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Single-cell profiling
uncovers synovial fibroblast
subpopulations associated
with chondrocyte injury
in osteoarthritis
Zezhong Liu1,2,3†, Yongqi Sun2, Jiaoyi Pan2, Kechun Guo2,
Zhi Tang3*† and Xiaofeng Wang1,2*†

1Spinal Surgery, Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated
Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China, 2The Second Clinical Medical
College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China, 3Bonesetting Center,
Xiangtan Chinese Medicine Hospital, Xiangtan, Hunan, China
Background: Chondrocytes and synovial cells participate in the pathogenesis of

osteoarthritis (OA). Nonetheless, the interactions and correlations between OA

synovial cells and chondrocytes remain unclear. This study aims to elucidate the

interactions and correlations between OA synovial cells and chondrocytes, so as

to deepen understanding of OA pathogenesis.

Methods: Single-cell sequencing analysis was employed to analyze clusters of

synovial and chondrocyte cells within the OA dataset. Through cell interaction

analysis, the potential interactions between these two cell types were further

explored. Differential gene expression analysis was used to examine the

differences among synovial-related cell clusters.

Results: The study identified specific characteristics of synovial fibroblasts through

single-cell sequencing analysis. Subsequent cell interaction analysis revealed

interactions and correlations between synovial fibroblast clusters and cell

clusters in both damaged and non-damaged cartilages. CILP+ fibroblasts

showed significant interactions with non-damaged chondrocytes, while POSTN+

fibroblasts exhibited significant interactions with damaged chondrocytes.

Furthermore, differential gene expression analysis revealed that genes such as

PRELP, CLU, COMP, TNFRSF12A, INHBA, CILP, and SERPINE2, were significantly

upregulated in CILP+ fibroblasts. These genes are involved in promoting cell

proliferation, inhibiting inflammatory pathways, and stabilizing cell structure,

thereby exerting reparative and protective effects on chondrocytes. In contrast,

COL6A3, COL6A1, COL1A2, COL1A1, COL3A1, TGF-b1, MMP2, AEBP1, SPARC,

FNDC1, and POSTN were upregulated in POSTN+ fibroblasts. These genes may

contribute to chondrocyte damage and further degeneration by promoting

chondrocyte catabolism, driving inflammation, activating inflammatory pathways,

and facilitating chondrocyte apoptosis and destruction.

Conclusion: Our study elucidated the interactions and correlations between OA

synovial cells and chondrocytes. CILP+ synovial fibroblasts may exert reparative

and protective effects on chondrocytes of patients with OA by promoting cell

proliferation, inhibiting inflammation, and stabilizing cellular structures, thereby

potentially mitigating the progression of cartilage lesions in affected patients. In
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contrast, POSTN+ synovial fibroblasts may exacerbate chondrocyte deterioration

in patients with OA by enhancing degradation, inflammation, and apoptosis,

thereby exacerbating cartilage lesions. Investigating the underlying molecular

mechanisms between OA synovial cells and chondrocytes refines the

understanding of OA pathogenesis and provides valuable insights for the

clinical diagnosis and treatment of OA.
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1 Introduction

Osteoarthritis (OA) is a chronic degenerative disease with intricate

pathophysiology that exerts a deleterious impact on multiple joints

and joint structures throughout the body (1). Incomplete global

statistics have indicated that approximately 240 million individuals

worldwide suffer from symptomatic and functionally limiting OA (2,

3). The primary symptoms of OA are characterized by pain, joint

stiffness, joint damage, and progressive limitation of joint mobility.

These symptoms can eventually lead to disability in patients as the

disease progresses. Despite the substantial expenditure on household

medical care for OA treatment, the disease remains incurable (4, 5).

The pathogenesis of OA is a complex process that involves the

combined effects of multiple factors, including age, female sex,

genetic predisposition, comorbidities, obesity, metabolic syndrome

and joint injury (6, 7). The initial pathological alterations associated

with OA originate in the articular cartilage. Chondrocyte proliferation,

the only cell type in articular cartilage, is significantly constrained by

the loss of the extracellular matrix. However, as OA progresses, pro-

inflammatory factors stimulate the continuous production of matrix

metalloproteinases, leading to extensive matrix degradation and

resulting in the massive apoptosis of chondrocytes, which in turn

causes further extracellular matrix region loss (8–10).

Furthermore, the majority of patients with OA symptoms often

present with synovitis at the cellular level (11). Synovitis has been

demonstrated to actively promote the production of pro-inflammatory

factors and pain-related neurotransmitters (12). Moreover, synovitis

can release factors related to cartilage destruction in OA, thereby

exacerbating cartilage damage and advancing OA progression (13, 14).

While synovitis facilitates synovial angiogenesis as a defense

mechanism, this process accelerates the inflammatory process,

leading to increased OA-related joint pain/hyperalgesia, restricted

joint movement, and even stiffness (15). Meanwhile, fibroblasts, the
ic chondrocytes; HTC,

drocytes; preFC, Pre-

gulatory chondrocytes;

MP, adenosine 5 ’-

ctivated protein kinase.
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main cellular component of the synovium, would undergo abnormal

proliferation in response to inflammatory stimuli, promoting

macrophages to produce tumor necrosis factor-a (TNF-a),
ultimately resulting in a vicious cycle of inflammation (16–18).

Nevertheless, although synovitis contributes to chondrocyte

damage and the progression of OA lesions, research has suggested

that synovitis cannot be considered a trigger for primary OA (19).

The complex network of interactions between synovial cells and

chondrocytes in OA remains poorly understood and requires further

elucidation (8, 20). Therefore, further investigation of the potential

molecular mechanisms between OA synovial cells and chondrocytes

and accurate identification of their interactions and relationships can

improve our understanding of the pathogenesis of OA.

Single-cell sequencing is a powerful research method that allows

for the clustering of cells to study differences in gene expression and

cellular progression across different groups (21, 22). Despite the

presence of various cell types, including fibroblasts, T cells, effector

chondrocytes, and reparative chondrocytes, within synovial cells and

chondrocytes, single-cell sequencing can provide high-resolution

analysis of the correlation between these two types of cells.

This study utilized public databases for single-cell sequencing and

differential expression analysis of OA to explore the relationship

between OA synovial cells and chondrocytes. In addition, the study

adopted cell interaction techniques to analyze the cellular interactions

between the two, aiming to better understand the cellular interactions

between synovial cells and chondrocytes during the onset and

progression of OA. Through the investigation, our research may

help elucidate the potential molecular mechanisms between OA

synovial cells and chondrocytes, thereby furthering our

understanding of the pathogenesis of OA.
2 Methods and materials

2.1 Acquisition and collection of single-cell
RNA sequencing data

In this study, the human OA dataset GSE152805 from the GEO

database was used (23). The dataset used in this study is available at
frontiersin.org
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www.ncbi.nlm.nih.gov/geo. The ScRNA-seq dataset of GSE152805

was generated using the 10× Genomics platform from three knee

joint OA patients. These datasets were obtained using the

GPL20301 platform. The dataset includes synovial tissue samples

and cartilage tissue samples from three patients, with the cartilage

tissue samples divided into damaged and relatively undamaged

categories. A total of 10,640 synovial tissue cells and 26,192 cartilage

tissue cells were collected in this dataset.
2.2 Integration of single-
cell transcriptomes

All scRNA-seq count matrices used in this study were obtained

from the GEO database. The wildly applied “Seurat” package in R

(version: 4.1.0) was used for integration, analysis, and visualization of

scRNA-seq data. Before integration, several processes were performed

separately for each dataset, including quality control and cell selection,

data normalization, and identification of highly variable features. The

same package was also used to integrate the data to better understand

the cellular composition and development mechanisms of OA. A

cross-dataset of cells in a matched biological state was identified.

Technical differences between the datasets were also corrected.

Subsequently, two datasets were integrated together for subsequent

analysis. Human data from different patients and tissues were also

integrated to correct for sample differences using the same approach.

The data were then analyzed according to the standard processing

workflow in “Seurat”, including data scaling, linear (PCA), and non-

linear (UMAP) dimensional reduction, as well as cell clustering.
2.3 Analysis of single-cell data

Single-cell raw data were obtained from published studies and

analyzed using Seurat in R. The complete workflow included:

setting up the Seurat Object, standard pre-processing workflow;

normalizing the data, identification of highly variable features,

scaling the data, performing linear dimensional reduction,

determining the “dimensionality” of the dataset, clustering cells,

running non-linear dimensional reduction (UMAP/tSNE),

identifying differentially expressed features (cluster biomarkers),

assigning cell type identity to clusters, and visualization.
2.4 Cell type identification

Based on reported marker genes for various cell types in the

literature and cell type biomarkers mentioned in the original papers

(24), we identified the following cell types and representative

marker genes: Fibroblasts (MGP, COL1A1, COL6A2), T cells

(CD3E, CD3D, CD3G), Dendritic cells (FCER1A, CD1C, CD1E),

Macrophages (C1QA, C1QB, C1QC), B cells (BLNK, CD79A,

CD79B), Mast cells (TPSAB1, CPA3, RGS13), Smooth muscle cells

(RGS5, ACTA2, TAGLN), Endothelial cells (TM4SF1, PLVAP,
Frontiers in Endocrinology 03
DARC), Homeostatic chondrocytes (MMP3, CHI3L1, CFH),

Hypertrophic chondrocytes (CRISPLD1, CHRDL2, FRZB), Pre-

hypertrophic chondrocytes (CLEC3A, C2orf82, FGFBP2),

Reparative chondrocytes (COL2A1, SPARC, CTHRC1), Pre-

F ibrochondrocy te s (TNFAIP6 , SERPINE2 , ABI3BP ) ,

Fibrochondrocytes (COL1A1, TMSB4X, PRG4), Regulatory

chondrocytes (CHI3L2, IFITM3, VCAM1).
2.5 Visualization of single-cell data

Data visualization in this study was also performed using Seurat

and included UMAP scatter plots, violin plots, dot plots, volcano

plots, and heatmaps. UMAP scatter plots illustrate the distribution

of each cell on spatial coordinates based on different gene

expressions, where cells with similar expression patterns are

closer in spatial distance. Violin plots display the expression levels

of a specific gene or a class of genes in a particular cell type. Dot

plots use color to indicate the average expression level of a gene in a

particular cell type, with darker colors indicating higher expression;

dot size reflects the positive expression proportion of a gene in a

particular cell type, with a larger diameter indicating a higher

positive proportion. Volcano plots illustrate differentially

expressed genes in a specific cell type compared to others,

highlighting upregulated and downregulated genes. Heatmaps

compare the average expression levels of certain genes across

different cell types.
2.6 Cell interaction analysis

The “CellphoneDB” tool, as previously reported, was used for

cell interaction analysis. CellphoneDB is a publicly available

repository containing information on receptors, ligands, and their

interactions in human tissues. This tool, which integrates Python

and R languages, enables analysis of interactions between different

cell types in single-cell data. By providing CellphoneDB with the

required matrix files and cell type annotation files, cell interaction

analysis was conducted following the default standard procedures

and parameters of CellphoneDB (25).
2.7 Gene enrichment analysis

Differentially expressed genes in the clusters were identified

using “Seurat”. The lists of upregulated or downregulated genes in

the clusters were uploaded to the online tool “ DAVID”, an online

functional annotation tool that offers resources for annotation,

visualization, and integrated discovery. DAVID provides

researchers with a set of tools to interpret the biological

significance behind large gene lists. KEGG gene enrichment

analysis was subsequently performed to identify relevant gene

signaling pathways based on the provided gene lists.
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3 Results

3.1 Single-cell transcriptomic analysis of
human OA synovial cells

To analyze single-cell sequencing data from OA synovial cells,

we utilized the OA single-cell dataset GSE152805. This dataset

includes human samples comprising three OA synovial cell samples

and seven OA chondrocyte samples, all generated using the 10×

Genomics platform. After applying the Seurat package in R for

standard single-cell analysis workflow, the human OA synovial cells

underwent UMAP dimensionality reduction and clustering. We

identified eight different cell types: Fibroblasts (MGP, COL1A2,

COL6A2), T cells (CD3E, CD3D, CD3G), Dendritic cells (FCER1A,

CD1C, CD1E), Macrophages (C1QA, C1QB, C1QC), B cells (BLNK,

CD79A, CD79B), Mast cells (TPSAB1, CPA3, RGS13), Smooth

muscle cells (RGS5, ACTA2, TAGLN), and Endothelial cells

(TM4SF1, PLVAP, DARC) (Figure 1A). The dot plot illustrates

the marker genes for each cell type (Figure 1B). To evaluate the

degree of integration between different samples, we compared the

OA synovial cell clusters of male patients (S1) and female patients

(S2, S3). The results showed that after integration, the single-cell

samples of each patient were evenly distributed in the UMAP plot

(Figure 1C). Furthermore, to compare the cellular composition

differences among different patients, we presented the proportions

of cell-types in different samples using bar plots. The results showed

that the proportion of fibroblasts was relatively higher in both male

patients (S1) and female patients (S2, S3) (Figure 1D). To further

analyze synovial fibroblasts , we performed additional

dimensionality reduction and clustering on the fibroblasts and

identified 17 distinct fibroblast clusters (Figure 1E). The violin

plot displays the proportions of mitochondrial genes and

ribosome genes in all fibroblast clusters (Figure 1F). Moreover, we

analyzed the differentially expressed genes within each fibroblast

cluster, and the marker genes in the 17 clusters were presented in a

heatmap (Figure 1G).
3.2 Single-cell data analysis of human
osteoarthritis chondrocytes

Pathological changes in OA are closely associated with

progressive loss and destruction of joint cartilage. Therefore,

studying cartilage is essential for understanding OA. For this

purpose, we extracted the chondrocyte dataset from GSE152805

for single-cell sequencing analysis. Seven unique chondrocyte types

were identified (Figure 2A), including Homeostatic chondrocytes

(HomC) (MMP3, CHI3L1, CFH), Hypertrophic chondrocytes

(HTC) (CRISPLD1 , CHRDL2 , FRZB), Pre-hypertrophic

chondrocytes (preHTC) (CLEC3A, C2orf82, FGFBP2), Reparative

chondrocytes (RepC) (COL2A1, SPARC , CTHRC1), Pre-

Fibrochondrocytes (preFC) (TNFAIP6, SERPINE2, ABI3BP),

Fibrochondrocytes (FC) (COL1A1, TMSB4X, PRG4), and
Frontiers in Endocrinology 04
Regulatory chondrocytes (RegC) (CHI3L2, IFITM3, VCAM1)

(Supplementary Figure S1). Dot plots display the marker genes

for each type of chondrocytes (Figure 2B). The violin plot shows the

proportions of mitochondrial genes and ribosome genes for each

chondrocyte cluster (Figure 2C). Next, to validate the presence of

differences in chondrocyte types between injured and uninjured

cartilages, we performed additional dimensionality reduction and

clustering. The proportions of different chondrocyte types in both

types of cartilage are displayed in a bar plot (Figures 2D, E).
3.3 Interactions between synovial fibroblast
clusters and chondrocyte clusters in
different types of cartilages

To investigate the cellular interactions between synovial

fibroblasts and different chondrocytes, we examined the cell-cell

interactions among various fibroblast clusters and different types of

chondrocytes in both damaged and non-damaged cartilages.

Expression matrices in the damaged and undamaged groups were

extracted separately. The CellphoneDB tool was employed to

analyze the interaction strengths of all synovial fibroblast clusters

with these two groups of chondrocytes (25). The procedure and

parameters for cell interaction analysis using CellphoneDB strictly

followed the standard or default modes required by CellphoneDB.

The results showed significant differences in interactions between

damaged/non-damaged chondrocytes and synovial fibroblasts,

demonstrating heterogeneity across different synovial fibroblast

clusters and chondrocytes (Supplementary Tables 1, 2). To

identify specific synovial fibroblast clusters related to cartilage

damage or repair, quantitative statistical analysis was conducted

on the interaction strengths of these two groups. The quantitative

data of interaction strengths were generated and output by the

CellphoneDB (Supplementary Tables 3, 4). Heatmaps were used to

compare the interaction strengths between different synovial

fibroblast clusters and damaged or non-damaged chondrocytes.

The scale values represented the relative quantitative interaction

strengths. The results demonstrated significant differences in cell-

cell interactions between cluster 6 and cluster 12 of synovial

fibroblasts with different types of cells in two cartilage types.

Cluster 6 exhibited stronger interactions with cells in the non-

damaged cartilage than with cells in the damaged cartilage.

Conversely, cluster 12 demonstrated stronger interactions with

cells in the damaged cartilage compared to the cells in the non-

damaged cartilage. Other fibroblast clusters did not display notable

differences in interaction patterns. These findings suggested that

cluster 6 interacted more extensively with cells in the non-damaged

cartilage, potentially contributing to the repair and protection

processes of articular chondrocytes, while cluster 12 was closely

associated with communication among cells in the damaged

cartilage, potentially relating to chondrocyte damage and ongoing

deterioration (Figures 3A, B).
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3.4 Differential analysis of cluster 6 and
cluster 12 of fibroblasts

Through cell interaction analysis, we found that cluster 6 was

associated with chondrocyte protection and repair, while cluster 12

was linked to chondrocyte damage and ongoing deterioration. In

order to further validate our hypothesis, differential gene analysis

was performed on fibroblast cluster 6 and cluster 12. Firstly, volcano

plots were used to visualize and analyze the differentially expressed
Frontiers in Endocrinology 05
genes in both clusters. Cluster 6 exhibited high expression of genes

such as RELP, CLU, COMP, TNFRSF12A, INHBA, CILP, and

SERPINE2, with CILP showing the highest fold increase

(Figure 4A). In contrast, cluster 12 showed upregulation of genes

including COL6A3, COL6A1, COL1A2, COL1A1, COL3A1, TGF-b1,
MMP2, AEBP1, SPARC, FNDC1, and POSTN, with POSTN being

the gene with the highest fold increase in the volcano plot

(Figure 4B). Subsequently, a comparison of signaling pathways

between the two clusters was conducted, and KEGG pathway
FIGURE 1

Single-cell transcriptomic analysis of human osteoarthritis synovial tissues and fibroblast clusters. (A) UMAP plot showing the clustering distribution
of synovial tissue cells. (B) Dotplot displaying the marker genes for all cell types. (C) UMAP plot demonstrating the clustering distribution of synovial
tissue cells from different patients (S1: males, S2 and S3: females). (D) Bar plot comparing the proportions of all types of synovial cells in different
patient samples (S1: males, S2 and S3: females). (E) UMAP plot presenting the clustering distribution of fibroblast clusters. (F) Violin plot showing the
proportions of mitochondrial genes and ribosomal genes in all fibroblast clusters. (G) Heatmap displaying marker genes for all fibroblast clusters.
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enrichment analysis revealed significant enrichment of PI3K-Akt,

MAPK, and HIF-1 pathways in cluster 6 (Figure 4C). Conversely,

cluster 12 exhibited enrichment in signaling pathways such as

protein digestion and absorption, ECM receptor interaction, TNF,

apoptosis, and rheumatoid arthritis (Figure 4D), which are

commonly associated with cell apoptosis, pro-inflammation, and

structural disruption.
4 Discussion

The pathological process of OA involves not only changes in

articular chondrocytes and osteocytes but also alterations in the

entire joint structure. Therefore, gaining a deeper understanding of

the pathogenesis of OA and recognizing the interactions among

different joint structures are crucial. In this study, through single-

cell sequencing analysis, differential gene expression analysis, and

intercellular interaction analysis, we identified the interactions

between synovial fibroblasts and OA chondrocytes, as well as the

role of fibroblasts in OA progression.
Frontiers in Endocrinology 06
The interaction between synovial cells and chondrocytes plays a

pivotal role in the pathogenesis of OA (23). Previous studies have

reported the impact of synovial fibroblasts on OA chondrocytes.

Fibroblasts can exhibit distinct transcriptional and epigenetic

characteristics, which have unique effects on their function and the

creation of different joint microenvironments (26). Genetic analysis

of synovial fibroblasts in OA patients has shown upregulation of

genes such as actin g1 (ACTG1) and collagen genes (COL1A1,

COL3A1, COL4A1, COL6A3 , COL11A1), which promote

destruction of chondrocytes and cartilage matrices through

interactions between cell matrix receptors, inflammation, and

degradation and metabolism, thus playing a positive role in OA

progression (27, 28). In this study, we discovered that fibroblast

cluster 12 exhibited high expression of multiple genes including

COL1A1, COL3A1, and COL6A3 in the cells in damaged

chondrocytes. Furthermore, OA synovial fibroblasts can directly

promote the activation of transforming growth factor-beta 1 (TGF-

b1) and inhibit miR-92a expression. This leads to the activation of

adenosine 5’-monophosphate (AMP)-activated protein kinase

(AMPK) and p38 signaling pathways, resulting in increased
FIGURE 2

Single-cell transcriptomic analysis of human osteoarthritis chondrocytes. (A) UMAP plot showing the clustering distribution of chondrocytes. (B) Dotplot
displaying the marker genes for all chondrocyte clusters. (C) Violin plot showing the proportions of mitochondrial genes and ribosomal genes for all
chondrocyte clusters. (D) UMAP plot comparing the clustering distribution of cells in damaged and non-damaged cartilages. (E) Bar plot comparing the
percentages of different clusters in damaged and non-damaged cartilages.
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expression of FOXO3 protein, inflammatory cytokines (such as TNF-

a, IL-1b, vascular endothelial growth factor, and chemokine CCL2).

These processes facilitate chondrocyte and cartilage injury,

exacerbating the progression of OA inflammation (29–31).

Similarly, in this study, we also observed elevated expression of

TGF-b1 in fibroblast cluster 12 in the cells in damaged chondrocytes.

Furthermore, normal synovial membrane function relies on

fibroblasts, which are involved in the production of synovium,

hyaluronic acid, collagen, and fibronectin. These substances are

crucial for nourishment of chondrocytes and joint movement (32).

Additionally, research has reported that normal synovial fibroblasts

possess the characteristics of mesenchymal stem cells, including

self-renewal and multilineage differentiation potential. They are

capable of promoting bone and chondrocyte regeneration, thus

exerting a protective and reparative effect on articular cartilage

(33, 34). In this study, we found that fibroblast cluster 6 exhibited

the most significant communication with cells in non-damaged

chondrocytes, and within this cluster, multiple genes associated

with pro-inflammatory processes, promotion of cartilage or

chondrocyte damage and apoptosis (MMP2, IGF1, CXCL12,

SERPINF1, PTGDS), were downregulated (35–38), consistent with

previous research findings.

In our differential gene expression analysis, we found that genes

such as PRELP, CLU, COMP, TNFRSF12A, INHBA, CILP, and

SERPINE2 were upregulated in cluster 6. Through literature review,

we discovered that COMP stimulates chondrocyte proliferation and

promotes cartilage formation and increases collagen secretion,

thereby playing a reparative and protective role in chondrocytes

(39–42). CLU has been reported to exert anti-apoptotic effects by

inhibiting the activation of the p53 signaling pathway and

maintaining cartilage extracellular matrix stability. It can also

modulate the production of inflammatory cytokines such as IL-6
Frontiers in Endocrinology 07
and IL-8, exhibiting anti-inflammatory properties (43–46) and thus

regulating apoptosis and inflammation processes in OA.

Additionally, CILP has been shown to play a crucial role in

maintaining cartilage structure and exerting specific functions by

balancing intracellular and extracellular protein homeostasis, and

stabilizing chondrocyte structure in OA tissue repair (47–49). KEGG

pathway enrichment analysis also showed that the high expression of

cluster 6 was associated with pathways related to cell proliferation,

anti-apoptosis, and promotion of the cell cycle (50–53). In contrast,

cluster 12 exhibited high expression of genes such as COL6A3,

COL6A1, COL1A2, COL1A1, COL3A1, TGF-b1, MMP2, AEBP1,

SPARC, FNDC1, and POSTN. These genes have been reported to

accelerate cellular aging, promote cartilage degradation, and worsen

OA through mechanisms involving inflammation, and cartilage

catabolism (54–56). Relevant studies have revealed that COL3A1

promotes OA-related inflammatory signaling pathways through its

involvement in extracellular matrix (ECM) receptor interaction,

cytokine-cytokine receptor interaction, TNF signaling pathway, and

chemokine signaling pathway (57). TGF-b1, as a key mediator in

cartilage injury and OA development, aggregates pro-inflammatory

IL-18 or IL-18 receptor in OA synovial fluid, inducing chondrocyte

inflammation and promoting chondrocyte catabolism (58, 59).

Upregulation of matrix metalloproteinase 2 (MMP2) promotes

cartilage degradation in OA (60). Furthermore, the high expression

of core cartilage-related genes in OA (COL1A1, COL3A1, COL1A2,

COL5A2, COL2A1, COL6A2, COL7A1) induces narrowing and

disorganized collagen fibers, chondrocyte swelling, and

inflammatory responses, exerting negative effects in OA pathology

(61). Additionally, POSTN is involved in Wnt signaling activation

and MMP-13 expression and contributes to cartilage degeneration

through upregulation of MMPs (62). These findings suggested that

CILP+ fibroblasts may be associated with chondrocyte repair and
FIGURE 3

Cell-cell interactions between synovial fibroblast clusters and chondrocyte clusters. (A) Heatmap illustrating the intercellular interactions between
synovial fibroblast clusters and cell clusters in the non-damaged cartilage. (B) Heatmap illustrating the intercellular interactions between clusters of
synovial fibroblasts and cell clusters in the damaged cartilage.
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protection. They might exert reparative and protective effects on

chondrocytes by upregulating related reparative and protective genes

and signaling pathways. Conversely, POSTN+ fibroblasts may

exacerbate chondrocyte damage and further deterioration by

upregulating pro-inflammatory genes and related apoptotic and

inflammatory signaling pathways. However, the specific

mechanisms require further investigation and validation. In normal

joints, fibroblasts promote chondrocyte proliferation or repair,

serving a protective role for cartilage. In OA, however, the repair

function of fibroblasts is inhibited, while pro-inflammatory,

degradative, and apoptotic mechanisms are upregulated,

exacerbating chondrocyte damage and accelerating OA progression.

Our study has several limitations. First, the sample size in the

human OA genetic database is limited. Increasing the sample size in

future studies could enhance the credibility of our conclusions.
Frontiers in Endocrinology 08
Second, although we identified interactions and relationships

between OA synovial cells and chondrocytes, the specific

molecular mechanisms underlying these interactions require

further research and validation. Current technology does not yet

allow these processes to be fully isolated and evaluated, which

prevents us from performing corresponding experiments for in-

depth investigation.
5 Conclusions

In summary, this study, employing single-cell sequencing, cell

interaction, and differential gene expression analyses, revealed that

certain synovial fibroblast clusters can promote joint chondrocyte

damage or death through mechanisms such as pro-inflammation,
FIGURE 4

Differential gene expression analysis of damaging and reparative clusters of fibroblasts. (A) Volcano plot illustrating differentially expressed genes in
cluster 6 of reparative fibroblasts. (B) Volcano plot illustrating differentially expressed genes in cluster 12 of damaging fibroblasts. (C) KEGG pathway
enrichment analysis for fibroblast cluster 6. (D) KEGG pathway enrichment analysis for fibroblast cluster 12.
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catabolic metabolism, and apoptosis, thereby accelerating OA

progression. As a critical component of joint structure, the

synovium plays a significant role in the development of OA. This

research lays a solid foundation for a better understanding of the

potential molecular mechanisms between the synovium and OA

progression, deepening insights into OA pathogenesis and

potentially informing future clinical diagnosis and treatment

strategies for OA.
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