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As the evolutionary ancestor of Cas9 nuclease, IscB proteins serve as
compact RNA-guided DNA endonucleases and nickases, making them
strong candidates for base editing. Nevertheless, the narrow targeting
scope limits the application of IscB systems; thus, it is necessary to find
more IscBs that recognize different target-adjacent motifs (TAMSs).

Here, we identified 10 of 19 uncharacterized IscB proteins from uncultured
microbes with activity in mammalian cells. Through protein and ®RNA
engineering, we further enhanced the activity of IscB ortholog IscB.m16
and expanded its TAM scope from MRNRAA to NNNGNA, resultingin a
variant named IscB.m16*. By fusing the deaminase domains with

IscB.m16* nickase, we generated IscB.m16*-derived base editors that
exhibited robust base-editing efficiency in mammalian cells and effectively
restored Duchenne muscular dystrophy proteins in diseased mice
through single adeno-associated virus delivery. Thus, this study
establishes a set of compact base-editing tools for basic research and
therapeutic applications.

Clustered regularly interspaced short palindromic repeat (CRIPSR)
Cas systems, such as type Il Cas9 and type V Casl2 systems, serving
as the prokaryotic adaptive immunity system against viruses, have
beendevelopedinto genome-editing toolsin basic researchand gene
therapy'~. The engineered Cas9 nickase (nCas9) or deactivated Cas9
(dCas9) versions fused with various domains have been established as
base-editing, prime-editing and epigenome-editing technologies*°.
However, the large size of Cas9 and Cas12, particularly nCas9-based
gene-editing tools, hinders the application of gene editing based
on adeno-associated virus (AAV) vectors. Recently, compact Cas9
(refs.7-9), Cas12fhomologs'®* (400-700 aa) and TnpB"* (-400 aa),

the ancestral branch of Casl12, have beenreported. However, because
of their poor editing activity or lack of an HNH domain, these proteins
have limited base-editing activity.

IscB proteins are encoded in a distinct family of IS200/IS605 trans-
posons possessing HNH and RuvC domains, such as Cas9, and are
thought to be the ancestor of Cas9 (refs. 17,18). However, the size of
IscB proteins is only two fifths of that of Cas9 (400 aa). Recent stud-
ies have shown that the IscB system (IscB-wRNA) is a programmable
long noncoding RNA (referred to as wRNA)-guided DNA endonucle-
ase and engineered OgeulscB-based base editors (enOgeulscB-BEs)
exhibit high base-editing efficiency in mammalian cells". The IscB
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systemrequires a 3’ terminal target-adjacent motif (TAM) to recognize
the target DNA (usually 6 nt) and the recently reported enOgeulscB
requires4 nt (NWRRNA). Complex TAM sequences greatly reduce the
number of sites that canbe edited. The narrow TAM range of OgeulscB
inmammalian cells has become an obvious limitation. Therefore, itis
necessary to develop higher-efficiency miniature base editors with a
broader TAMrange. Here, we identified 19 natural IscB-wRNA systems
with various TAM scopes from metagenome datasets. By engineering
both the wRNA and the IscB.m16 protein, we generated the IscB.m16*
system (IscB.m16 containing E326R;T459E;P460S;T462H substitutions
(IscB.m16"") and enwRNA) with robust editing activity and expanded
the TAM range to NNNGNA in mammalian cells. We further developed
IscB.m16*-based adenine and cytosine base editors demonstrating
robust base-editing efficiency and broad target recognition in mam-
malian cellsand mouse models. Moreover, we provide acomprehensive
dataset of IscB-wRNA systems with diverse TAM scopes and a strategy
towiden the TAM range.

Results

Functional identification of uncharacterized IscB orthologs
Toidentify additional IscB-wRNA systems with diverse TAMs, we down-
loaded 200 Gb of rumen metagenome-assembled genomes®’. We used
a computational pipeline to annotate IscB orthologs and their cor-
responding wRNAs, which led to the discovery of 19 uncharacterized
IscB systems. These systems were phylogenetically clustered into three
subgroups on the basis of a sequence alignment of IscB effector pro-
teins (Fig. 1aand Extended Data Fig.1). Through the protein sequence
alignment encompassing 500 aa, weidentified the conserved residues
within the RuvC domain, HNH domain, P1D (Plinteraction domain) and
TID (TAM interaction domain), suggesting the possibility of nuclease
and nickase activity (Supplementary Fig. 1).

To detect whether these IscB proteins and predicted correspond-
ing WRNAs were capable of cleaving DNA and characterized by TAM rec-
ognition, we performed a bacterial depletion assay. We cotransformed
Escherichiacolicells with plasmids carrying IscB and its cognate ®RNA
withaspacer,aswellasaTAM library plasmid carrying target sequences
complementarytothe spacerand 8-bp randomized sequences (Supple-
mentary Fig. 2a). Through this assay, a series of specific depleted TAM
sequences were enriched associated with each IscB system, indicating
that these naturalIscB orthologs have RNA-guided endonuclease activ-
ityin prokaryotes (Fig.1b and Supplementary Fig. 2b). Subsequently, we
analyzedtherelationship between the divergence of IscB proteins and
differencesin TAMs and observed that most IscB proteins have notable
distinctions in both their amino acid sequences and their respective
optimal TAMs (Supplementary Fig. 2c).

To further assess the nuclease activity of these IscB orthologs
in human cells, we used a fluorescence reporter system. This system
involved cotransfecting a plasmid expressing the IscB protein and its
corresponding target WRNA, along with areporter plasmid encoding
GFxxFP, into cultured HEK293T cells. Green fluorescent protein (GFP)
activation based on the GFxxFP reporter (GFxx-target site-xxFP) was
carried out by endonuclease-mediated double-strand breaks (DSBs)
to the target site and single-strand annealing (SSA)-mediated repair.
We then measured the enhanced GFP (EGFP) signal intensity of the
inactivated GFxxFP reporter, which was activated by IscB-mediated
DSBs? (Fig. 1c). Using the GFxxFP reporter with the experimentally
determined TAM for each IscB, 10 of 19 IscBs exhibited a significant
increase (>9-fold ratio of target and nontarget, with target recogni-
tion >3.0%) in EGFP signal intensity relative to nontarget sequences.
Notably, IscB.m16 exhibited the highest signal intensity (Fig. 1d).

Engineering ®RNA to improve editing efficiency

Guide RNA (gRNA) engineering strategies have been widely applied
to enhance the cleavage activity of RNA-guided nucleases™*". To
enhance the activity of the natural IscB.m16 system, we engineered

its WRNA by truncation or mutagenesis, generating ®RNA variants in
five stem-loop regions: R1, R2, R3, R4 and RS (Fig. 2a and Supplemen-
tary Fig. 3a). We performed the truncations by shrinking loops and
truncating long stems. We screened the editing efficiency using the
GFxxFP reporter and observed increased editing activity in the case
of R1(R1-A13) and RS (R5-A10) truncated wRNA (Fig. 2b). To increase
the stability of the ®RNA, we replaced the A<U or mismatched base
pairs in stem regions with thermodynamically stable G-C base pairs.
We replaced the mismatched G+U and partial A-U base pairs in stem
regions with thermodynamically stable GeC base pairs and five variants
exhibitedincreased activity (SupplementaryFig.4). For the R1-A13 and
R5-A10 truncated ®RNA, we further combined five mutations and found
that v2.27 (del15-20, del29-35, del171-180, 24-G, 25-C, 57-G, 79-C and
117-C) showed enhanced editing activity at the AAAGCA TAM reporter
(Fig. 2¢). Similarly, to improve the activity of the IscB.m17 system, we
truncated six stem loops of the wRNA on the basis of their secondary
structure and found that R1 (R1-A59) and R6 (R6-A9) truncated ®RNA
showedincreased editing activity (Fig. 2d and Supplementary Fig. 3b).
Wethen generated avariant with slightlyimproved editing activity by
replacing A-Uwith C-G base pairsin the R1stem loop of the truncated
®RNA (R1-A59) (Fig. 2e). Notably, a truncation of the first (R1) or last
(R5or R6) stem loop of the ®RNA improved the IscB activity, while
truncation of theintermediate (R2, R3, R4 or R5) stem loops markedly
reduced activity. To further test this hypothesis and obtain more IscB
systems with high activity, we trimmed the R1and/or R5 stem loops of
the @RNA from four other IscB systems with different TAM ranges and
activity inmammalian cells. We found that the truncation of R1and/or
R5fromIscB.ml, IscB.m15and IscB.m18 markedly improved the editing
activity (Supplementary Fig. 3c-e and Extended Data Fig. 2). Taken
together, our extensive engineering of ®RNA resulted in numerous
active IscB systems, particularly IscB.m16 and IscB.m17.

Engineering IscB to expand recognition and enhance activity
Substitutions of amino acid residues in the DNA-binding pocket or
cleavage domains with positively charged arginine have been shown
to enhancethe editing activity of RNA-guided nucleasesin eukaryotic
cells? >, We performed asequence alignment analysis of IscB.m16 and
OgeulscB. According to conserved sequences, we divided the differ-
entstructure domains of IscB.m16 and further performed an arginine
scanning mutagenesis in the P1D, TID and RuvC domain. According
to the activated EGFP fluorescence intensity of cells with an AAAGAA
TAM reporter, over 20 of 138 variants in the RuvC domain exhibited
improved editing activity compared to wild-type (WT) IscB, with one
variant (E326R) showing the highest editing activity (Fig. 3a).
Considering that the P1D and TID domains are related to TAM
recognition, we next screened 124 variants in these two domains using
six GFxxFP reporters with different TAMs to broaden the TAM range.
These reporters had the same target sequences but different 6-nt
TAMs (AAAGAA, CAAGAA,ACAGAA, AACGAA, AAAGCA and AAAGAC).
Compared to WT IscB.m16, seven variants (M424R, T462R, N463R,
T465R, Q475R, K478R and 1504R) showed improved activity and TAM
recognition, as evidenced by the increase (>1.05-fold) in EGFP fluores-
cenceintensity for all six reportersrelative to the WT (Supplementary
Fig. 5). Meanwhile, through predicted structure analysis of IscB.m16,
weidentified 11 potential sites associated with TAM recognition: H380,
Q381,V433,T459,P460,1461,F467,Y468,R476,K478 and L481.In order
to broaden the TAM range with improved editing efficiency, we con-
ducted saturation mutagenesis at these 18 sites—the 7 sites from P1D
and TID screening and the 11 predicted sites. We then screened these
mutants using a TAM pool characterized by low activity. TAM pool
1 consisted of ACAGAA, AATGAA, AAACAA, AAAGCA and AAAGAC,
which had relatively low editing efficiency recognized by the IscB.m16
WT (Extended Data Fig. 3a,b). Using a similar fluorescence reporter
system, we found that some variants, especially P460S, T462H, T462L
and T465V, greatly enhanced the editing activity of TAM pool 1 (Fig. 3b
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Fig.1|Identification and characterization of functional IscB orthologs.

a, Phylogenetic tree of 19 uncharacterized IscB orthologs. b, TAMs of 19 active IscB
proteins and two OgeulscB variants" determined by bacterial depletion assay.

¢, Schematics describing the detection of editing activity based on the fluorescence
signal of GFxxFP reporter activation in HEK293T cells. d, Fluorescence signal of

EGFP activated by IscB-mediated DSBs quantified by flow cytometry. Nontarget
denotes a spacer with arandom sequence. Asterisks denote a>9-fold ratio of
target and nontarget, with target recognition > 3.0%, representing variants
with activity in HEK293T cells. Values represent the mean of three independent
biological replicates.

and Extended Data Fig. 3c). To validate the enhanced activity of
these four variants, we performed TAM recognition with 16 reporters
including NAAGAA, ANAGAA, AANGAA, AAAGNA and AAAGAN. The
results demonstrated that four variants exhibited higher EGFP fluo-
rescenceintensity relative to the WT, suggesting their superior editing
activity (Extended Data Fig. 3d). On the basis of the results of the 16
reporters described above, we combined the E326R, P460S, T462H,
T462L and T465V substitutions and obtained the best-performing

combination variant with E326R, P460S and T462H, named IscB.
m16-RSH (Fig. 3c and Extended Data Fig. 3e). To test the TAM prefer-
ence of IscB.m16-RSH, we detected EGFP activation using 64 TAM
reporters withthe 5-NNNGAA-3’ TAM and IscB.m16-RSH showed high
editingactivity for most TAMs but remained low for others (Extended
Data Fig. 3f). Considering the characteristics of TAM recognition,
we designed three additional TAM pools, pool 2 (TTTGAA, TTGGAA,
TCAGAA, CTAGAA and CTGGAA), pool 3 (GTAGAA, GTTGAA, GTCGAA,
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Fig.2|Engineering of various IscB wRNAs to improve editing efficiency
inmammalian cells. a, Secondary structure of IscB.m16 wRNA predicted by
RNAfold. Five regions are indicated as R1, R2, R3,R4 and R5. b, Increased EGFP
signalinduced by IscB.m16 caused by truncation of the stem loops in R1 (R1-A13b)
and R5 (R5-A10) of the wRNA. ¢, Substitutions of A-U to G-C based on the trimmed
®RNA (R1-A13b and R5-A10) enhanced the EGFP fluorescence signal mediated by
IscB.m16. Here, v2.27 represents the IscB.m16-wRNA variant with R1-A13, R5-A10,

24-G,25-C,57-G,79-Cand 117-C. d,e, ®RNA engineering for IscB.m17. Truncation
of the stem loop and/or substitutions of AU to G-C in the WRNA improved the
editing efficiency of IscB.m17. Nontarget (NT) denotes a spacer witharandom
sequence. Values represent the mean of three independent biological replicates.
The red dashed lines represent the value of the WT. The red arrows represent the
current optimal variants for each IscB wRNA. Values and error bars represent the
mean +s.d. (n =3 independent biological replicates).

GTGGAA and GCAGAA) and pool 4 (ATAGAA, TGTGAA, CTCGAA and
GAGGAA) as positive pools (Extended DataFig. 3f). To furtherimprove
the activity at further TAMs, we selected sites that showed improved
activity in TAM pool 1. We then separately combined the mutants at
sites T459,N643,Q475,L4810r 1504 with IscB.m16-RSH and evaluated
the variants using reporters from pools 2 to 4 (Fig. 3d). We found that
the combination of T459E with IscB.m16-RSH, named IscB.m16"*",
exhibited increased editing efficiency of reporters from pool 2 rela-
tiveto IscB.m16-RSH, with comparable editing efficiency of reporters
from pools 3 and 4 (Fig. 3d). To assess the target range and editing
activity of IscB.m16"*", we used 64 NNNGAA and 16 AAAGNN TAM
reporters and found that IscB.m16**" exhibited significantly improved
editing efficiency of these reporters compared to WT IscB.m16
(Supplementary Fig. 6).

To further optimize ®RNA-v2.27 (del15-20, del29-35, del171-180,
24-G, 25-C,57-G, 79-C and 117-C) based on IscB.m16"*H, we flipped the
G+Cbase pairs of existing mutations (for example, converting 57G-117C
to 57C+117G) or replaced the remaining mismatched G-U base pairs
with G+C or C-G, guided by the wRNA secondary structure. We found
thatv2.27-M21(R1-A13, R5-A10, 24-G, 25-C, 57-C, 79-C,117-C and 189-G)
showed significantly enhanced editing efficiency, hereafter named
enwRNA (Fig. 3e). Then, we examined the indel efficiency of IscB.
m16~=H with enwRNA at five endogenous lociin cultured HEK293T cells
and found that enwRNA-IscB.m16*" (named IscB.m16*) showed the
highest activity and the broadest range of deletion (Fig. 3fand Extended
DataFig.4a). We also explored arange of spacer lengths for IscB.m16*
using fluorescence reporters at two different targets and two endog-
enous lociinthe human genome and found that IscB.m16 exhibited the
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Fig.3|Protein engineering of IscB.m16 to improve editing efficiency and
expand TAM range in mammalian cells. a, Screening for highly efficient
variants by substitutions of amino acid residues in the RuvC domain of IscB.
ml6 protein with arginine. Each dot represents the editing activity for asingle
variant. The dashed line indicates the editing activity of the WT. b, Screening
for highly efficient variants with saturation mutagenesis at selected sites

using GFxxFP reporters containing a pooled TAM target. Each dot represents
the editing activity for a single variant. The dashed line indicates the editing
activity of the WT. ¢, Comparison of editing activity among WT IscB.m16 and its
variants at 16 GFxxFP reporters with different TAMs. IscB.m16-S represents the
variant P460S, IscB.m16-RS represents the variant witha combination of E326R
and P460S, IscB.m16-RSH represents the variant with acombination of E326R,
P460S and T462H and IscB.m16-RSV represents the variant with acombination

of E326R, P460S and T465V. Colored dots reflect the mean of three independent
biological replicates. d, Screening for variants with improved editing frequency
based on GFxxFP reporters containing three different TAM pools along with

the same WRNA-v2.27. The orange bar represents the IscB.m16"*" variant with a
combination of IscB.m16-RSH and T495E. P values were determined by Tukey’s
multiple comparisons test following ordinary one-way ANOVA. *P < 0.05. NS, not
significant. e, The second round of wRNA engineering by substituting C-G base
pairs on WRNA-v2.27 (R1-A13, R5-A10, 24-G, 25-C, 57-G, 79-C and 117-C) based on
IscB.m16"H. f, Comparison of indel frequency of WT IscB.m16 and its variants
atfive endogenous sites in HEK293T cells. g, TAM logos of IscB.m16 and IscB.
m16* systems. Values and error bars represent the mean + s.d. (n =3 independent
biological replicates).
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highestactivation with aguide spacer length of 14-21 nt (Extended Data
Fig.4b,c). Furthermore, TAMidentification of IscB.m16* using bacterial
depletion indicated that IscB.m16* recognized a 5-NNNGNA-3’ TAM,
whilelscB.m16 WT recognized a 5’-MRNRAA-3’ TAM (Fig. 3g). To inves-
tigate off-target activity, we performed primer-extension-mediated
sequencing (PEM-seq) experiments on IscB.m16* enOgeulscB and SpG
Cas9. IscB.m16* showed similar translocation events to enOgeulscB
and SpG at the vascular endothelial growth factor A (VEGFA)-Sé6 site
(Supplementary Fig. 7). Together, these results demonstrate that IscB.
m16*exhibits high editing efficiency with highly flexible 5’-NNNGNA-3’
TAM recognition.

IscB.m16*-mediated base editing in mammalian cells
Using prior information of the catalytic residues for IscB" or SpCas9
(refs. 5,6), we constructed the inactive mutant D61A in the RuvC-I
domain, H248A in the HNH domain and D61A;H248A on the basis
of IscB.m16 and IscB.m16*. We tested nickase activity using the dual
target reporter according to a previous study”. Consistently, IscB.
m16**?*showed the highest nickase activity and IscB.m16*-D61A;H248A
showed no activity (Supplementary Fig. 8). In view of the compact
size of IscB (Fig. 4a), we next fused IscB.m16*°°* with TadA8e-V106W
to generate IscB.m16*-ABE (adenosine base editor) or with human
APOBEC3A-W104A to generate IscB.m16*-CBE (cytosine base editor)**?.
To comprehensively evaluate the editing performance of IscB.
m16*-ABE, we designed dozens of TAM-matched and protospacer-
adjacent motif (PAM)-matched endogenous loci for IscB.m16-ABE, IscB.
m16*-ABE, enOgeulscB-ABE" and SpG-ABE? (Fig. 4b). We found that the
editingwindow of IscB.m16*-ABE ranged from positions1to 10 (count-
ing the TAM as positions 15-20), while the optimal editing window
occurred within positions 2-5 (Fig. 4c). At these matched G-containing
TAM and PAM sites in HEK293T cells, IscB.m16*-ABE showed signifi-
cantly higher A-to-G base-editing efficiency (46.15% + 4.08%) than
IscB.m16-ABE (9.19% * 2.34%) and enOgeulscB-ABE (31.34% + 4.90%)
and comparable base-editing efficiency to SpG-ABE (50.77% + 4.13%)
(Fig.4d, Extended Data Fig.5and Supplementary Fig. 9).Inaddition, the
indel activity of IscB.m16*-ABE was similar to that of enOgeulscB-ABE
but lower than that of SpG-ABE (Supplementary Fig. 10a,b). To char-
acterize the TAM compatibility of IscB.m16*-ABE, we further ana-
lyzed the base-editing results and found that it showed A-to-G base
editing at all TAM sites, while enOgeulscB-ABE showed no activity
at some TAM sites such as N3GCA, N3GGA and N3GTA (Fig. 4e and
Supplementary Fig. 9). Among the 33 designed TAM sequences, 19
TAM sequences were NWRGNA, which conformed to the canonical
TAM and PAM sequences for each nuclease (IscB.m16*, NNNGNA;
enOgeulscB, NWRRNA; SpG, NGN). For the 19 NWRGNA TAM sites,
IscB.m16*-ABE, enOgeulscB-ABE and SpG-ABE exhibited comparable
A-to-G efficiency (Extended Data Fig. 6a). For the 14 non-NWRGNA
TAM sequences, IscB.m16*-ABE showed significantly higher A-to-G
base editing than enOgeulscB-ABE and comparable base editing
to SpG-ABE (Extended Data Fig. 6b). At some sites such as EMX1-S1
(GAAGAA) and VEGFA-S4 (AAAGCA), enOgeulscB-ABE exhibited
higher editing efficiency than IscB.m16*-ABE and SpG-ABE (Extended
Data Fig. 5 and Supplementary Fig. 9). This result also indicated the
different preferred recognition TAM of each nuclease. To further
evaluate the specificity of IscB.m16*-ABE in HEK293T cells, we con-
ducted gRNA-dependent off-target DNA editing at predictive sites
using Cas-OFFinder®® and gRNA-independent off-target DNA editing
using the orthogonal R-loop assay” at the ALDH1A3-S1, VEGFA-S1and
EMX1-S2 target sites. Targeted deep sequencing analysis revealed
that IscB.m16*-ABE exhibited similar gRNA-dependent off-target
effects to enOgeulscB-ABE and SpG-ABE at predicted off-target sites
(Extended Data Fig. 7 and Supplementary Fig. 11). Using five previ-
ously reported SaCas9 target sites, we observed that IscB.m16*-ABE
showed comparable low gRNA-independent off-target events to
enOgeulscB-ABE and SpG-ABE (Extended Data Fig. 8). In addition,

IscB.m16*-CBE exhibited comparable base-editing activity and indels
to enOgeulscB-CBE and SpG-CBE, with base-editing efficiencies of
60.01% + 8.08%, 63.72% + 5.33% and 75.42% + 8.12%, respectively (Fig. 4f,
Extended Data Fig. 6¢ and Supplementary Fig.10c,d). In addition, we
detected IscB.m16*-ABE, enOgeulscB-ABE and SpG-ABE at five endog-
enoussites (ALDH1A3-S1, EMX1-S1, EMX1-S2, PCSK9-S1and VEGFA-S5)
inthe U-20S and HeL a cell lines. Consistent with its editing efficiency
in the HEK293T cell line, IscB.m16*-ABE exhibited high editing effi-
ciency in the U-20S and Hel a cell lines (Extended Data Fig. 9). Col-
lectively, these results indicate that IscB*-based base editors exhibit
highly active editing, abroad target range and low off-target effectsin
mammalian cells.

Considering the bystander editing of base editors, we used
high-fidelity TadA8e variants and different linkers combined with
IscB to narrow the editing window (Supplementary Fig.12). To address
this concept, we tested high-fidelity deaminases and different linkers.
We replaced TadA8e-V106W of IscB.m16*-ABE with TadA8e-N108Q or
TadA8e-N108Q;L145T (ref. 28) and found a narrower editing window
butlower editing efficiency compared to IscB.m16*-ABE (Extended Data
Fig.10a). Thereplacementof linkers between IscB and TadA8e-V106W
showed no significant improvement with respect to narrowing the
editing window (Extended Data Fig.10b).

IscB-derived CBE restores dystrophin expression in mice
Taking advantage of its small size, the IscB*-derived base editor canbe
packaged withits WRNA into a single rAAV vector, making ita greatly
promising candidate for the treatment of certain genetic diseases,
such as Duchenne muscular dystrophy (DMD)?**, Previous studies
have shown that exon 50 skipping of the dystrophin gene canrestore
dystrophin expression ina mouse model with an exon 51deletion, a
mutation occurringin nearly 8% of patients with DMD**2, To access
IscB.m16*-based base editing in DMD therapy, we devised a strategy
whereby IscB.m16*-CBE disrupted the splicing signal by converting
the G (inthe paired chain of C) within the splicing acceptor site (‘AG’)
toother bases (A, C or T), resulting in exon skipping (Fig. 5a). We first
tested IscB.m16*-CBE with the ®RNA targeting the AG site adjacent
to exon 50 in HEK293T cells. We observed that IscB.m16*-CBE dis-
played approximately 25% activity at position 10, whichis the splicing
acceptor site, whileenOgeulscB-CBE and SpG-CBE showed almost no
base-editing activity (Fig. 5b). To conveniently package toolsinto a
single AAV, we chose IscB.m16*-CBE (4.0 kb) without the uracil DNA
glycosylase inhibitor (UGI) domain (two UGl domains and a linker,
196 aa) to be packaged into AAV9 and detected the base-editing
activity in mice. Two versions of IscB.m16*-CBE carrying different
nuclear localization signals (NLSs) were designed and delivered to
the muscle of mice with humanized exon 50 knock-in and exon 51
deletion (Fig. 5c). Then, 4 weeks after injection, we performed an
editing efficiency evaluation, western blot analysis and histologi-
cal staining for dystrophin expression. Targeted deep sequencing
analysis showed that IscB.m16*-CBE-v2 achieved an approximate
7% conversion of G-to-H (G-to-A, G-to-T and G-to-C) and up to 30%
level of exon 51 skipping (Fig. 5d,e). Western blotting and histologi-
cal staining quantitative analysis of the tibialis anterior (TA) mus-
cle and immunostaining results indicated that IscB.m16*-CBE-v2
restored the dystrophin protein levels in myofibers to 40% of the
WT control (Fig. 5f-h). Together, these results indicate that the IscB.
mlé6*-derived base editor, as a highly effective and broad-TAM min-
iature base-editing tool, provides a promising approach for basic
research and therapeutic applications.

Discussion

Insummary, through computational mining of metagenomic sequence
datasets, we identified 19 natural IscB orthologs with various TAM
recognition sites and 10 of the IscBs showed activity in mammalian
cells, highlighting the diversity of the IscB family. By examining the
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Fig. 4| Characterization of IscB-derived and SpG-derived base editorsin
mammalian cells. a, Schematic of IscB, OgeulscB and SpG with different sizes.
b, Overview of TAM-matched and PAM-matched sites used to compare
IscB.m16-derived ABE to enOgeulscB-ABE and SpG-ABE. ¢, Editing window and
base-editing activity of IscB.m16-ABE, IscB.m16*-ABE, enOgeulscB-ABE and
SpG-ABE at all protospacer positions. Data are presented as the mean +s.e.m.
Values are average editing efficiencies at each position of A within the target

of three independent biological replicates from 33 endogenous sites.

d, Comparison of the A-to-G conversion efficiency of IscB.m16-ABE, IscB.
ml6*-ABE, enOgeulscB-ABE and SpG-ABE at 33 endogenous loci. Data were
collected from 33 endogenous sites and are presented as the mean +s.d. Each
dotrepresents the average highest base-editing activity at each endogenous
target site of three independent biological replicates. Adjusted P (P,g;) values are
0.8453,0.046 and 0.0041, respectively. e, Comparison of the A-to-G conversion
efficiency of IscB.m16-ABE, IscB.m16*-ABE, enOgeulscB-ABE and SpG-ABE

grouped by TAM at 33 target sites. Data are presented as the mean + s.d. The
number of values from left to rightis 13,10, 5and 5, respectively, and the values
represent optimal editing efficiencies within the target as the mean of three
independentbiological replicates from endogenoussites. The P, values of
N3GAAssites are 0.8698, 0.9404 and 0.9974, respectively. The P,4 values of
N3GCAsites are 0.8154,0.0271and 0.0027, respectively. The P,; values of N3GGA
sitesare 0.0003, 0.2172 and 0.000007, respectively. The P, values of N3GTA
sites are 0.9744, 0.6102 and 0.8342, respectively. f, Comparison of the C-to-T
conversion efficiency of IscB.m16*-CBE, enOgeulscB-CBE and SpG-CBE at eight
target sites. Data were collected from eight endogenous sites and are exhibited
asthemean +s.d. Each dot represents the average highest base-editing activity
within the target at each endogenous target site of three independent biological
replicates. All Pvalues were determined by Tukey’s multiple comparisons test
following ordinary ANOVA. *P < 0.05, **P < 0.01, **P < 0.001and ****P < 0.0001.
NS, not significant.

results of six engineered wRNAs, we found that the truncation of the
first (R1) and last (R5 or R6) stem loops of the WRNA usually enhanced
the editing activity of IscBs. Through structure-guided design and
protein engineering of the P1D, TID and RuvC domain of IscB, we devel-
oped the IscB.m16*system that exhibited improved editing activity and
extended the TAM scope to 5’-NNNGNA-3’. This is a notably broader
recognition range than the previously reported enOgeulscB with a
5-NWRRNA-3’ TAMY, although we found that enOgeulscB showed

efficientactivity withabroader TAM (not only NWRRNA) in mammalian
cells. Furthermore, IscB.m16*-derived base editors showed editing
activity comparable to SpG-BE and even higher editing activity than
SpG-BE and enOgeulscB-BE at some disease-related loci, such as DMD.
Therefore, considering their compact size and extended editing scope,
IscBm16*-derived base editors have the potential to be alternatives
to enOgeulscB-derived and Cas9-derived base editors for AAV-based
therapeutic applications.
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isshowningreen. Scale bars, 100 pm. g, Quantification of Dys fibers and
dystrophinin cross sections of TA muscles from f. Data are presented as the

mean +s.d. (n =3 independent biological replicates). h. Western blot analysis of
dystrophin and vinculin expression in TA muscles 4 weeks after injection with
AAV9-IscB.m16*-CBE or saline.

Additionally, we found that both IscB.m16* and enOgeulscB
showed indel activity with aguide containing a spacer length of 14-21
nt (Extended Data Fig. 4c). This is similar to a previous study show-
ing that OgeulscB exhibited indel activity with a guide containing a
spacer length of 14-26 nt". Thus, most IscB-wRNA systems have less

stringent requirements with regard to spacer length. Given the poten-
tial for off-target effects with short spacer lengths, screening variants
to specifically bind long spacers (for example, 20 nt), increasing the
mismatch of spacers to extend the spacer length or designing a specific
stable lock-and-key structure® may minimize the off-target effects.
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Considering the 14-nt spacer length, a 2-nt TAM may achieve the best
balance between targeting range and specificity. Therefore, develop-
ing more highly active IscB orthologs with different TAM recognition
sites may be more important for future applications than developing a
near-TAMless IscB. Given the experience gained in engineering the IscB
nuclease and WRNA, the activity and TAM editing range of other IscB
orthologs such as OgeulscB could be improved and expanded using
similar strategies. Together with IscB.m16*, a set of engineered IscB
orthologs may constitute a miniature genome base-editing toolbox.
Overall, the engineered compact IscB-derived base editors
were proven to be a platform with highly efficient, specific and
broad-TAM-scope DNA base editing in mammalian cells and in mouse
models of diseases, highlighting their potential in gene therapy.
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Methods

Computational analysis of IscB systems

More than 200 Gb of metagenome assemblies were downloaded
from the European Nucleotid Archive database (accession number
PRJEB31266). Firstly, we used TBLASTN and the OgeulscB protein
to identify IscB-containing sequences of metagenomes with an £
value <1x107%(ref. 20). Then, Prodigal was used to annotate the pro-
teins of the IscB-containing sequences®*. We further searched for previ-
ously trained wuRNA models to annotate the wRNA sequences withan £
value <1x107°, RNAfold was used to predict the secondary structure
ofthe WRNA***, MEGAX was used to construct the phylogenetic tree”.
Allnewly IscB protein sequences and wRNA scaffolds (DNA sequences)
are provided in Supplementary Table 1.

Plasmid construction

All E. coli codon-optimized IscB-encoding genes and their associated
®RNA scaffolds were synthesized by Shanghai Huagene Biotech-
nology and assembled into a pUC19-derived vector (EcoNI + Xbal)
under the lac and J23119 promoters using a 2x pEASY basic seam-
less cloning and assembly kit (TransGen Biotech). All human
codon-optimized IscB-encoding sequences were synthesized by
GenScript and incorporated into a mammalian expression vector
under the CBh promoter. For endogenous genome-editing experi-
mentsin HEK293T cells, the gRNA oligos were synthesized and cloned
into a Bpil-digested backbone of the U6 promoter using T4 ligase
(Thermo Fisher Scientific). All colonies were sequence-verified from
promoter to poly(A) using Sanger sequencing (Genewiz). Informa-
tion on all IscB expression sequences is provided in Supplementary
Tables 2-4.

Generation of the TAM library and TAM depletion assay

A randomized TAM library containing a target sequence followed
by eight randomized bases downstream was constructed. The syn-
thesized single-stranded DNA (ssDNA) (HuaGene) was converted
into double-stranded DNA (dsDNA) by annealing with a short ssDNA
and second-strand synthesis using the Large (Klenow) fragment
(New England Biolabs). The resulting dsDNA was then assembled
into pACYC184 vectors using Gibson assembly (New England Bio-
labs). The products were purified using isopropanol, electropo-
rated into TransforMax EC100 electrocompetent E. coli according
to the manufacturer’s instructions and plated on chloramphenicol
plates. After 13 h of growth at 37 °C, E. coli cells were scraped from
the plates and extracted using a NucleoBond Xtra Midiprep kit
(Machery Nagel).

For the bacterial TAM depletion assay, we cotransformed 200 ng
of TAM library plasmids and 300 ng of plasmids expressing E. coli
codon-optimized IscB and wRNAinto TransforMax EC100 electrocom-
petent E. colicellsby electroporation. Then, the transformed cells were
recovered for 1 h at 37 °C with antibiotic-free medium and plated on
250 mm x 250 mm carbenicillin and chloramphenicol plates. After13 h
of growth, cells were harvested and plasmid DNA was extracted using a
NucleoBond Xtra Midiprep kit (Machery Nagel). The TAM-containing
region was amplified by Phanta Max super-fidelity DNA polymerase
(Vazyme Biotech) for 12 cycles and Illumina adaptors and unique
barcodes were added by a second round of PCR for 18 cycles. The
resulting PCR products were purified with agel extraction kit (Omega)
and sequenced by a lllumina NovaSeq 6000 platform with 150-bp
paired-end reads (Genewiz).

TAMregions were extracted, counted and then normalized to the
total TAM counts for each sample. For each specific TAM, TAMs that
appeared more thanonce werefiltered and the log fold change (logFC)
of its frequency was measured as the log ratio compared to nontarget
control. Depletions with alogFC < -30 (s.d.) were considered statisti-
cally significant. A position weight matrix (PWM) was built from all
significantly depleted sequences, with —~logFC values serving as the

corresponding weight. A sequence logo was generated on the basis of
this PWM using WebLogo (version 3.7.12)".

Cell culture and transfection

HEK293T cells were cultivated in DMEM (Sigma) supplemented with
10% FBS (Gibco), 1% penicillin-streptomycin-glutamine (Gibco) and
1% minimum essential medium nonessential amino acids (Gibco) in a
humidified incubator at 37 °C with 5% CO,. For the detection of IscB
nuclease activities and screening of its variants, HEK293T cells were
seeded in 24-well plates with 70-80% confluence. After a12-h incuba-
tion, 1.6 pg of plasmids were cotransfected into HEK293T cells using
polyethylenimine (PEI) following the manufacturer’s manual. The plas-
midsincluded those encoding the BFP-T2A-GFxxFP and IscB systems,
with amolar ratio of 1:1. For genome or base editing at endogenousloci,
1.6 pgofall-in-one plasmids were transfected to express gRNA and the
nuclease-editing or base-editing system. After 48 h, cells were sorted
by fluorescence-activated cell sorting (FACS) analysis.

FACS analysis

Before FACS analysis, cells were subjected to treatment with 0.25%
trypsin-EDTA (Gibco) for dissociation and suspended in FBS-containing
DMEM. For the assessment of IscB nuclease activity and screening of
variants using the fluorescence reporter system, cells were analyzed
for EGFP, mCherry and BFP fluorescence. A total of 25,000 single cells
were recorded to analyze efficiency using a Beckman CytoFlex flow
cytometer 48 h after transfection. Data analysis was performed by
FlowJo X (version10.0.7). For genome-editing analysis, approximately
15,000 transfection-positive cells (defined as those with afluorescence
intensity > 10° among fluorescence-positive cells) were sorted 48 h
after transfection using a BD FACS Aria Ill flow cytometer. Following
FACS sorting, genomic DNA from the collected cells was extracted by
celllysis with 25 pl of proteinase K-added lysis buffer (Vazyme Biotech)
per sample, as described previously. The cell lysates were stored at
-20 °Cuntil further use.

Targeted deep sequencing and analysis

Todetect the editing efficiency at endogenous loci, the target genome
regions of interest were amplified from cell lysates by PCR using Phanta
Max super-fidelity DNA polymerase (Vazyme Biotech). For targeted
deep sequencinganalysis, PCRreactions were performed using primers
withunique barcodes. The amplified products were purified using agel
extraction kit (Omega) and sequenced by an Illumina NovaSeq 6000
platformwith150-bp paired-end reads (Genewiz). The deep sequenc-
ing data were first demultiplexed by a custom script based on sample
barcodes. The demultiplexed reads were then analyzed by CRISPRess02
(version 2.0.20b)® for the quantification of the editing efficiency,
includingindels and base conversions at each target locus. All targeting
sites and primers used are provided in Supplementary Table 5.

PEM-seq assay

PEM-seq in HEK293T cells was performed as previously described**°.
Specifically, all-in-one plasmids containing IscB.m16*, enOgeulscB
and SpCas9-SpG with targeting VEGFA-S6 wRNA were transfected into
HEK293T cells using PEI; after 48 h, positive cells were harvested for
DNA extraction. A total of 10 pg of genomic DNA was fragmented with
apeak length of 300-700 bp by Covaris sonication. Those DNA frag-
ments were firstly tagged with biotin through a one-round biotinylated
primer extension at the 5’ end and then primers were removed by
AMPure XP beads and purified by streptavidin beads. Then, the ssDNA
attached to the streptavidin beads was ligated with a 14-bp random
molecular barcode bridge adapter and a nested PCR was performed
for enriching the DNA fragment containing the bait DSB and tagging
the DNA fragment with Illumina adaptor sequences. The prepared
sequencing library was subjected to high-throughput sequencing on
aHi-seq2500 with2 x 150 bp reads.
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gRNA-dependent off-target analysis

To examine the gRNA-dependent off-target effects of IscB.m16*-ABE,
enOgeulscB-ABE and SpG-ABE, CRISPR RGEN Tools (Cas-OFFinder,
http://www.rgenome.net/cas-offinder/) was used to predict poten-
tial off-target sites as described previously?. For the ABE based on
IscB.m16*, the search queries covered both the 14-nt target spacer
sequences and ‘NNNGNA'”. The PAM of the search was set as ‘NNN’ and
the number of mismatches was set to three. The search queries of
enOgeulscB-ABE were set similarly but with a 16-nt spacer sequence
and a 6-nt TAM sequence containing ‘NWRRNA'. For the ABE based on
SpG, search queries covered 20-nt target spacer sequences, the PAM
type was set to ‘NG’ and the number of mismatches was set to four. All
other parameters were default. Off-target sites for each gRNA in each
group were manually selected in order of the number of mismatches
from low to high. Sites with a 5-NNNGNA-3’ TAM were retained for
IscB.m16*-ABE and sites with a 5’-NWRRNA-3’ TAM were retained for
enOgeulscB-ABE. All potential sites and primers are provided in Sup-
plementary Tables 6-15.

Orthogonal R-loop assay

An orthogonal R-loop assay was performed to detect the
gRNA-independent off-target editing as described previously”. First,
0.8 ng of plasmids that encode IscB.m16*-ABE, enOgeulscB-ABE or
SpG-ABE with their respective ®RNA or single-guide RNA (sgRNA)
and 0.8 pg of dSaCas9 plasmids with their corresponding sgRNA tar-
geting five previously reported R-loop sites were cotransfected into
HEK293T cells using PEI. After a48-h cultivation, transfected cells were
analyzed by FACS followed by genomic DNA extraction with 25 pl of
freshly prepared lysis buffer (Vazyme) containing proteinase K. Amplifi-
cationand targeted deep sequencing were performed at the ABE target
sites and dSaCas9 R-loop off-target sites. All targeting sequences and
primers are provided in Supplementary Table 16.

Animals

All animal experiments in this study were performed following
approved protocols and guidelines set by the Animal Care and Use Com-
mittee of Huidagene Therapeutics. Mice were housed in a controlled
barrier facility with a 12-h light-dark cycle at 18-23 °C with 40-60%
humidity. Diet and water were accessible at all times. DMDA™ES0S! KIhESO/Y
mice were generated in the C57BL/6) background using the CRISPR-
Cas9 system. DMD is the most common sex-linked lethal disease in
humans; thus, male mice were selected for this study.

Production and delivery of AAV9 to DMDAMESOSLKIRESO/Y e
AAVs were manufactured by HuidaGene Therapeutics. Briefly, cells
were grown in culture until they reached a confluency of 70-90%.
Before transfection, the growth mediumwas replaced with prewarmed
growth medium. For each 15-cm dish, a mixture of 20 pg of pHelper,
10 pg of pRepCap and 10 pg of the gene-of-interest plasmid was pre-
pared and added dropwise to the cell medium. After a3-day incubation
period, AAVs were harvested and purified using iodixanol density
gradient centrifugation. For intramuscular injection, 3-week-old
DMDAmESOSL KIESOY mjce were anesthetized and their TA muscle was
injected with either 30 pl of AAV9 (2.5 x 10" vg) preparations or an
equivalent volume of saline solution. Tissue samples were collected
for genomic DNA, RNA, immunoblotting and immunofluorescence
analyses 4 weeks after treatment.

Western blot analysis

Tissue samples were homogenized using radioimmunoprecipita-
tion assay buffer supplemented with a protease inhibitor cocktail.
The supernatants of the lysates were quantified using a Pierce BCA
protein assay kit (Thermo Fisher Scientific, 23225) and adjusted to a
uniform concentration using H,0. Equal volumes of the samples were
mixed with NuUPAGE LDS sample buffer (Invitrogen, NP0007) and 10%

B-mercaptoethanol and then subjected to boiling at 70 °C for 10 min.
Atotal of 10 pg of protein per lane was loaded into 3-8% Tris-acetate
gels (Invitrogen, EA03752BOX) and underwent electrophoresisfor1h
at200 V.Proteins were then transferred onto aPVDF membrane under
wet conditionsat350 mA for 3.5 h. The membrane was then blocked in
5%nonfat milkin TBST buffer and incubated with the primary antibody
tomarkthetarget protein. After three washes with TBST, the membrane
was incubated with a horseradish peroxidase-conjugated secondary
antibody specific tothelgG of the species from which the primary anti-
body against dystrophin (Sigma, D8168) or vinculin (CST, 13901S) was
derived. Thetarget proteins were visualized using chemiluminescent
substrates (Invitrogen, WP20005).

Immunofluorescence

Tissues were encased in optimal cutting temperature compound and
rapidly frozen in liquid nitrogen. Serial frozen cryosections, each
measuring 10 pm in thickness, were fixed for 2 h at 37 °C, followed by
permeabilization with PBS containing 0.4% Triton-X for 30 min. After
washing with PBS, samples were blocked with10% goat serumfor1hat
room temperature. Following this, the slides wereincubated overnight
at4 °Cwith primary antibodies against dystrophin (Abcam, ab15277)
and spectrin (Millipore, MAB1622). The following day, samples were
thoroughly washed with PBS and incubated with compatible secondary
antibodies (Alexa Fluor 488 AffiniPure donkey anti-rabbit IgG (Jackson
ImmunoResearch labs, 711-545-152) or Alexa Fluor 647 AffiniPure don-
key anti-mouse IgG (Jackson ImmunoResearch labs, 715-605-151)) and
DAPIfor 3 hatroomtemperature. After a15-min PBS wash, slides were
sealed with fluoromount-G mounting medium. All images were cap-
tured using a Nikon C2 camera. The number of Dys* muscle fibers was
represented as a percentage of the total spectrin-positive muscle fibers.

Statistical analysis

Allvalues are shown as the mean + s.d. except for values of the editing
window from base editors, which were shown as the mean +s.e.m. A
one-way analysis of variance (ANOVA) was used for statistical compari-
sonsand aPvalue < 0.05was considered statistically significant. Details
of statistical values are provided in corresponding figure legends.
The experiments were not randomized and the investigators were
not blinded to allocation during experiments and outcome assess-
ment. GraphPad Prism (version 8.2.1) was used for statistical analysis
(www.graphpad.com/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allsequencing datawere deposited to the National Center for Biotech-
nology Information Sequence Read Archive under accession number
PRJNA1043847. All materials are available upon reasonable request.
Source data are provided with this paper.
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Extended Data Fig. 1| Maximum-likelihood tree of identified IscB orthologs and previously reported IscBs. The name of 19 identified IscB orthologs are shown.
The evolutionary distance scale of 0.5 is shown.
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Extended DataFig. 4 | Characterization of IscB.m16 and IscB.m16* editing

activities in HEK293T cells. a, The indels patterns generated by wild-type IscB.
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and enOgeulscB systems targeting two sites in human genome. Values and error
bars were shown as mean and s.d., n = 3independent biological replicates.
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Instrument For EGFP activation assay, Beckman CytoFlex was used, and BD FACSAria Il was used for cell sorting.
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