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This study examined the effects of Haematococcus pluvialis on the growth

performance, innate immunity, and gut microbiota of Litopenaeus vannamei

under different water temperature conditions. Feeding regimens included a 20%

fishmeal diet (control), a low-fish meal (LFM) diet with 10% fishmeal and an LFM

diet supplemented with 0.03% H. pluvialis. These diets were administered to six

groups of L. vannamei at normal (30°C) (NT) and low (20°C) (LT) temperatures

(NT_C, NT_LFM, NT_LFM_HP, LT_C, LT_LFM, and LT_LFM_HP) over 8 weeks.

The weight gain rate of L. vannamei in group NT_LFM_HP was significantly

higher compared to group NT_LFM. Astaxanthin levels and body pigmentation

intensity in L. vannamei were significantly increased in the NT_LFM_HP and

LT_LFM_HP groups. Moreover, hepatopancreatic antioxidant capacities, such as

superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC), were

lower in normal-temperature groups compared to the low-temperature groups.

Nevertheless, antioxidant capacity was significantly higher in both the

NT_LFM_HP and LT_LFM_HP groups compared to the control group.

Meanwhile, the expression levels of antioxidants were significantly higher at

lower temperatures compared to higher temperatures, with the NT_LFM_HP and

LT_LFM_HP groups exhibiting the highest expression levels. Additionally, the

mRNA levels of genes associated with the Toll and IMD pathways indicated

immunoregulatory effects in the organism. The expression levels of immune

genes were significantly higher at lower temperatures, especially in the

NT_LFM_HP and LT_LFM_HP groups compared to the control groups.

Notably, significant differences in gut microbial composition were observed in

the NT_LFM_HP group compared to other groups, with variations influenced by

temperature and fishmeal content. Specifically, Vibrionaceae abundance was

significantly lower in the LT_LFM_HP group compared to the control group. The
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results also revealed that the abundance of Actinomarinales was significantly

higher in low-temperature groups, with the LT_LFM_HP group displaying the

greatest increase. Overall, these findings suggest that L. vannamei may be

susceptible to reduced fishmeal levels, potentially impacting growth and

immune function. Furthermore, H. pluvialis supplementation may assist L.

vannamei in acclimating to prolonged low-temperature conditions.
KEYWORDS

Litopenaeus vannamei, Haematococcus Pluvialis, temperature, growth performance,
innate immunity
1 Introduction

As is well documented, Litopenaeus vannamei (L. vannamei) is

an economically important aquaculture species worldwide. Fishmeal

is considered the optimal source of protein in shrimp feed owing to its

palatability, balanced nutritional composition, and ease of digestion

and absorption. However, the price of fishmeal has increased in

recent years. To cope with this change, it is essential to develop

suitable protein sources to replace fishmeal. In low fishmeal diets,

functional additives are introduced to ensure the growth performance

and health of aquatic animals. Meanwhile, aquaculture has suffered

from environmental destruction over the past decades (1). The

extensive administration of antibiotics to enhance disease resistance

in shrimp (2) resulted in numerous adverse effects (3). Consequently,

the use of pure natural functional additives has become a trend.

Shrimp body pigmentation influences consumer preference.

However, shrimp are unable to synthesize astaxanthin, and earlier

studies have reported that shrimp can use astaxanthin from their diet

to optimize body pigmentation. Thus, natural sources of astaxanthin,

such as Haematococcus pluviali (H. pluvialis), have emerged as

prominent functional additives. Known to be the richest natural

source of astaxanthin,H. pluvialis contains astaxanthin levels ranging

from 1.0% to 7.0% (4). Therefore, the introduction of astaxanthin to

feed can improve growth performance in L. vannamei (5), mitigate

hepatopancreatic damage in white shrimp (6), improve immune

levels in crayfish (7), and improve body color in Japanese shrimp (8).

The growth, health, and immunity of aquatic organisms are

considerably impacted by water temperature. For instance, L.

vannamei is a poikilothermic species whose growth, health, and

immunity are regulated by fluctuations in environmental

temperature (9). Indeed, temperature stress has been documented

to significantly impact shrimp growth and immunity (10, 11),

thereby promoting susceptibility to bacterial, fungal, viral, and

parasitic infections and economic losses (12). The nutritional

metabolism and immune function of shrimp are directly affected

by the gastrointestinal tract, which plays a vital role in nutrient

absorption and disease resistance. Throughout the growth of

shrimp, the structure of the gut flora significantly changes (13,

14). According to earlier studies, alterations in temperature can
02
affect the gut flora of shrimp, thereby influencing their growth and

immune performance (15, 16).

To the best of our knowledge, no studies have investigated the

effects of H. pluvialis on L. vannamei under different water

temperatures. Given that other aquatic organisms are influenced

by the multiple regulatory mechanisms of H. pluvialis, this study

aimed to investigate the effects of H. pluvialis on the growth

performance, antioxidant capacity, immune activity, and gut

microbiology of L. vannamei at distinct water temperatures.
2 Materials and methods

2.1 Experimental diets

Prior to diet preparation, all raw materials were crushed using a

grinder and subsequently sieved using a 60-mesh sieve. After sieving,

the raw materials were weighed based on the diet formula outlined in

Table 1. Briefly, the weighed raw materials were thoroughly mixed in

a plastic zip-lock bag and then transferred to a commercial mixer for

mixing and blending, during which fish oil, soya lecithin, and water

were added and mixed. After mixing, the ingredients were extruded

into long strips using a twin-screw extruder and subsequently

transferred to a pelletizer to produce pellets for the trials. Next,

diets were steam-conditioned at 60°C, then removed and air-dried

until the moisture content of the diet was reduced to approximately

10%. Following packing into plastic ziplock bags, the diets were

stored in a refrigerator at -20°C. Different feeding regimes, specifically

the 20% fishmeal group, the 10% fishmeal group, and the 10%

fishmeal + 0.03% H. pluvialis group, were administered to L.

vannamei (NT_C, NT_LFM, NT_LFM_HP, LT_C, LT_LFM, and

LT_LFM_HP) at 30°C and 20° water temperature environments.
2.2 Feeding experiments

In Lingshui Li Autonomous County, L. vannamei was used as the

test animal for an 8-week culture experiment. Shrimp larvae were

temporarily raised on commercial feed for 10 weeks before being used
frontiersin.org
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in the culture experiment. A total of 720 shrimp with an average weight

of approximately 0.63 g were randomly selected from the temporarily

reared shrimp and assigned to 24 cement tanks, each containing 30

shrimp. Sewage pipes were installed at the bottom of each cement tank

for effluent discharge, and water pipes were installed in the cement

tanks for seawater replenishment. The water was changed uniformly

and regularly according to predetermined water quality indices, with

80% of the water replaced at each interval. All seawater used in the

aquaculture tanks was sand-filtered, precipitated, sterilized, and filtered

prior to use. The cement tanks were fitted with an air tube and air stone

to maintain 24-hour continuous aeration.

Feeding rates were initially set at 5% of shrimp body weight and

adjusted based on satiation by observing bait residues after feeding.

All groups were fed three times daily, and dead shrimp, bait residues,

feces, and other bottom waste were aspirated by suction, and dead

shrimp were weighed and counted. During the 8-week aquaculture

experiment, the temperatures of the water were maintained at 30°C

for the normal-temperature groups and 20°C for the low-temperature

groups. A chiller and a water recycling system were used to adjust

water temperature, which was recorded every 4 hours. Throughout

the experiment, natural light cycles were maintained.
2.3 Sampling

During the 8-week culture period, 5 g of feces from each cement

tank were collected and stored in a refrigerator at -20°C for
Frontiers in Immunology 03
apparent digestibility analysis. All shrimp were fasted for 24

hours before sampling. Shrimp in each tank was counted and

weighed. The body length, weight, and hepatopancreatic weight of

five shrimp from each group were measured and recorded. A total

of five shrimp were randomly selected from each group and stored

at -20°C for whole shrimp crude nutrient analysis. Frozen

hepatopancreas samples harvested from four shrimp were

analyzed for enzyme activity and gene expression. Intestinal

samples were collected from four shrimp and frozen for intestinal

flora analysis. For H&E staining and sectioning, hepatopancreas

samples collected from two shrimp were used. For comparison, five

live shrimp from each group were boiled under identical conditions.
TABLE 1 Ingredients and proximate composition of six experimental
diets (g/kg).

Ingredients
C
(NT/LT)

LFM
(NT/LT)

LFM_HP
(NT/LT)

Fish meal 1 20 10 10

Decorticated soybean meal 2 18 21 21

Peanut meal 3 12 12 12

Chicken meal 5 7 7 7

Soy protein concentrate 6 4 11 11

Wheat flour 6 24.86 23.94 24.21

Hermetia illucens meal 7 6 6 6

Beer yeast 8 2 2 2

Fish oil 9 0.5 1.5 1.5

Soybean lecithin 10 1 0.8 0.5

Vitamin premix 11 0.5 0.5 0.5

Mineral premix 12 0.5 0.5 0.5

Choline 13 0.2 0.2 0.2

Cholesterol 14 0.1 0.1 0.1

Ca(H2PO4)2 15 1.7 1.7 1.7

(Continued)
TABLE 1 Continued

Ingredients
C
(NT/LT)

LFM
(NT/LT)

LFM_HP
(NT/LT)

Lysine 16 0.1 0.17 0.17

Vitamin C 17 0.1 0.1 0.1

Methionine 18 0.2 0.25 0.25

Threonine 19 0.23 0.23 0.23

Y2O3 20 0.01 0.01 0.01

Sodium alginate 21 1 1 1

Haematococcus Pluvialis 22 0 0 0.03

Total 100 100 100

Moisture 8.42 8.45 8.37

Crude lipid 7.62 7.66 7.38

Crude protein 40.21 40.22 40.26

Ash 11.26 11.21 11.23
1 Fish meal: Guangzhou Chengyi Industrial Group Co., Ltd., China.
2 Decorticated soybean meal: Yihai Kerry Jinlongyu Grain and Oil Food Co., Ltd., China.
3 Peanut meal: Zhuhai Dehai Biotechnology Co., Ltd., China.
4 Chicken meal: Zhuhai Dehai Biotechnology Co., Ltd., China.
5 Soy protein concentrate: Kyorin Industry (Shenzhen) Co., Ltd., China.
6 Wheat flour: Hebei Jinshahe Noodle Industry Group Co., Ltd., China.
7 Hermetia illucens meal: Qinghai Kunjie environmental protection technology Co.,
Ltd., China.
8 Beer yeast: Guangzhou Chengyi Industrial Group Co., Ltd., China.
9 Fish oil: Guangzhou Chengyi Industrial Group Co., Ltd., China.
10 Soybean lecithin: Guangzhou Chengyi Industrial Group Co., Ltd., China.
11 Vitamin premix (kg−1 of mixture): vitamin A, 250,000 IU; riboflavin, 750 mg; pyridoxine
HCL, 500 mg; cyanocobalamin, 1 mg; thiamin, 500 mg; menadione, 250 mg; folic acid, 125
mg; biotin, 10 mg; a-tocopherol, 3750 mg; myo-inositol, 2500 mg; calcium pantothenate, 1250
mg; nicotinic acid, 2000 mg; vitamin D3, 45,000 IU; vitamin C, 7000 mg. Guangzhou Chengyi
Company Ltd., China.
12 Mineral premix (kg−1 of mixture): Zn, 4000 mg; K, 22,500 mg; I, 200 mg; NaCl, 2.6 g; Cu,
500 mg; Co, 50 mg; FeSO4, 200 mg; Mg, 3000 mg; Se, 10 mg. Guangzhou Chengyi Company
Ltd., China.
13 Choline: Guangzhou Chengyi Industrial Group Co., Ltd., China.
14 Cholesterol: Guangzhou Chengyi Industrial Group Co., Ltd., China.
15 Ca(H2PO4)2: Guangzhou Chengyi Industrial Group Co., Ltd., China.
16 Lysine: Shanghai Feeel Technology Development Co., Ltd., China.
17 Vitamin C: Guangzhou Chengyi Industrial Group Co., Ltd., China.
18 Methionine: Shanghai Feeel Technology Development Co., Ltd., China.
19 Threonine: Shanghai Feeel Technology Development Co., Ltd., China.
20 Y2O3: Shanghai Haohong scientific Co., Ltd., China.
21 Sodium alginate: Nanjing Duly Biotechnology Co., Ltd., China.
22 Haematococcus Pluvialis: The effective content of astaxanthin is 3%. Algae health Science
Co., Ltd., China.
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2.4 Determination of
proximate composition

According to the guidelines of the Association of Official

Analytical Chemists (AOAC), moisture, crude protein, and crude

lipid content were determined from dried samples. After drying at

105°C, moisture content was determined, following which the

samples were crushed. Next, a fully automated Dumas nitrogen

tester (N Pro (DT Ar/He Basic), Gerhardt GMBH & CO.KG,

Germany) was employed to determine crude protein content

from 0.08 g of sample. The crude lipid content was determined

using the Soxhlet extraction method on an automatic lipid analyzer

(Soxtec System HT6, Tecator, Sweden) with light petroleum reflux

extraction on approximately 0.5 g of the sample. Shrimp shell

samples were freeze-dried and ground to extract astaxanthin and

measure astaxanthin levels. Ionophore atomic emission

spectrometry (ICP-AES) was utilized to quantify metal Y-ions in

feces, and apparent digestibility was calculated. The methods for

extracting astaxanthin in shrimp shells were performed as described

in a previous study (50).
2.5 Determination of hepatopancreatic
enzyme activities

After thawing hepatopancreatic tissues, samples were collected

and added to PBS solution for grinding. The levels of

hepatopancreatic enzyme activity indices were determined by

centrifuging at 4000 rpm for 20 min at 4°C and collecting the

supernatant. Superoxide dismutase (SOD), total antioxidant

capacity (T-AOC), and lipid oxidation (MDA) levels were

measured using kits (Nanjing Jiancheng Bioengineering Institute,

Nanjing, China).
2.6 Total RNA extraction and real-time
quantitative PCR

Real-time quantitative PCR (qRT-PCR) was performed for all gene

expression assays in the present study. With the Evo MMLV Reverse

transcription reagent kit (Accurate Biology, Hunan, China), total

hepatopancreatic RNA was extracted using the TRIzol method, and

cDNA was synthesized via reverse transcription. Moreover, qRT-PCR

was performed on a Roche real-time quantitative PCR system

(LightCycler 480 II, Roche Diagnostics, Basel, Switzerland).

Conditions for the reaction were as follows: pre-denaturation at 95°C

for 40 amplification cycles (denaturation at 95°C for 5 s, annealing at

60°C for 30 s, and extension at 72°C for 30 s). A melting curve was

plotted (95°C for 20 s, 60°C for 20 s, followed by continuous

maintenance at 95°C), and the samples were cooled to 4°C. Shrimp

primers used in this study are presented in Table 2. The b-actin gene

served as an internal reference gene for gene expression analysis, and

relative expression levels were calculated using the 2-DDct method.
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2.7 Morphological microscopy of
hepatopancreatic tissues

Hepatopancreatic samples were initially fixed in a 4%

paraformaldehyde solution for 24 hours and subsequently

transferred to a 70% ethanol solution. Prior to sectioning, the

samples were subjected to graded dehydration, paraffin
TABLE 2 Real-time quantitative PCR primers for genes of L. vannamei.

Gene
Primer sequence

(5’ to 3’)
GenBank

No.
Product
size (bp)

b-actin F CGAGGTATCCTCACCCTGA AF300705.2
101

b-actin R CGGAGCTCGTTGTAGAAGG AF300705.2

toll F
ATACCTCAGCTTCACG

GCAG
XM_027356519.1

140

toll R
TATTCGTCAGCAGAGC

AGGC
XM_027356519.1

dorsal F
AGATGGAATGATAGAATG

GGAAGC
XM_027382195.1

127

dorsal R
GTACACCTTTATGGGGTT

CTCTATCTC
XM_027382195.1

crustin F
GAGGGTCAAGCCTAC

TGCTG
AY486426.1

157

crustin R
ACTTATCGAGGCCAG

CACAC
AY486426.1

sod F
GCCACTTGAACCACA

CCATC
DQ005531.1

158

sod R
GCCAGAGCCTTTCAC

TCCAA
DQ005531.1

cat F
GGGTATTGAGGCTTCC

CCTG
AY518322.1

151

cat R
GGGGCCATCTCTCTG

GTAGT
AY518322.1

gpx F
AGAAGAGTTCGGCGAC

AAGC
AY973252.2

126

gpx R
TCGAAGTTGTTCCCA

GGACG
AY973252.2

imd F
TATACATCCTGCCGT

TGCCG
FJ592176.1

174

imd R
GTTGTGGATAACGGGGC

CAA
FJ592176.1

relish F
ATTCTTCTGCGTTTCAAG

GTGT
KM204120.1

203

relish R
GAGGTATGGTCAGGGTAT

GGTG
KM204120.1

lysc F
TACTGGTGCGGAAGC

GACTA
XM_027352840.1

165

lysc R
GTAAGCCACCCAGGC

AGAATA
XM_027352840.1
f

b-actin, beta-actin; sod, superoxide dismutase; cat, catalase; gpx, glutathione peroxidase; imd,
immune deficiency; lysc, lysozyme C-like.
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embedding, and fixation, following which the sections were sliced

into approximately 3.0 mm thick sections using a slicer. Afterward,

the sections were subjected to hematoxylin and eosin staining and

examined and imaged under a Nikon orthostatic microscope

(Eclipse Ni-E, Nikon, Japan). Finally, the resulting images were

analyzed utilizing NIS-Elements viewer software (National

Institutes of Health, Bethesda, USA).
2.8 16S rRNA gene sequencing and
microbiota analysis

The genomic DNA of intestinal microorganisms in the sample

was extracted and analyzed for purity and concentration using 1%

agarose gel electrophoresis. The purified genomic DNA was

subsequently dispatched to Shanghai Majorbio Bio‐pharm

Technology Co., Ltd (51) for further processing.

Paired-end (PE) reads generated from Illumina sequencing

were initially aligned based on their overlapping regions.

Subsequently, sequence quality was assessed and filtered, followed

by sample differentiation for operational taxonomic unit (OTU)

clustering and species taxonomy analysis to facilitate the calculation

of various diversity indices. OTU-based diversity index analyses and

sequencing depth detection were conducted, while taxonomic

information enabled statistical analyses of community structure at

different taxonomic levels. Data analyses were conducted utilizing

the Meggie BioCloud platform (https://cloud.majorbio.com).

Specifically, mothur software was employed to compute alpha

diversity metrics such as Chao 1 and Shannon index, while the

Wilcoxon rank sum test was utilized to assess variations in alpha

diversity among groups (52). Intergroup differences in alpha

diversity were evaluated using an algorithm based on the Bray-

Curtis distance, coupled with PCoA (Principal Coordinate

Analysis) analysis to examine the similarities in microbial

community structures across samples. Additionally, the

PERMANOVA non-parametric test was utilized in conjunction

with LEfSe (Linear Discriminant Analysis Effect Size) analysis

(LDA>2, P<0.05) to assess significant variations in microbial

community structure among groups, identifying bacterial taxa

with differing abundances from phylum to genus level (53).
2.9 Statistical analysis

Parameters were calculated using the following formulae: Initial

body weight (IBW, g)=initial total wet weight/initial number of

tails; Final body weight (FBW, g)=final total wet weight/final

number of tails; Weight gain (WG, %)=100×(final body weight-

initial body weight)/initial body weight; Specific growth rate (SGR,

%/day)=100×(Ln final mean weight-Ln initial mean weight)/

number of days; Food intake (FI, g/shrimp)=total food intake/

total number of shrimp; Feed conversion ratio (FCR)=dry diet

fed/wet weight gain; Conversion factor (CF, g/cm3)=100×wet

weight/(body length)3; Hepatosomatic intake (HSI, %)

=100×hepatopancreas weight/wet weight; Survival rate (SR, %)

=100×number of terminal surviving tails/number of initial tails;
Frontiers in Immunology 05
Apparent Digestibility (AD, %)=100× (Y2O3 intake-Y2O3 output)/

Y2O3 intake.

Experimental data were expressed as “mean ± standard error”.

Two-way ANOVA with Bonferroni multiple comparisons were

used to analyze data across treatment groups at the same

temperature. Student’s t-test was conducted to analyze data in the

same treatment groups at different temperatures. P < 0.05 was

considered statistically significant.
3 Results

3.1 Growth performance, feed utilization,
and morphometric parameters

Following the conclusion of the 8-week period, the growth

performance, feed utilization, and morphometric parameters for the

six groups of L. vannamei were individually recorded, as detailed in

Table 3. The weight gain rate and specific growth rate of L. vannamei in

the NT_C, NT_LFM, and NT_LFM_HP groups were significantly

higher compared to the LT_C LT_LFM and LT_LFM_HP groups

(P<0.05). Likewise, the weight gain rate of L. vannamei in group

NT_LFM_HP was significantly higher compared to group NT_LFM

(P<0.05). In contrast, the weight gain rate of L. vannamei in group

NT_LFM_HP was comparable to that in group NT_C. Interestingly,

no significant differences were noted in the survival rates of L.

vannamei across treatment groups (P>0.05). Conversely, variations

in feed efficiency and apparent digestibility were observed between the

normal and low-temperature groups (P<0.05).
3.2 Muscle proximate composition

The moisture, crude protein, and crude lipid content of L.

vannamei muscle within each experimental group are outlined in

Table 4. The findings revealed no significant differences in these

parameters across the groups (P>0.05).
3.3 Astaxanthin content

As displayed in Figure 1, significant differences were observed in

coloration between live and cooked shrimp, with the NT_LFM_HP

and LT_LFM_HP groups exhibiting darker pigmentation compared

to the NT_LFM and LT_LFM groups. Furthermore, as depicted in

Figure 2, the astaxanthin content in shrimp shells was highest in the

NT_LFM_HP and LT_LFM_HP groups.
3.4 Hepatopancreas morphology

Figure 3 illustrates the comparison of hepatopancreatic tissue

sections across groups. The hepatic tubules within the

hepatopancreas of groups NT_C, NT_LFM, NT_LFM_HP, LT_C,

LT_LFM, and LT_LFM_HP displayed normal morphology, with

normal B cells, R cells, and E cells and the absence of lesions.
frontiersin.org

https://cloud.majorbio.com
https://doi.org/10.3389/fimmu.2024.1501753
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2024.1501753

Frontiers in Immunology 06
3.5 Hepatopancreas
biochemical parameters

3.5.1 Antioxidant enzyme activities
Figure 4 illustrates the impact of H. pluvialis supplementation

on the hepatopancreatic antioxidant enzyme activities in L.

vannamei shrimp under varying water temperatures. The findings

demonstrated that, following exposure to elevated temperatures,

total antioxidant capacity (T-AOC) was significantly higher in the

NT_LFM_HP group compared to the NT_C and NT_LFM groups

(P<0.05). Similarly, SOD activity was significantly higher in the

NT_LFM_HP group compared to the NT_C and NT_LFM groups

(P<0.05). After the inclusion of H. pluvialis, MDA levels were

significantly lower in the NT_LFM_HP group compared to the

NT_C and NT-LF groups (P<0.05). Following a decrease in

temperature, SOD activity was significantly higher in the LT_C

group compared to the LT_LFM_HP group (P<0.05). Besides,

MDA levels were significantly lower in the LT_LFM_HP groups

compared to the LT_C group (P<0.05).

3.5.2 Expression of antioxidant-related genes
The gene expression levels of antioxidant-related genes in the

hepatopancreas of L. vannamei are depicted in Figure 5.

Significantly lower expression levels of cat and sod were observed

in the NT_LFM and LT_LFM groups compared to the

NT_LFM_HP and LT_LFM_HP groups (P<0.05). Additionally,

the relative expression of gpx was higher in the NT_LFM_HP and

LT_LFM_HP groups compared to the NT_LFM and

LT_LFM groups.
3.6 Immune response

The Toll and IMD signaling pathways were identified as pivotal

elements of the innate immune response in shrimp, as evidenced by

the expression of relevant genes depicted in Figures 6, 7.

In the Toll pathway, the relative expression level of toll mRNA

was significantly higher in the NT_C and LT_C groups compared to

the NT_LFM, NT_LFM_HP, LT_LFM, and LT_LFM_HP groups

(P<0.05). The highest relative expression of toll was observed in the

NT_C group. At the same time, dorsal mRNA expression levels

were significantly higher in the LT_LFM_HP group compared to

the other groups (P<0.05), while crustin mRNA expression levels

were highest in the LT_C group, and the differences between the

groups under di fferent temperature condi t ions were

significant (P<0.05).

In the IMD pathway, the relative expression level of imdmRNA

was significantly higher in the NT_LFM_HP and LT_LFM_HP

groups compared to the NT_C, NT_LFM, LT_C, and LT_LFM

groups (P<0.05). Additionally, the relative expression level of relish

was higher in the LT_LFM_HP group compared to the

NT_LFM_HP group. The mRNA expression levels of lysc in the

LT_LFM_HP group were significantly higher compared to the other

five groups (P<0.05), with the lowest expression observed in the

NT_LFM group. Specifically, the relative expression of L. vannamei
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lysc mRNA in the LT_LFM_HP group was markedly higher

compared to the remaining groups (P<0.05), with the lowest

expression detected in the NT_LFM group.
3.7 Gut microbiota analysis

Sequences were grouped into operational taxonomic units

(OTUs) at a 97% similarity threshold. The constructed Venn

diagram delineated that the NT_C, NT_LFM, NT_LFM_HP,

LT_C, LT_LFM, and LT_LFM_HP groups contained 8, 52, 81, 8,

5, and 10 unique Operational Taxonomic Units (OTUs),

respectively. As shown in Figure 8, significant differences were

noted in the microbial community structure due to differences in

water temperature and the presence of H. pluvialis. Figure 9

illustrates the analysis of alpha diversity within the shrimp gut

microbiome, as determined by sequencing results of the Ace,

Chao1, Shannon, and Simpson diversity indices. The findings

signaled that the coverage index for each treatment group

exceeded 0.998. The beta diversity analysis visualized through
Frontiers in Immunology 07
PCoA plots (Figure 10) demonstrated the impact of varying water

temperatures (normal and low) on variations in the intestinal

microbiota of L. vannamei following exposure to H. pluvialis. As

anticipated, the composition of the NT_LFM_HP group was

significantly different compared to the other groups (P<0.05).

Figure 11 illustrates the distribution of gut bacteria across

treatment groups, categorized at the phylum, class, family, and genus

levels. Additionally, the relative abundance of species was depicted at

each taxonomic level. Figure 11A displays the relative abundance of gut

bacterial phyla, primarily composed of Bacteroidota, Proteobacteria,

Actinobacteriota, and Verrucomicrobia. Figure 11B displays the

relative abundance of gut bacterial classes in L. vannamei, with

major bacteria identified as Bacteroidia, Alphaproteobacteria,

Gammaproteobacteria, Acidimicrobiia, Verrucomicrobia, and

Actinobacteria. Figure 11C displays the relative abundance of gut

bacterial families, predominantly composed of Flavobacteraceae,

Rhodobacteraceae, Vibrionaceae, and Actinomarinales. Figure 11D

displays the relative abundance of gut bacterial genera, including

Flavobacteriales, Rhodobacteraceae, Ruegeria, Spongiimonas, Vibrio,

Actinomarinales, and Haloferula.
FIGURE 1

Effect of the addition of H. pluvialis at varying water temperatures on the body colour of L. vannamei. (A) Normal water temperature group of live
shrimp; (B) Normal water temperature group after cooking shrimp; (C) Low water temperature group of live shrimp; (D) Low water temperature
group after cooking shrimp.
TABLE 4 Effect of the addition of H. pluvialis at varying water temperatures on the muscle composition of L. vannamei (% dry weigNT).

Parameters (% dry matter) NT_C NT_LFM NT_LFM_HP LT_C LT_LFM LT_LFM_HP

Moisture 76.59 ± 0.01 74.94 ± 0.01 77.95 ± 0.01 75.17 ± 0.01 75.48 ± 0.01 75.17 ± 0.01

Crude protein 77.03 ± 0.80 76.82 ± 0.45 76.87 ± 0.42 76.20 ± 0.65 75.43 ± 0.59 75.92 ± 0.92

Crude lipid 6.18 ± 0.41 5.14 ± 0.25 5.68 ± 0.44 4.88 ± 0.17 4.62 ± 0.31 4.89 ± 0.21
Values are expressed as the means ± SEM with 4 replicates (n=4).
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4 Discussion

L. vannamei is considered a significant economically cultivated

species (17). The growth, development, and metabolic performance

of aquatic organisms are influenced by various environmental

factors, with water temperature playing a critical role (18).

Shrimp, as poikilothermic organisms, exhibit variations in body

temperature in response to environmental conditions, which in

turn impacts their metabolism and physiological regulatory

mechanisms (19). Of note, nutrition, feeding, and feed utilization

play crucial roles in commercial aquaculture due to the significant
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cost associated with feed (20). Consequently, microalgae have

garnered considerable attention as a highly nutritious functional

green additive in aquafeeds (21). Indeed, incorporating microalgae

into aquafeeds has the potential to partially substitute fishmeal and

enhance growth, performance, and immunity (22–25).

In the present study, the weight gain rate and specific growth

rate of shrimp in the NT_C, NT_LFM, and NT_LFM_HP groups

were significantly higher compared to the LT_C, LT_LFM, and

LT_LFM_HP groups. Moreover, the weight gain rate of shrimp in

the NT_LFM_HP group was higher than that of the NT_LFM

group, with no significant difference observed between

NT_LFM_HP and NT_C groups, suggesting that both

temperature and H. pluvialis supplementation influenced shrimp

feed intake and subsequently impacted their weight gain and

specific growth rates, consistent with the findings of prior

investigations indicating that L. vannamei exhibited enhanced

growth rates within a specific temperature range (26).

Noteworthily, no significant differences were noted in the survival

rates of L. vannamei across treatment groups, whereas variations in

feed conversion ratios were observed between the normal- and low-

temperature treatment cohorts. In line with the findings of previous

studies, at a temperature of 20°C, both the feeding and growth levels

of L. vannamei were diminished (27). The inclusion of H. pluvialis

did not yield statistically significant changes in the body

composition and hepatopancreas of L. vannamei across the

experimental groups. Additionally, the morphology of the

hepatopancreas and hepatic ducts remained normal in all

treatment groups, with B, R, and E cells displaying typical

morphology and the absence of evident lesions. Overall, L.
FIGURE 3

Effect of the addition of H. pluvialis at varying water temperatures on the hepatopancreas morphology of L. vannamei. Scale bar: 100 mm.
Magnification: 20×. (A) NT_C group; (B) NT_LFM group; (C) NT_LFM_HP group; (D) LT_C group; (E) LT_LFM group; (F) LT_LFM_HP group.
(A: stellate lumen, C: basement membrane, B: B cell, R: R cell, E: E cell).
FIGURE 2

Effect of the addition of H. pluvialis at varying water temperatures on
the astaxanthin content of shrimp shells of L. vannamei. Data
represent the means ± SEM (n = 4). * indicates significant
differences in the same treatment group at different temperatures
(** 0.001<P<0.01).
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vannamei in the normal-temperature environment withH. pluvialis

supplemtation exhibited favorable growth and physiological

outcomes. Comparable findings have been documented in studies

involving Pseudosciaena crocea (P. crocea) (28) and Trachinotus

ovatus (T. ovatus) (29).

Body color is a significant factor in evaluating the quality of

crustaceans. H. pluvialis, a microalgae known for its high

astaxanthin content, has garnered interest in meeting the demand

for natural pigments in aquaculture (30). Astaxanthin

concentrations and body pigmentation intensity in L. vannamei

were significantly higher in the NT_LFM_HP and LT_LFM_HP
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groups, consistent with similar observations in L. vannamei and

Marsupenaeus japonicus (M. japonicus) (31, 32).

This study also aimed to examine the antioxidant properties of

H. pluvialis at varying water temperatures in L. vannamei.

Carotenoids, non-enzymatic compounds within the antioxidant

system, interact with reactive oxygen species (ROS) to mitigate

oxidative damage in tissues (33). Superoxide dismutase (SOD) and

catalase (CAT) are integral components of an organism’s

antioxidant system. Collectively, they play essential roles in

scavenging reactive oxygen species, alleviating oxidative stress,

modulating the levels of reactive oxygen species, and preserving
FIGURE 5

Effect of the addition of H. pluvialis at varying water temperatures on the expression of antioxidant genes in the hepatopancreas of L. vannamei.
Data represent the means ± SEM (n = 4). * indicates significant differences in the same treatment group at different temperatures (* 0.01<P<0.05;
** 0.001<P<0.01; *** P<0.001). # indicates significant differences in the same treatment group at different temperatures (# 0.01<P<0.05;
## 0.001<P<0.01; ### P<0.001).
FIGURE 6

Effect of the addition of H. pluvialis at varying water temperatures on the expression of immune genes related to the Toll pathway of L. vannamei.
Data represent the means ± SEM (n = 4). * indicates significant differences in the same treatment group at different temperatures (** 0.001<P<0.01;
*** P<0.001; **** P<0.0001). # indicates significant differences in the same treatment group at different temperatures (# 0.01<P<0.05;
## 0.001<P<0.01; ### P<0.001).
FIGURE 4

Effect of incorporating H. pluvialis at varying water temperatures on the hepatopancreatic antioxidant enzyme activities of L. vannamei. MDA,
malondialdehyde; T-AOC, total antioxidant capacity; SOD, superoxide dismutase. Data represent the means ± SEM (n = 4).* indicates significant
differences in the same treatment group at different temperatures (* 0.01<P<0.05; ** 0.001<P<0.01; **** P<0.0001). # indicates significant
differences in the same treatment group at different temperatures (## 0.001<P<0.01; ### P<0.001).
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redox homeostasis (34, 35). In the current investigation, the

incorporation of H. pluvialis in feeding groups (NT_LFM_HP,

LT_LFM_HP) reduced MDA levels, indicative of diminished lipid

peroxidation and heightened antioxidant potential, thereby

enhancing the capacity to eliminate lipid hydroperoxides in

shrimp. Additionally, T-AOC and SOD levels were increased,

indicating that the inclusion of H. pluvialis may significantly

enhance the ability of shrimp to counteract oxygen-free radicals

and promote antioxidant defenses. A study investigating Penaeus

monodon (P. monodon) concluded that the inclusion of astaxanthin

could enhance antioxidant enzyme activity (36). Analysis of mRNA

expression levels of antioxidant-related genes in L. vannamei

revealed up-regulation of the cat, sod, and gpx genes in groups

fed H. pluvialis (NT_LFM_HP, LT_LFM_HP), indicating that H.

pluvialis supplementation may mitigate the decrease in antioxidant

capacity caused by low fishmeal diets. Several studies have

established that incorporating H. pluvialis into the diet could up-

regulate the expression levels of antioxidant genes (5, 37, 38),

leading to increased SOD enzyme activity in L. vannamei

cultured at low temperatures compared to those raised at normal

temperatures, indicating that prolonged exposure to low

temperatures in aquaculture may mitigate oxidative stress and
Frontiers in Immunology 10
improve antioxidant capacity. The majority of recent studies

explored changes in temperature in aquaculture experiments and

temperature stress and did not focus on long-term low-temperature

aquaculture. Therefore, we theorize that long-term low-temperature

aquaculture may enhance the organism’s antioxidant capacity.

In the context of innate immunity in invertebrates, various

signaling pathways are activated to regulate immunity through in

vivo signaling. The Toll and IMD signaling pathways have been

extensively investigated in relation to the development of the innate

immune system in crustaceans (39). This study further investigated

the mRNA levels of genes involved in the immune pathway,

specifically focusing on the Toll pathway. The relative expression

levels of the toll, dorsal, and crustin genes were significantly higher in

the H. pluvialis supplementation group compared to the control

group. In the IMD signaling pathway, the expression levels of imd,

relish, and lysc were elevated in the H. pluvialis supplementation

group. Similarly, in the IMD immune pathway, the relative mRNA

expression levels of imd, relish, and lysc were up-regulated, indicating

that exposure to H. pluvialis at varying temperatures may attenuate

the impact of low fishmeal diets on shrimp immunocompetence.

Additionally, in crayfish, the administration of astaxanthin

modulated non-specific immunity levels following exogenous
FIGURE 8

Venn diagram of OTUs Comparison of gut microbiota of the addition of H. pluvialis at varying water temperatures in L. vannamei.
FIGURE 7

Effect of the addition of H. pluvialis at varying water temperatures on the expression of immune genes related to the IMD pathway of L. vannamei.
Data represent the means ± SEM (n = 4). * indicates significant differences in the same treatment group at different temperatures (* 0.01<P<0.05; **
0.001<P<0.01; *** P<0.001; **** P<0.0001). # indicates significant differences in the same treatment group at different temperatures (#
0.01<P<0.05; ## 0.001<P<0.01; ### P<0.001).
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challenges (40). Studies have demonstrated that the inclusion of

astaxanthin in the diet ofM. japonicus boosted the immune response

(41). Additionally, research indicated thatH. pluvialismay contribute

to the activation of the phenoloxidase cascade, eventually leading to

enhanced immunity (42, 43). In this study, the impact of varying

water temperatures on the immune system was examined. Our

findings indicated that in the Toll signaling immune pathway, the

normal water temperature group exhibited lower immune function

compared to the low water temperature group. Additionally, in the
Frontiers in Immunology 11
IMD signaling immune pathway, the low water temperature group

displayed significantly higher relative mRNA expression levels of the

imd, relish, and lysc genes compared to the normal water temperature

group. We postulate that shrimp cultured in a prolonged low-

temperature environment may regulate their own immune system,

thereby sustaining stable life and health. Moreover, we theorize that

under extended low-temperature conditions, shrimp may

autonomously modulate its immune response to maintain

consistent vital functions.
FIGURE 10

Beta diversity analysis of gut microbiota of the addition of H. pluvialis at varying water temperatures in L. vannamei. (A) PCA on OTU level;
(B) PCoA on OTU level.
FIGURE 9

Alpha diversity index statistics of gut microbiota of the addition of (H) pluvialis at varying water temperatures in L. vannamei. Data represent the
means ± SEM (n = 4). # indicates significant differences in the same treatment group at different temperatures (P<0.05). (A) Shannon index;
(B) Simpson index; (C) Ace index; (D) Chao1 index.
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The growth and health of organisms are influenced by gut

microbial communities (44), while water temperature, a critical

environmental factor in aquaculture, impacts the compositional

structure and dynamic balance of these communities. This study

investigated the gut microbiota of L. vannamei and identified

significant differences between the NT_LFM_HP group and the

remaining groups. The analysis of sample complexity revealed a

significant difference in the number of operational taxonomic units

(OTUs) between the NT_LFM, NT_LFM_HP, and other groups,

suggesting that variations in temperature and the presence of H.

pluvialis may impact the composition of gut microbiota, leading to

distinct microbial communities. Beta diversity analysis unveiled

that the gut sample points of the NT_LFM_HP group exhibited

greater dissimilarity from the sample points of the other groups,
Frontiers in Immunology 12
with the microbial communities in the NT_LFM_HP group

significantly differing from those in the other groups. This

observation suggested that H. pluvialis influenced the relative

abundance of dominant operational taxonomic units (OTUs).

The relative abundance plot of the gut flora composition of L.

vannamei indicated that Proteobacteria, Actinobacteria, and

Bacteroidetes were the predominant gut microbial species,

consistent with the findings of previous studies (45–47). The

findings also indicated that reducing fishmeal content (NT_LFM,

LT_LFM) resulted in a higher abundance of Flavobacteraceae.

Importantly, H. pluvialis supplementation (NT_LFM_HP,

LT_LFM_HP) promoted this increase, suggesting that the

presence of H. pluvialis alleviated the detrimental impact of

harmful microorganisms such as Flavobacterium. It is worthwhile
FIGURE 11

Relative abundance of bacterial community at (A) phylum, (B) class, (C) family, and (D) genus levels of gut microbiota of the addition of H. pluvialis at
varying water temperatures in L. vannamei. (E) The significant difference among different treatments at the genus level.
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emphasizing that the results uncovered significant differences in the

abundance of Vibrionaceae and Actinomarinales between low- and

normal-temperature environments, with Vibrionaceae being more

abundant in normal- temperature env i ronments and

Actinomarinales being more abundant in low-temperature

environments. This suggested that Actinomarinales may play a

decisive role in enhancing shrimp immunity by resisting bacterial

invasion and improving immune parameters (48, 49). Furthermore,

the findings of this study suggested that exposure to low

temperatures may decrease the abundance of detrimental

intestinal flora, potentially enhancing shrimp resistance to

pathogens through the modulation of intestinal flora composition.

Furthermore, the research indicated that cultivating shrimp in low

water temperatures could promote immune responses in non-

specific immune assays, thereby supporting their overall health

and survival.
5 Conclusion

The study incorporated varying water temperatures and

fishmeal levels, including a group with 20% fishmeal and another

with 10% fishmeal supplemented with H. pluvialis. The findings

exposed that L. vannamei growth and immune response were

negatively affected by reducing fishmeal levels, whereas H.

pluvialis supplementation improved growth, antioxidant capacity,

and immune function. Additionally, under long-term low-

temperature conditions, L. vannamei demonstrated enhanced

resistance to external pathogens through immune system

modulation. Overall, H. pluvialis, as a natural additive, exerted

positive effects on aquatic animal nutrition, including promoting

growth, improving immunity, and improving biochemical

indicators. Taken together, these results collectively highlighted

the extensive application potential of H. pluvialis in the aquatic

feed industry owing to its unique characteristics.
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