Supplementary Figs S4 and S5, demonstrate that even at a 90%
dropout rate for datasets (Dataset1∗, Dataset2∗, and Dataset3∗)
and an 80% dropout rate for larger datasets (Dataset4∗, Dataset5∗,
and Dataset6∗), CPARI maintains the lowest CMD values. In
summary, these results collectively demonstrate CPARI’s ability
to maintain consistency between genes while simultaneously
preserving consistency between cells, even under high dropout
rates and across datasets of varying sizes.

CPARI facilitates single-cell differential
expression analysis
To accurately assess whether CPARI contributes to the differential
expression analysis, we calculated the Modified F1 Score. As
shown in Fig. 5A and Fig. 5B on the dropout datasets (Dataset1∗,
Dataset2∗, and Dataset3∗) with 30% and 50% dropout rates, our
CPARI achieves the highest Modified F1 Score for all three cell
subtypes compared to other models. This indicates that CPARI
is helpful for analyzing cellular differential expression. The
Modified F1 Scores for other dropout rates in Dataset1∗,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
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Figure 3. Evaluation of imputation methods for data recovery. (A) Bar plots illustrating the mean correlation between the imputed and complete datasets
for each gene, calculated using Pearson correlation coefficient (PCC). (B) Bar plots depicting the mean correlation between the imputed and complete
datasets for each cell, calculated using PCC. (C) Bar plots representing the imputation error between the imputed and complete datasets. (D) Box plots
showing the distribution of gene-level correlation, cell-level correlation, and imputation error for different imputation methods across various dropout
datasets. (E) Scatter plots demonstrating the relationship between true and predicted values (log-transformed) for each gene and cell. The red baseline
represents perfect alignment between the true and predicted values.

Dataset2∗, and Dataset3∗ are presented in Supplementary
Figs S6–S8.

To investigate whether the CPARI model can enhance cell type
annotation by augmenting the expression of cell type marker
genes, we used the Seurat package to identify the expression of
several key marker genes. As shown in Fig. 6A, in the original
dataset (PBMC dataset [29]), PTGDS was identified as a marker
gene in cluster CD19 and VPREB3 in cluster CD34, but their
gene expression levels were not significant. However, after CPARI
imputation, these genes were stably expressed in their respective
clusters as shown in Fig. 6B. Additionally, due to missing data in
the original dataset, SERPINF was minimally expressed in cluster
4T but highly expressed in cluster CD19 (Fig. 6A). After CPARI
imputation, the SERPINF marker gene was stably and highly
expressed in cluster CD19 (Fig. 6B).

CPARI effectively improves unsupervised
clustering performance
To evaluate the performance of different imputation methods, a
set of datasets with large differences in clustering performance
was selected, including the PBMC dataset (ARI=0.79), Mouse
bladder cells dataset (ARI=0.57), and Worm neuron cells dataset
(ARI=0.33).

CPARI effectively maintains clustering
consistency
The clusters specified by scDSC [43] were clustered using k-
means on these datasets, and the clustering results are shown
in Fig. 7A and Fig. 7B and Supplementary Table S13. In the PBMC

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
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Figure 4. Evaluation of imputation methods for preserving consistency. (A) Bar plots illustrating the imputation CMD(gene) for different imputation
methods under each dropout level. A lower CMD(gene) value indicates stronger gene-to-gene consistency. (B) Bar plots depicting the imputation CMD(cell)
for different imputation methods under each dropout level. A lower CMD(cell) value indicates stronger cell-to-cell consistency. (C) Box plots showing
the distribution of CMD(gene), CMD(cell), and imputation error for different imputation methods across various dropout datasets.

A

B

Figure 5. Evaluation of imputation methods for single-cell differential expression analysis. (A) Lollipop charts illustrating the modified F1 scores for the
three cell types relative to each other at a 30% dropout rate. (B) Lollipop charts depicting the modified F1 scores for the three cell types relative to each
other at a 50% dropout rate.
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Figure 6. Evaluation of imputation methods for mark genes in specific subtypes. (A) Violin plots illustrating the distribution of expression levels for
marked genes within each subtype in the original PBMC data. (B) Violin plots depicting the distribution of expression levels for marked genes within
each subtype in the CPARI-imputed PBMC data.

dataset, the ARI and NMI values for SAVER, scRecover, DCA, CL-
Impute, and TsImpute are on par with those of the original data.
This suggests that when the original data are of high quality,
the impact of these imputation methods is minimal. However,
our CPARI has the highest ARI and NMI values, which are 6%
and 5% higher than those of the original data, respectively. This
indicates that CPARI’s imputation results can further improve
the quality of the data and the accuracy of the analysis. On the
Mouse bladder cells dataset, although CL-Impute and TsImpute
show some improvements in clustering performance over the
original data, the gains are relatively small. In contrast, CPARI
has a more pronounced advantage in imputation effectiveness.
On the Worm neuron cells dataset, CPARI still maintains the
highest ARI and NMI values, which are 24% and 42% higher than
those of the No-Imputation model, respectively. Comprehensive
results from these three datasets show that CPARI’s imputation
ability can significantly improve the clustering performance of
data regardless of the quality of the original data, demonstrating
good robustness of CPARI.

CPARI effectively enhances clustering
visualization
Fig. 8A shows t-SNE [44, 45] visualized clustering results on the
PBMC dataset. Each subplot represents a different imputation
model, with colors indicating different cell clusters. CPARI (ours),
scImpute, and MAGIC models demonstrated clearer separation
between clusters compared to the original data, where some
clusters overlapped or were scattered. Fig. 8B shows t-SNE
clustering results on the Worm neuron cells dataset. CPARI

(ours), scImpute, and MAGIC models demonstrate superior
performance, exhibiting high cluster separation and clear
boundaries. In contrast, the original data show less distinct
separation, with certain neuron types (such as red and orange)
intermixed. Supplementary Fig. S9 demonstrates that even with
an increase to 16 subtypes in the Mouse bladder cells dataset,
CPARI (ours)remains the most effective in separating different
neuron subtypes. These findings collectively suggest that CPARI
is a valuable tool for improving the clustering and visualization
of scRNA-seq data. By effectively imputing missing values,
CPARI enables more accurate identification of cell subtypes and
relationships.

CPARI effectively improves cell trajectory
inference
Fig. 9 shows the trajectory inference results using the SCORPIUS
tool on imputed data from various imputation methods on the LPS
dataset. Each subplot represents a different imputation model,
with colored dots indicating different time points (red for hour
1, blue for hour 2, green for hour 4, and purple for hour 6). The
inferred trajectories are depicted as lines connecting the cells.
Detailed result analysis for each imputation model, as shown
in the Supplementary Table S14. The original (non-imputed)
data exhibit noisy clustering and less defined trajectories.
Our CPARI model, along with DeepImpute and bayNorm,
demonstrates superior performance in capturing the temporal
progression of cells. The inferred trajectories are smooth, well-
defined, and closely aligned with the known time points. In

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
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Figure 7. Evaluation of imputation methods for clustering consistency. To evaluate the performance of different imputation methods, a set of datasets
with significant variations in clustering performance was selected, including the PBMC dataset (ARI = 0.79), the Mouse bladder cells dataset (ARI = 0.57),
and the Worm neuron cells dataset (ARI = 0.33). (A) ARI for three types of widely varying datasets under different imputation methods. (B) NMI for three
types of widely varying datasets under different imputation methods.

contrast, scImpute and TsImpute, despite producing seemingly
plausible trajectories, exhibit inaccuracies in capturing the true
temporal ordering.

To assess CPARI’s efficacy in facilitating cell trajectory analysis,
we employed the Pseudo-Time Ordering Score (POS) metric,
which evaluates the consistency between inferred cell pseudo-
time and actual time points. As shown in Supplementary Table
S15 and Supplementary Fig. S10, CPARI (ours) achieved the
highest POS index relative to other baseline methods. This
indicates that the pseudo-temporal trajectories reconstructed
by CPARI exhibit greater temporal consistency with the true
cellular ordering. These findings underscore the importance
of imputation in improving the quality of cell trajectory
inference. By effectively addressing missing values, CPARI
enables more accurate identification of cellular progression
over time, providing valuable insights into dynamic biological
processes.

Robustness evaluation
To rigorously evaluate the robustness of the CPARI model, we
refrained from randomly converting non-zero values to zeros
in an uncontrolled manner, as this approach could potentially
disrupt inherent data patterns. Recognizing that the ZINB distri-
bution has been widely effective in describing gene distribution
across cells in scRNA-seq data [46–49], we conducted extensive
simulations using the splatter tool which generates synthetic
scRNA-seq data with realistic characteristics [50]. We performed
100 independent simulations and reported the mean and stan-
dard deviation of key performance metrics. The results, depicted
in Supplementary Fig. S12, reveal minimal fluctuations in the
gene correlation coefficient (Correlation(gene)), cell correlation

coefficient (Correlation(cell)), and the ability to identify dropout
zeros (F1 Score). These findings indicate that CPARI is not overly
sensitive to variations in the simulated data and maintains con-
sistent performance across different scenarios. This stability in
performance suggests that CPARI can reliably handle the inherent
variability and complexity of scRNA-seq data.

Scalability and performance in large-scale
data imputation
The analysis of large-scale scRNA-seq data has emerged as a
significant trend in single-cell genomics. This trend is exemplified
by large-scale scRNA-seq clustering methodologies [51] and the
development of foundational models for large-scale single-cell
data analysis [52]. To evaluate CPARI’s performance on large-scale
scRNA-seq data, we used a subset of the mouse visual cortex cell
data from Hrvatin et al. [53], comprising between 10 000 and 50
000 cells, each characterized by 19 155 genes. We performed the
imputations three times and measured the runtime and memory
usage on a 16-core machine with 30 GB of memory. The results,
depicted in Supplementary Fig. S14, we found that several com-
peting imputation models, including TsImpute, scImpute, scRe-
cover, VIPER, bayNorm, and CL-Impute, struggled with scalability.
They either failed to return results within 24 hours for the 10
000-cell experiment or exceeded the memory limit. In contrast,
CPARI, along with DeepImpute, MAGIC, and DCA, demonstrated
excellent computational efficiency and scalability, with runtimes
within the same order of magnitude. Notably, only CPARI was able
to distinguish between real biological zeros and dropout zeros.

Additionally, for a comprehensive assessment, we employed
the Splatter [28] simulated dataset, which contains 20 000
genes and 30 000 cells. Clustering visualization results

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
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Figure 8. Visualization of cluster identification. Each point represents a cell, colored according to its assigned cluster label. This visualization provides
insights into the grouping of cells and the separation between different clusters. (A) Visualization of the PBMC dataset. (B) Visualization of the Worm
neuron cells dataset.

Figure 9. Evaluation of visualization of trajectory inference with SCORPIUS. This figure demonstrates the results of trajectory inference using the
SCORPIUS tool on imputed data from various imputation methods applied to the LPS dataset. Each subplot represents a different imputation model,
with colored dots indicating the time points (red for hour 1, blue for hour 2, green for hour 4, and purple for hour 6).

(Supplementary Fig. S13) revealed that CPARI and DeepImpute
effectively clustered the data while maintaining strong cluster
separation, even in the presence of missing data. GE-Impute, on
the other hand, exhibited poor performance in clustering. Cor-
relation analysis (Supplementary Table S16) further confirmed
CPARI’s superiority. CPARI demonstrated the highest correlation
with the original data, both in terms of cell correlations (Correla-

tion(cell)) and gene correlations (Correlation(gene)). This indicates
its ability to accurately recover the underlying biological structure
of the data.

Overall, these results highlight CPARI’s exceptional perfor-
mance and scalability in handling large-scale scRNA-seq data,
making it a valuable tool for researchers working with complex
biological systems.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae668#supplementary-data
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Ablation study
To validate a series of ablation studies were conducted while
maintaining consistency in experimental conditions. To facilitate
this investigation, several model variants were introduced, each
representing a distinct configuration:

• NBNR (No Cell Partitioning, Relative Imputation): This variant
lacks both cell partitioning and relative imputation.

• YBNR (Yes Cell Partitioning, No Relative Imputation): This
variant incorporates cell partitioning but excludes relative
imputation.

• NBYR (No Cell Partitioning, Yes Relative Imputation): This
variant incorporates relative imputation but excludes cell
partitioning.

When evaluated on simulated dropout datasets with an
80% dropout rate (Data1∗, Data2∗, Data3∗), CPARI consistently
outperformed all three simplified variants across all metrics
(Supplementary Fig. S11). This highlights the overall effectiveness
of the complete CPARI model. Furthermore, the ablation study
revealed the significance of each component:

• Importance of cell partitioning: Comparing NBYR and CPARI
demonstrates the additional benefit of cell partitioning.
CPARI consistently outperforms NBYR across all metrics,
suggesting cell partitioning plays a crucial role in achieving
optimal performance.

• Importance of relative imputation: Comparing NBNR and
NBYR showcases the benefit of relative imputation. NBYR
achieves better results than NBNR, indicating that relative
imputation improves performance.

Furthermore, on real datasets, as shown in Supplementary
Table S13, CPARI achieved the best NMI and ARI values on three
real datasets compared to other methods and CPARI’s variants.

Conclusion
CPARI is a novel imputation model that effectively addresses
the challenges posed by dropout events in scRNA-seq data. By
combining cell partitioning with strategically designed absolute
and relative imputation methods, CPARI preserves the original
data’s distance structure, accurately distinguishes between real
biological zeros and dropout zeros, and minimizes false positive
signals. Before performing absolute imputation, cells are first par-
titioned, and imputation locations are determined based on the
dropout rates and coefficient of variation for each gene, all derived
from the global information of the original matrix. Thus, absolute
imputation plays the role of handling global information. In
contrast, relative imputation relies on the cell relationship matrix
and focuses on the most relevant cells, thereby playing the role
of handling local information. It is important to note that when
applying these two imputation methods, absolute imputation is
performed prior to relative imputation. This is because relative
imputation specifically targets the remaining dropout zeros left
by absolute imputation, without modifying non-zero values.
Therefore, they follow a sequential relationship. The autoencoder-
based architecture of CPARI not only ensures high computational
efficiency but also contributes to the model’s reliability and
robustness. Extensive evaluations on diverse simulated and
real scRNA-seq datasets demonstrate the superior performance
of CPARI compared to existing imputation methods. CPARI
significantly improves downstream analyses, including differen-
tial expression analysis, clustering, visualization, and cellular

trajectory inference. Its strong robustness and suitability
for large-scale data imputation make it a valuable tool for
researchers working with scRNA-seq data

Key Points

• CPARI is a novel imputation model that leverages cell
partitioning and strategically designed absolute and rel-
ative imputation methods to address the challenges
associated with dropout events in scRNA-seq data.

• CPARI effectively identifies highly variable genes and
constructs an average consensus matrix using C-mean
fuzzy block methodology. The resulting Cophenetic cor-
relation coefficient approaches 1, indicating a strong
preservation of the original data’s distance structure and
facilitating the identification of distinct cellular subpop-
ulations.

• CPARI’s absolute imputation method accurately differ-
entiates between dropout zeros and real biological zeros,
ensuring the integrity of the imputed data.

• CPARI’s relative imputation method effectively handles
the remaining dropout zeros, further enhancing the
accuracy and reliability of the imputation process.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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Data availability
The 10X PBMC dataset comprises 4271 peripheral blood mononu-
clear cells from a healthy donor, obtained from the 10X scRNA-seq
platform. This dataset was downloaded from the 10X Genomics
website. The mouse bladder cells were obtained from the
Microwell-seq platform, originating from the Mouse Cell Atlas
project. We downloaded the count matrix of all 400 000 single
cells sorted by tissues and selected approximately 2186 cells from
the bladder tissue for our experimental data. The worm neuron
cells were sourced from the sci-RNA-seq platform. We selected a
subset of neural cells from the nematode Caenorhabditis elegans
at the L2 larval stage and excluded cells labeled as “Unclassified
neurons”. This resulted in a dataset of 4186 neural cells for our
experiments. The authors used TLR ligands to stimulate mouse
primary BMDCs and analyzed gene expression changes using
Affymetrix arrays across nine time points (0.5, 1, 2, 4, 6, 8, 12, 16,
24 hours). Various TLR ligands (LPS, pIC, PAM, CpG, GRD) were
used to stimulate BMDCs, leading to the LPS dataset consisting
of scRNA-seq samples of mouse dendritic cells, with 306 cells
collected at 1, 2, 4, and 6 hours. The true labels for these datasets
were obtained from their respective references. The datasets were
derived from publicly available sources: the PBMC datasets from
https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/pbmc4k, the worm neuron cells from https://cole-
trapnell-lab.github.io/worm-rna/docs/, the LPS datasets from
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17721,
the mouse bladder cells from https://figshare.com/s/865e694ad06
d5857db4b.

Code availability
Source codes used in our experiments have been deposited at the
GitHub repository https://github.com/WyBioGroup/CPARI.
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