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A functional microbiome catalogue 
crowdsourced from North American rivers
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Byron C. Crump13, James C. Stegen6,14 & Kelly C. Wrighton1 ✉

Predicting elemental cycles and maintaining water quality under increasing 
anthropogenic influence requires knowledge of the spatial drivers of river 
microbiomes. However, understanding of the core microbial processes governing 
river biogeochemistry is hindered by a lack of genome-resolved functional insights 
and sampling across multiple rivers. Here we used a community science effort  
to accelerate the sampling, sequencing and genome-resolved analyses of river 
microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). 
GROWdb profiles the identity, distribution, function and expression of microbial 
genomes across river surface waters covering 90% of United States watersheds. 
Specifically, GROWdb encompasses microbial lineages from 27 phyla, including novel 
members from 10 families and 128 genera, and defines the core river microbiome  
at the genome level. GROWdb analyses coupled to extensive geospatial information 
reveals local and regional drivers of microbial community structuring, while also 
presenting foundational hypotheses about ecosystem function. Building on the 
previously conceived River Continuum Concept1, we layer on microbial functional 
trait expression, which suggests that the structure and function of river microbiomes 
is predictable. We make GROWdb available through various collaborative 
cyberinfrastructures2,3, so that it can be widely accessed across disciplines for 
watershed predictive modelling and microbiome-based management practices.

Earth’s surface is dominated by water, much of it the oceans, that is 
known to buffer against anthropogenic climate change through micro-
organisms dictating the fate of ocean-absorbed carbon4,5. Although 
the oceans and their microorganisms have been extensively stud-
ied globally by large scientific consortia (such as the Tara Oceans  
Consortium6), other elements of Earth’s water system, such as rivers, 
are relatively understudied. This is problematic, as rivers (1) offer an 
important nexus of nutrient transport across terrestrial and aquatic 
interfaces7; (2) are hotspots for biogeochemical processes that con-
tribute substantially to global terrestrial carbon and nitrogen budgets, 
ultimately influencing global greenhouse gas emissions, eutrophica-
tion and acidification7–9; and (3) have immediate societal impacts on 
sustainable energy, agriculture, environmental health and human 
health10,11. Microbial metabolisms dictate river ecosystem functioning 

with major influence on carbon (C) respiration and sequestration, 
nitrogen (N) cycling and uptake, food webs and pollutants12–14. Given 
these important contributions, there is a growing need to better resolve 
the ecology and biogeochemical contributions of microorganisms 
across diverse river systems.

Despite being critical modulators of biogeochemistry, river microbi-
omes remain undersampled15. For example, a majority of river microbi-
ome studies relies on 16S rRNA gene analysis (Supplementary Data 1). 
Although these single-gene studies have advanced understanding of 
riverine microbial community diversity and membership16–18, they 
lack information on poorly characterized lineages and are limited in 
their ability to functionally link microorganisms to biogeochemical 
processes. There are several studies with metagenomics (n = 49) that 
provide functional attributes of river microbiomes, but these rarely 
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recover metagenome-assembled genomes (MAGs), masking the con-
tributions of novel members of the microbiome. Three studies used 
genome-resolved expression methods, hindering the ability to esti-
mate the metabolic processes active in river systems (Supplementary 
Data 1). Finally, in terms of sampling, most studies focus on a single site 
or stream network, leaving the applicability of microbiome findings 
across river systems uncertain. To establish a transferable functional 
understanding of river microbiomes, there is a need to genomically 
resolve the taxonomy, metabolic potential and expression of river 
microbiomes at scale.

To meet this need, we developed a crowd-sourced, distributed sam-
pling effort to increase and standardize river surface water microbiome 
sampling. We then compiled these sequencing results, along with their 
paired geospatial data, into the large-scale GROWdb. An emphasis of 
GROWdb is a publicly available and ever-expanding microbial genome 
database. GROWdb represents, to our knowledge, the first microbial, 
river-focused resource parsed at various scales from genes, to MAGs, 
to the community level, including genome and expression-based  
measurements. GROWdb is based on a crowd-sourced, network-of- 
networks approach to move beyond a small collection of well-studied 
rivers, towards a spatially distributed, global network of systematic 
observations.

Construction of GROWdb
To establish the GROWdb, more than 100 teams were crowdsourced 
to collect 163 samples at 106 sites across US rivers, with teams chosen 
on the basis of field site locations (Methods). This approach led to 
around 3.8 terabases (Tb) of metagenomic and metatranscriptomic 
sequencing data to go with extensive (up to 287) geochemical and 
geospatial measurements at each site (Fig. 1a,b and Supplementary 
Data 1). Geospatial parameters were obtained using latitude and lon-
gitude for sampling locations as queries and included land use and 
other watershed characteristics (for example, stream order, watershed 
size), while geochemical information was collected at the same time 
as sampling (Methods). Through this process, we aimed to capture 
community-level, genome-resolved microbiome variations in tax-
onomy, function and gene expression in the context of geographi-
cal and environmental gradients across the United States. The effort 
resulted in surface water sampling that covered 90% of US watersheds 
(n = 21 as determined by hydrologic unit 2) (Fig. 1c) and spanned 
diverse ecoregions, stream orders and watershed sizes (Extended 
Data Fig. 1). In summary, GROWdb integrates genomics, biogeochem-
istry and a range of contextual environmental variables to enable a 
predictive framework of microbiomes and their biogeochemical  
contributions.

To ensure data accessibility, we provide four access points for user 
engagement with GROWdb (Fig. 1a). First, all reads and MAGs are pub-
licly hosted at the National Center for Biotechnology (NCBI), enabling 
transferability to resources that pull and incorporate this content. 
Datasets underlying GROWdb are freely available and searchable 
through the National Microbiome Data Collaborative (NMDC)2 data 
portal, linking to other data types (for example, metabolome) to allow 
for broader synthesis where available. GROWdb MAGs are available 
as an annotated genomic collection in the freely accessible KBase3 
cyberinfrastructure. Here users can access sample information and 
gene- and MAG-level annotations, profile functional summaries and 
genome-scale models in a point-and-click interface. Last, to help with 
data exploration, we distilled the taxonomic and functional insights 
from GROWdb into a web-accessible format called GROWdb Explorer, 
enabling the rapid profiling of taxonomic and functional distribu-
tions across the dataset. GROWdb version 1 can be accessed across 
platforms (Fig. 1a), making this microbiome content available in an 
expanding repository to incorporate and unify global river multi-omic 
data for the future.

Over 3,000 surface-water MAGs recovered
To identify the key microbial players and functions in surface water river 
microbiomes, we constructed a genome database composed of MAGs. 
Our sequencing represents, on average, threefold more sequencing 
per sample compared with published riverine metagenome studies, 
thereby increasing the sensitivity for detecting the breadth of microbial 
functions encoded in these systems (Extended Data Fig. 2). From these 
sequencing data, we assembled and reconstructed 3,825 medium- 
and high-quality MAGs, which were dereplicated into 2,093 MAGs at 
99% identity (Extended Data Fig. 3 and Supplementary Data 2). On the 
basis of read mapping, the majority (mean, 52%) of metagenomic reads 
mapped back to this surface-water-derived MAG database, signifying 
that the underlying sequencing reads were well represented by the 
genomic database.

The dereplicated MAG database (n =2,093) contained genomes from 
27 phyla, many of which represent the most abundant and cosmopoli-
tan lineages in rivers19–21. Beyond providing genomic resources for 
these ecologically known taxa, the GROWdb MAGs provide genomic 
resources for many less-well-known taxa. A subset of our genomes rep-
resented novel lineages, including 10 families and 128 genera across 
16 phyla (Extended Data Figs. 2 and 3). Moreover, a large proportion 
of MAGs belonged to lineages defined only by alphanumeric names 
(for example, uncultured bacterial and archaeal genomes, UBA22) at 
the phylum (n = 1), class (n = 17), order (n = 121) and family (n = 196) 
levels (Extended Data Fig. 2). Notably, a MAG accumulation analysis 
suggests comprehensive sampling of river surface water microbial 
communities (Extended Data Fig. 3). To compare GROWdb MAGs 
in this study derived from US watersheds, we have compiled MAGs 
from other biogeography studies with freshwater MAGs23–25, as well 
as 23 GROW metagenomes from sites outside the United States (Sup-
plementary Note 1). This meta-analysis revealed vast differences in 
genomic membership between lakes and rivers, and the relative 
undersampling of rivers compared to lakes (Extended Data Fig. 4). 
Together these findings underscore the importance of analysing 
river metagenomes across varied geographical and environmental 
gradients to recover the breadth of river bacterial diversity.

To highlight the relevance of GROWdb, we analysed 266,764 public 
metagenome datasets in the Sequence Read Archive (SRA) to reveal that 
GROWdb MAGs were detected in 90% of metagenomes classified as river-
ine and 46% of metagenomes classified as freshwater, aquatic or riverine. 
We verified that the most prevalent phyla and genera in GROWdb had 
parallel representation in publicly available metagenomes (Extended 
Data Fig. 2). Moreover, GROWdb members were detected from other 
environments including wastewater, lake water, sediment, marine, estu-
ary, activated sludges and soil, supporting the notion that rivers contain 
diverse communities across habitats acting as integrators across land-
scapes (Extended Data Fig. 3). Likewise, consistent with other studies25, 
GROWdb MAGs showed minimal overlap with sediment metagenomes, 
with 16% of MAGs being detected in this interconnected yet distinct river 
compartment. This affirms the growing distinction between surface 
water and sediment microbial communities, further articulating how 
suspended surface water microorganisms probably originate from 
diverse, non-native sources. The comparison to publicly available data 
also underscored the need for this river-based microbiome study, as 
there were only half and one-third as many freshwater-related metage-
nomes in comparison to their soil and ocean counterparts, respec-
tively, in the SRA. Moreover, this analysis highlighted the importance 
of standardized metadata practices for data reuse, as more than 10% 
of metagenomes in the publicly available set had vague classifications 
such as metagenome or bacterium, making the data unusable. GROWdb 
ascribes to standardized protocols and metadata practices26,27, making 
interoperability a hallmark of this resource and permitting meta-analysis 
with other studies, which is of utmost importance as our ability to scale 
multi-omics methods rapidly increases.
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Fig. 1 | Distributed sampling and sequencing of rivers enabled the 
construction of the GROWdb. a, The workflow, denoting the number of 
samples and the resulting datasets made up of geospatial and microbiome 
(metagenomics, metatranscriptomics) data. GROWdb data are accessible 
through KBase, NMDC and the GROWdb Explorer. b, The number of samples 
with paired data types (denoted as filled black circles below) coloured by 

hydrologic unit, and the number of samples per analysis. c, GROW sampling 
across the United States. The points mark the sampling location. Colour  
coding represents the microbiome analysis performed (metagenomics, red; 
metatranscriptomics, yellow; paired metagenomics and metatranscriptomics, 
blue). The boxed numbers and the corresponding river colours indicate 
hydrologic unit (HUC-2).
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Core river microbiome features
We identified core and dominant features of metagenomes and 
metatranscriptomes across rivers. In terms of relative abundance 
across microbiomes, members of the Actinobacteria, Proteobacte-
ria, Bacteroidota and Verrucomicrobiota dominated all samples as 
determined by metagenomics (Fig. 2a). Within these phyla, genera that 
were the most cosmopolitan (high occupancy) across samples were 
also the most abundant members of these communities (Fig. 2b). This 
was especially true for MAGs affiliated with the genus Planktophilia, a 
well-known freshwater microorganism28, which were present in 70% of 
the GROW metagenomes and had the highest mean relative abundance 
across samples at 12%. Five other genera, including Limnohabitans_A, 
Polynucleobacter, Methylopumilus, Nanopelagicus and Sediminibacte-
rium, were also present in more than 50% of metagenomes.

For the subset of samples with paired metatranscriptomes, we evalu-
ated the microorganisms that were most transcriptionally active. To 
focus on the most relevant lineages, we limited our analyses to MAGs 
that were expressing genes in at least 10% of the samples. These resulted 
in a quarter of the 2,093 MAGs being considered active, including at 
least one representative from 19 out of the 27 phyla in GROWdb. The 
six most pertinent genera identified by metagenomics (Fig. 2b) also 
belonged to the top 25 genera with the highest mean gene expression 
(Fig. 2c), indicating that prevalence, dominance and activity were in 
agreement. Furthermore, three of these pertinent lineages (Methyl-
opumilus, Polynucleobacter, Planktophilia), as well as members of Pirel-
lula B, and two alphanumeric genera of Burkholderiaceae (UBA3064, 
UBA954) were transcriptionally active in every metatranscriptome, here 
denoted as the core, active genera. Notably, this was not an aggregate 
genus-level effect, because each of these genera apart from Polynu-
cleobacter had a single MAG representative that was expressed in every 
metatranscriptome, indicating that some microbial strains have wide-
spread metabolic activity across rivers. Here we show how analyses of 
GROWdb enable us to constrain the thousands of microbial genomes to 
a set of six genera with genes detected in every transcriptome, revealing 
lineages and metabolic pathways that could represent diagnostic or 
metabolism targets needing accurate representation in biogeochemi-
cal models moving forward.

To understand the effects of these core, transcriptionally active gen-
era in modulating river biogeochemistry, we used genomic content to 
assign metabolic traits to each MAG, inventorying the capacity to use 
oxygen, light, nitrogen, sulfur and other key energy generation systems 
(Extended Data Fig. 5 and Supplementary Data 3). We found that the 
core and most expressed genera had the capacity for aerobic respira-
tion and the use of light as an energy source, capturing energy through 
high-yield oxygenic or anoxygenic photosystems or simple, low-yield 
photorhodopsins. In fact, of the top 25 most active genera, more than 
90% were capable of aerobic respiration or light-driven metabolism, 
with many encoding multiple light-harvesting mechanisms (Fig. 2c 
and Extended Data Fig. 6). In addition to heterotrophy and autotrophy, 
many of these core active lineages had the capacity to aerobically oxi-
dize inorganic electron donors such as sulfur and possibly methane, 
the latter through a divergent particulate methane monooxygenase 
(Methods). Last, half of these most active genera had the capacity for 
nitrogen reduction through respiration or by dissimilatory nitrate 
reduction to ammonium (Methods). Together, the encoding of both 
aerobic and anaerobic energy systems, and light-driven metabolisms 
among the many core, active taxa highlight the metabolic redundancy 
contained in river surface waters.

Some critical river biogeochemical processes such as nitrification 
were represented by GROWdb MAGs but were not sampled in the top 
25 most active genera. In surface waters, nitrification appeared to be 
catalysed by bacteria, a finding consistent with taxonomy profiles from 
our unassembled reads in which archaea made up less than 3% of the rela-
tive abundance across samples (Extended Data Fig. 7). We identified one 

MAG within the bacterial Nitrosomonas genus that encoded genes for 
ammonia oxidation (the first step in nitrification). We note this genome 
also included genes to produce the greenhouse gas nitrous oxide (N2O), 
a finding consistent with other ammonia oxidizing bacteria29.

Two other GROWdb MAGs contained genes for nitrite oxidation 
(the second step in nitrification) with taxonomy assignments to the 
Nitrospira_D genus and an unassigned species within the Palsa1315 
genus of the Nitrospiraceae family (Supplementary Note 2). With these 
genomes being up to 95% complete, we infer that comamomox30 is 
unlikely, as these MAGs contained genes for nitrite oxidation but lacked 
genes for ammonia oxidation. These two nitrite oxidizers were detected 
in 14–88% of the metatranscriptome samples, including detection of 
transcripts for the key protein in nitrite oxidation. Each of the three 
nitrifier MAGs contained genes for combating reactive oxygen species 
(superoxide dismutase, catalase and/or peroxidase) and a photolyase 
gene involved in the repair of damage caused by exposure to ultraviolet 
light, all adaptations that are probably important in surface waters31. 
Overall, our findings uncover nitrifier metabolic potential and expres-
sion in rivers, which are under-represented in genomic databases com-
pared with nitrifiers from soil and marine habitats.

Although not core members, we also detected 17 Patescibacterial 
MAGs that were transcriptionally active from the 48 total MAGs sampled 
in this phylum. These genomes all lacked the capacity for aerobic or 
anaerobic respiration and were inferred to be anoxic, obligate ferment-
ers, consistent with previous genomic reports32 from this phylum that to 
date lacks any pure-culture, characterized representatives. Given that 
surface waters are oxic, we verified that the abundance patterns reported 
here were consistent with other river metagenome and amplicon-based 
studies33,34, in which these lineages accounted for up to 7% of the rela-
tive abundance in river surface water communities. It is possible that 
these obligately anaerobic members exist as symbionts, or thrive in 
lower-oxygen niches associated with biofilms on suspended particles, 
or hyporheic environments in which oxygen can be depleted during 
dissolved organic matter decomposition35,36. In support of the latter, 
we observed that relative abundance and expression of Patescibacteria 
significantly decreased with river size (Extended Data Fig. 7), suggest-
ing that these obligate fermenters were more active in shallow waters 
when there is greater exchange between water and the stream bed37.

Emerging contaminants
Given the threat of emerging contaminants (for example, pharmaceu-
ticals, pesticides and plastics) to the environment and human heath, 
we hypothesized that GROWdb MAGs would encode and express genes 
related to transformations of these compounds to which river microor-
ganisms are continuously exposed. Specifically, we identified microbial 
genes related to antibiotics, disinfection by-products, fluorinated 
compounds, fertilizers and microplastics based on their relevance to 
river systems38–41. In total, we classified 261 gene types related to emerg-
ing contaminants from GROWdb MAGs into 11 categories (Extended 
Data Fig. 8 and Supplementary Data 4). This resulted in gene recovery 
related to antibiotic resistance (n = 1,587), terephthalate and phthalate 
metabolism (n = 405) and fluorinated compounds (n = 1,194), while 
genes for phosphorus (n = 10,717) and organic nitrogen (n = 149,676) 
metabolism served as an indicator for fertilizer transformations. This 
provides extensive evidence for the ability of river microorganisms to 
interact with emerging contaminants across river ecosystems, as they 
are ultimately responsible for the depuration and nutrient removal 
in rivers.

As rivers flow with heavy antibiotic burdens, antibiotic resistance 
develops rapidly and disseminates into various environmental com-
partments42. Antibiotic production is also part of natural competition in 
these complex communities. We catalogued 1,587 antibiotic-resistance 
genes (ARGs) recovered from 1,135 (54.3%) MAGs in GROWdb, represent-
ing 25 different Phyla (Supplementary Data 4). As our analysis was MAG 
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most dominant across samples. b, The metagenomic relative abundance versus 
metagenomic occupancy (the percentage of metagenomes that a genus was 
present in); the points represent each genus in GROWdb and are coloured by 
phylum. Genera detected in more than 50% of samples (red dashed line) are 
named. c, The top 25 most transcribed (highest metatranscriptomic expression) 
genera are shown by box plots, with each point representing a single 
metatranscriptome (n = 57 metatranscriptomes). The upper and lower box 
edges extend from the first to third quartile, the centre line represents the 

median and the whiskers are 1.5× the interquartile range; points outside this 
range represent outliers. The stacked bar chart above box plots indicates the 
number of MAGs in GROWdb within each genus and is coloured by detection in 
metatranscriptomes (black, expressed; grey, non-expressed). A red circle above 
the bar indicates that one of the genomes was core across metatranscriptomes, 
as defined as having gene expression in every sample. For each of the top 25 
expressed genera, the black boxes represent those that were detected in 100% 
of metatranscriptomes (core genera) and in more than 50% of metagenomes. 
The inferred genomic potential of each genus is indicated below, including 
aerobic respiration (blue), light-driven energy metabolism (orange), nitrogen 
metabolism (green) and other metabolisms (methanotrophy and sulfur 
oxidation, black). DNRA, dissimilatory nitrate reduction to ammonium.
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focused, these numbers may represent a floor on ARG prevalence in 
rivers, as they do not include plasmid-encoded ARGs. These candidate 
ARGs represent 25 broad antimicrobial-resistance gene families as 
defined by the Comprehensive Antibiotic Resistance Database (CARD)43. 
Individual MAGs sometimes coded ARGs from multiple gene families 
and targeting multiple drug classes. Most (n = 1,219) candidate ARGs  
were homologues of proteins coded in glycopeptide resistance (van) 
gene clusters, which occurred in 955 distinct MAGs. However, the vast 
majority of these genes did not occur in canonical van gene clusters, 
and did not occur in close proximity to obvious biosynthetic gene clus-
ters, as is the case in known Gram-positive actinomycete producers44. 
Although single van genes have been shown to be sufficient for confer-
ring resistance to glycopeptide antibiotics44, the function of this large 
new pool of candidate van homologues remains to be determined.

Thirty per cent of the ARGs had evidence of expression in metatran-
scriptomes of one or more samples, with antibiotic target alteration 
and antibiotic efflux pumps being the most widely expressed. Expres-
sion of ARGs was variable across samples, with 11 samples having at 
least 20 ARGs with evidence of expression. Given that wastewater 
treatment plants (WWTPs) have been shown to be an accumulation 
point for antimicrobial resistance38,45, we hypothesized that the 
presence and expression of ARGs would be related to the density 
of WWTPs in the watershed. Our findings show that the presence of 
WWTPs within a watershed resulted in more expression of ARGs, and 
this correlation also held for efflux pumps specifically (Fig. 3a and 
Extended Data Fig. 8).

Beyond antibiotics, river microbiomes encoded the capacity 
for the transformation of other emerging contaminants including 
those derived from fertilizers (phosphorus and organic N), micro-
plastics (ethylene, poly(ethylene) terephthalate and terephthalate), 
disinfection by-products (chlorite) and fire retardants (fluorinated 
compounds)38. Extracellular peptidases for organic nitrogen transfor-
mations and C-P lyases for freeing phosphorus were the most widely 
encoded and expressed (Extended Data Fig. 8). This omnipresence 
across river organisms is probably due to the necessity of nitrogen 
and phosphorus compounds for microbial life in general. We also 
saw genes associated with transformation of other emerging con-
taminants including fluorinated compounds, as well as ethylene and 
phthalate metabolisms. Genes for defluorination (dehalogenases) 
were encoded across many river microorganisms and expressed in 
members of the Limnohabitans and Limnohabitans_A genera, and in 
a core member Polynucleobacter (Extended Data Fig. 8). Notably, the 
full pathway for polyethylene terephthalate degradation to protocat-
echuate was collectively encoded across multiple organisms, with 
lower parts of the pathway expressed in Limnohabitans_A. As these 
emerging contaminants are derived from anthropogenic influences, 
we suspected that expression of these genes might be correlated 
to land use, finding urban influences to be driving the expression 
of these genes in river microbiomes (Extended Data Fig. 8). River 
surface water microbiomes exhibit a vast capability to transform a 
wide array of emerging contaminants, with urban influences driving 
the expression of these genes, unveiling an intriguing intersection of 
microbial ecology and environmental pollution.

Continental-scale patterns
One of the strengths of our sampling design was the spatial, chemical 
and physical variables that accompanied our microbiome sampling, 
enabling us to contextualize the factors driving microbial biogeog-
raphy at the continental scale. Previous studies have done this using 
taxonomy alone16,18,46 but, to our knowledge, these analyses have not 
incorporated functional gene-trait information. We hypothesized that 
river microbial communities exhibit spatial patterns at the continental 
scale of inquiry, and that these patterns would be predictable from 
hydrobiogeochemical, geographical and land-management factors. 

Every sample had a paired suite of more than 250 physical, chemical 
and spatial variables (for example, stream size, latitude, total nitrogen), 
which we used to identify the potential drivers of microbiome structure 
and expressed function (Supplementary Data 1).

Of all of the river site variables examined (Fig. 3b), stream order—a 
numerical ranking of the relative river size that spans small headwater 
streams (low order 1–3) to larger rivers such as sections of Mississippi 
river (high order 8–12)—was the most important controller of micro-
biome composition. River size was more important than latitudinal 
position or total carbon, which are often cited as controllers of microbi-
omes across other habitats47,48. Both metagenomes and metatranscrip-
tomes were structured by stream order (Fig. 3b,c), providing evidence 
in favour of the river continuum concept (RCC)1, described below. 
After stream order, expressed microbial functional profiles were also 
influenced by watershed air temperature (both mean and maximum 
derived from geospatial data not taken at the time of sampling), area 
and total runoff (Fig. 3).

Given this relationship with air temperature, we sought to understand 
which functional traits and microorganisms most contributed to these 
community-level observations. Regression-based modelling showed 
that light-driven metabolisms, followed by aerobic processes, were the 
most important variables, predictive of mean and maximum watershed 
air temperature (Extended Data Fig. 7). The most important organismal 
predictors of maximum watershed temperature were the core active 
lineages like Methylopumilis, UBA954, Polynucleobacter and Limno-
habitans that were actively transcribing genes for light-harvesting 
metabolisms (Fig. 2c and Extended Data Fig. 7). Our findings show that 
light-harvesting metabolisms are critical to energy generation in rivers 
and suggest that climate influences on water temperature may have 
a defining role in the niches of these microorganisms. However, the 
impact of light, which often varies with temperature in river systems 
and influences microbial resource availability, cannot be discounted. 
These findings are consistent with reports from marine systems49, 
hinting at an emerging rule set shared across aquatic microbiomes.

Beyond environmental factors, we also observed that geographical 
position had a role in structuring river microbiomes. For example, 
microbial community genomic membership was structured across 
ecoregions defined by Omernik level II ecoregions50, a classification 
system used to delineate distinct ecological regions based on similar 
environmental characteristics, providing a standardized framework for 
understanding ecological patterns and processes across landscapes. 
Notably, drier-climate, mixed-grass river microbiomes shared similar 
microbial communities that were distinct from those derived from wet 
to subtropical regions (Extended Data Fig. 7). Similarly, hydrologic 
unit code (HUC), a classification system for watersheds in the United 
States shown in Fig. 1c, recognized distinct microbial communities from 
continental subregions (Extended Data Fig. 7). These findings support 
earlier work showing that river microbial communities are inoculated 
from the landscape, and this terrestrial influence has an important role 
in downstream community assembly processes17. Note that the spatial 
structuring was not observed at the expressed functional level, indicat-
ing that microbial changes are compensated by functional equivalence 
at this continental scale. This finding suggests that taxonomic infor-
mation may not be best suited for translation of microbiome content 
into management indicators, unless incorporated into an eco-regional 
framework as has been suggested for soil health indicators51.

To use microbiota information as sentinels for monitoring human 
and environmental health in river systems, a greater understanding of 
bacterial community structure, function and variability in lotic systems 
is required52. Although each of these land-use and watershed variables 
independently exhibited significant relationships with surface water 
microbial community composition and expression (Fig. 3b), our focus 
extended beyond their individual impacts. We aimed to understand 
the combined contributions of the most influential factors identified 
in explaining variation in both microbial community structure and 
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expression. Moreover, based on factors like temperature acting as a 
significant driver of microbial community function (Extended Data 
Fig. 7), we hypothesized that time of year (season and month) may have 
a role. We found that stream order category, month, latitude, land use 
and maximum watershed temperature and their interactions explained 
a significant proportion of the variation in the microbial community 
composition at the metagenome level (R2 = 0.69; Extended Data Fig. 7c). 
Notably, stream order and month explained the most variation relative 
to other variables and all interactions. Metatranscriptome composition 
when tested with the same variable set did not show the same result, 
as only stream order and spatial location (taking into account latitude 
and longitude) were significant drivers (R2 = 0.41). Overall, the results 

suggest that multiple environmental factors, including geographi-
cal and land use variables, have important roles in shaping microbial 
community composition and expression. Analyses using GROWdb 
provide a framework for the environmental factors and determinant 
mechanisms that shape riverine communities.

River continuum concept
The RCC provides a framework for integrating predictable and observ-
able biological features of flowing water systems, and further charac-
terizing how biodiversity changes along a river system1. Specifically, 
the RCC postulates that, as rivers increase in size, the influences of 
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Fig. 3 | Patterns and drivers of river microbiome composition and function. 
a, The number of efflux pumps (top) and ARGs (bottom) expressed at sites 
without or with impact from WWTPs, normalized to Gb of metatranscriptomic 
sequencing per sample (n = 43 metatranscriptomes). b, Metagenomic and 
metatranscriptomic composition, function and diversity were related to  
36 selected site, land-use or watershed variables using Mantel tests (top two 
rows). This was followed with pairwise comparisons using Pearson’s correlation 
(heat map in b), with only significant values shown, as determined using the 
two-sided cor.test in R. Variables are coloured by category, including microbial 
(purple), site or local (light blue), land-use (orange) and watershed metrics 

(dark blue). For pairwise comparisons of microbial data, metatranscriptomic 
metrics were used for diversity and function abundance calculations.  
c, Microbial community diversity was significantly associated with stream 
order as depicted by non-metric multidimensional scaling of genome resolved 
metagenomic Bray–Curtis distances (left, beta-diversity) and Pearson 
correlations of richness to stream order (right, alpha-diversity) with points 
(n = 105) coloured by stream order. For the box plots, the upper and lower box 
edges extend from the first to third quartile, the centre line represents the 
median and the whiskers are 1.5× the interquartile range; points outside this 
range represent outliers.
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terrestrial inputs will decrease. It also assumes that biological richness 
will initially increase with stream order complexity due to maximum 
interface with the landscape, but then decrease along with river width 
and discharge. Support for the applicability of the RCC to microbial 
communities has been observed as decreased microbial 16S rRNA gene 
richness occurring across stream order gradients in the Thames19, Mis-
sissippi52 and Amazon53 rivers. Given the expansion of our dataset from 
individual rivers, and the addition of functional resolved processes, we 
hypothesized that the RCC would extend to functional potential and 
expression patterns across continental scales.

First, we were interested in how microbial richness at the metage-
nome and metatranscriptome level changed across the stream-order 
gradient and whether these followed rules like 16S rRNA richness-based 
studies from single rivers. At the metagenome level, overall genome 
richness peaked at stream order 6 (Fig. 3c). At the metatranscriptome 
level, richness increased with stream order and peaked at stream order 
8, the highest stream order profiled by metatranscriptomics (Fig. 3c). 
Metagenome results were consistent with previous reports of the RCC 
in which stream order peaks in mid-sized streams52. To our knowledge, 
this is the first report of genome-resolved metatranscriptomics across 
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rivers and suggests that genome-inferred transcriptional richness may 
be governed by a different set of environmental controls than gene 
presence at the continental scale.

One major control on biological diversity described by the RCC is vari-
ability in sunlight exposure. Lower-order streams are often character-
ized by thick shore vegetation or overhanging trees that limit sunlight 
penetration and restrict phytoplankton and benthic microalgae primary 
production1,54. Consistent with this idea, we observed a statistically 
significant increase in light-driven microbial metabolisms when moving 
from lower-order streams to higher-order rivers (Fig. 3b). Moreover, 
the RCC proposes that the ratio of photosynthesis to respiration (P/R) 
increases in medium-sized rivers but is decreased in the smallest and 
largest rivers due to light limitations from riparian vegetation occlusion 
and turbidity, respectively. Using microbial gene expression coupled to 
genome-resolved lifestyle information, we estimated P/R ratios, reveal-
ing the highest P/R ratio in rivers with stream orders of 6–8, providing 
tentative support for this concept. However, the robustness of this P/R 
indicator would need further evaluation in larger-order rivers (such 
as 9–12), which are undersampled in this metatranscriptome dataset.

Another ecological control described by the RCC is a downstream 
decrease in the importance of terrestrial carbon inputs. We hypoth-
esized that gene expression would show that microbial carbon usage 
reflects decreasing impacts of terrestrial inputs with river size. To 
resolve changes in microbial metabolism across a stream-order gra-
dient, we defined carbon-usage patterns based on microbial gene 
expression in GROWdb MAGs. Our findings show significant differ-
ences in expressed microbial carbon usage following the stream-order 
gradient (Fig. 4a and Extended Data Fig. 6). Specifically, transcripts of 
genes targeting polymers, aromatics and sugars are upregulated in 
low-order streams, while methylotrophy gene transcripts, primarily 
from methanol oxidation, are increased in higher-order rivers (Fig. 4b 
and Supplementary Data 4). Methanol is probably autochthonous in 
these systems, derived from river phytoplankton biomass55 or microbial 
metabolism of aromatic allochthonous plant litter56,57. Our findings 
show that the inferred microbial metabolisms related to carbon usage 
follow the expected decrease in impact of terrestrial inputs proposed by 
the RCC, but we acknowledge that more research is needed to validate 
these insights, especially from higher-order rivers.

In summary, river systems were once thought of as passive pipes, 
transporting water from terrestrial to marine systems. As a result, it was 
regarded that rivers were viewed as mere conduits, lacking substan-
tial biogeochemical activity and offering little predictive capability58. 
Instead, we show that river microbiomes and encoded functionalities 
are not haphazardly distributed but are instead structured by river size, 
ecological region and land management regimes. This study also sup-
ports the application of the RCC to microbial communities and provides 
evidence that landscape patterns in river microbiomes are grounded 
in mechanistic changes in genomic function. We show that microbial 
richness both in terms of genome potential and expression, as well as 
expressed functional attributes, follow RCC tenets and are moulded 
by the physical–geomorphic environment (Fig. 4c). This application of 
GROWdb to the RCC adds a view of how microbial metabolism changes 
across rivers.

Conclusion
Changing climate impacts rivers through altered precipitation inten-
sity, surface runoff, flooding, fires, sea level rise and droughts, and all of 
these have direct impacts on human health, agriculture, energy produc-
tion and ecosystem resiliency59. Moreover, two-thirds of drinking water 
in the United States comes from surface river waters. Consequently, 
river management is expected to be one of the most politically charged 
topics in decades to come60. Microorganisms are master orchestrators 
of nutrient and energy flows that will probably dictate water quality 
under current and future water scenarios.

GROWdb is an effort to comprehensively understand river micro-
biomes, integrating genomics, biogeochemistry and environmental 
variables. Through the generation of over 3.8Tb of sequencing data, 
GROWdb provides insights into the taxonomic and functional diversity 
of microbial communities in river surface waters. The database includes 
over 2,000 microbial genomes, revealing both known and novel taxa 
and their metabolic abilities. Importantly, GROWdb demonstrates 
the prevalence of aerobic and light-driven energy metabolisms across 
river microbiomes, identifying the core microbial players and their 
contributions to biogeochemical processes. Moreover, the project 
identifies river microbiomes as reservoirs for genes related to emerg-
ing contaminants, highlighting their relationship with land use. By 
analysing biogeographical patterns at the continental scale, GROWdb 
underscores the influence of stream order, geographical location and 
environmental factors on microbial community structure and function. 
This study not only confirms the applicability of the RCC to microbial 
communities but also reveals mechanistic insights into how microbial 
metabolism changes along river gradients. Overall, GROWdb provides 
a valuable resource for understanding and managing river ecosystems 
in the face of environmental change.

To rapidly construct a large-scale river microbiome catalogue, we 
crowdsourced the data acquisition using standardized sampling, 
processing, sequencing and analysis to enable cross-site compari-
sons and modular augmentation. This product and its many data 
access and synthesis sites reduces the computational barriers for 
expediting the translation of reads to functional content. GROWdb 
offers a genome-centric window into river microbiota and a FAIR-use 
cyberinfrastructure-powered platform for future researchers. We 
envision that this genomic infrastructure will pave the way for future 
developments in water quality monitoring and identifying biomarkers 
indicative of land use or water quality changes. Collectively, GROWdb 
fills a major knowledge gap in the current understanding of microbial 
diversity and function in river ecosystems—observations that can be 
integrated into predictive watershed scale models.
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Methods

Sample collection through crowdsourcing and standardization 
of workflows
To build GROWdb, we used two approaches to obtain samples from 
across US rivers. One was a network-of-networks61 approach based on 
sampling efforts of the Worldwide Hydrobiogeochemistry Observa-
tion Network for Dynamic River Systems (WHONDRS) consortium62, 
which is designed to facilitate the development of transferable sci-
entific understanding and mutual benefit across stakeholders26,27. 
The WHONDRS sampling itself was based on sending free sampling 
kits, along with standardized protocols, to interested researchers 
globally. These researchers volunteered their time to collect samples 
and sent the samples back for processing using consistent methods 
to enable cross-site comparisons, interoperable data and transfer-
able understanding. Samples from the WHONDRS consortium con-
tributed 44% of the metagenomes and all the metatranscriptomes 
in GROWdb. Moreover, WHONDRS data included Fourier transform 
ion cyclotron resonance mass spectrometry data and were collected 
and analysed as described previously63, with data analysis specific to 
this paper reported online (https://data.ess-dive.lbl.gov/datasets/
doi:10.15485/2439202). We note that all WHONDRS samples were col-
lected over a period of 6 weeks in the summer of 2019, meaning that 
all the metatranscriptomes reported in this Article were collected 
during this sampling period.

Samples collected under the WHONDRS 2019 sampling campaign 
are described (Supplementary Data 1) and were reported previously63. 
In brief, we recruited collaborators based on geographical sampling 
priorities, and these sample collectors selected sampling sites within 
100 m of a gauge station that measured river discharge, height or pres-
sure. Geochemical data collected under the WHONDRS 2019 sampling 
campaign are available at ESS-DIVE, and the methods were described 
previously64. For microbiome analyses, at each site, approximately 
1 l of surface water was sampled using a 60 ml syringe and was fil-
tered through a 0.22 μm sterivex filter (EMD Millipore). The filters 
were capped, filled with 3 ml of RNAlater and shipped to the Pacific 
Northwest National Laboratory on blue ice within 24 h of collection. 
Surface water samples and filters were immediately frozen at −20 °C 
after receiving for nucleic acid extraction, respectively.

To build GROWdb, beyond WHONDRS, the second sampling 
approach was through a collaboration with the US Geological Survey 
(USGS) National Water Quality Network (NWQN)65. This long-term 
water-quality monitoring program characterized consistent informa-
tion on streamflow and water-quality conditions. Data were collected to 
assess the status and trends of water-quality conditions at large inland 
and coastal river sites, as well as in small streams indicative of urban, 
agricultural and reference conditions65. The methods of sample collec-
tion used by the NWQN conform to the USGS National Field Manual for 
the Collection of Water-Quality Data66, and DNA was collected using 
the 0.22 μm Sterivex-GP filter (EMD Millipore). Here we provided kits 
integrated with USGS protocols for river sample processing with sam-
ples preserved as described previously67. All of the samples were stored 
on ice and stored at −20 °C until nucleic acid extraction.

A key component of this analysis was the standardization that 
occurred in data processing and analyses. For WHONDRS samples, 
DNA and RNA were co-extracted at single facility at Colorado State 
University. DNA and RNA were coextracted from filters at Colorado 
State University using the ZymoBIOMICS DNA/RNA Miniprep kit (Zymo 
Research, R2002) coupled with the RNA Clean & Concentrator-5 kit 
(Zymo Research, R1013). The samples were eluted in 40 μl and stored at 
−20 °C until sequencing (Supplementary Note 4). For NWQN samples, 
DNA was extracted using a standard phenol–chloroform extraction 
protocol68. The Community Sequencing Project provided by the Joint 
Genome Institute ( JGI) ensured that sequencing protocols and meth-
odologies were consistent across the project. Owing to the extensive 

geographical distribution of data collection for most sites, replicate 
sequencing experiments were not conducted at the same sites. All of 
the metagenomes and 23% of the metatranscriptomes were provided by 
JGI, with the balance of metatranscriptomes processed at University of 
Colorado Anschutz using the same kits and methods as specified by the 
JGI. Lastly, sequence data processing for each sample was performed 
using identical methods, using the GROWdb standard operating proce-
dures documented on GitHub69. Collectively, the use of crowdsourced 
approaches, JGI support and standardized methodologies resulted in 
GROWdb, a compendium of river microbiome data, an endeavour that 
would not have been possible to execute in this time frame by a single 
laboratory alone.

Acquisition of geospatial data
The watershed statistics for each sample were primarily obtained from 
the Environmental Protection Agency’s StreamCat database70 and the 
National Hydrography Plus Version 2 (NHDPlus V2) Dataset using the 
nhdplusTools package71 in R. StreamCat provides over 600 consistently 
computed watershed metrics for all waterbodies identified in the USGS 
NHDPlus V2 geospatial framework, making it a suitable data source for 
the broad spectrum of sample locations in this study. For watershed 
metrics that were not included in StreamCat (that is, dominant Omernik 
ecoregion, mean net primary production and mean aridity index), we 
first delineated each sample’s watershed using nhdplusTools, then 
used the terra package72 to aggregate the additional datasets across 
each site’s watershed accordingly. This approach is consistent with 
SteamCat’s geospatial methodology.

Last, we collected streamflow data for sites that had a nearby stream 
gauge. For locations without an identified co-located stream gauge 
(WHONDRS typically co-located their sample sites with a stream gauge), 
we identified USGS stream gauges within 10 km upstream or down-
stream of our sampling locations using the dataRetrieval and nhdplus-
Tools packages. All stream gauges were then manually verified for their 
applicability to each sampling site (for example, verifying that there 
were no dams between the site and the stream gauge, a major conflu-
ence). A complete list of datasets included in our analysis is provided 
in Supplementary Data 1. The complete R workflow for this geospatial 
analysis is available at GitHub73.

Metagenomic assembly, binning and annotation
At the JGI, genomic DNA was prepared for metagenomic sequencing 
using plate-based DNA library preparation on the PerkinElmer Sci-
clone NGS robotic liquid handling system. In brief, 1 ng of DNA was 
fragmented and adapter ligated using the Nextera XT kit (Illumina) 
and unique 8 bp dual-index adapters (IDT, custom design). The ligated 
DNA fragments were enriched with 12 cycles of PCR and purified using 
Coastal Genomics Ranger high-throughput agarose gel electrophoresis 
size selection to 450–600 bp. The prepared libraries were sequenced 
using Illumina NovaSeq sequencer according to a 2 × 150 nucleotide 
indexed run program.

Our metagenome workflow is described and visualized (Extended 
Data Fig. 9 and Supplementary Note 3). In brief, the resulting fastq files 
were assembled and binned using the accessible GROWdb pipelines 
released on GitHub69. To maximize genome recovery, three assem-
blies were performed on each set of fastq files and binned separately:  
(1) read trimming with sickle (v.1.33)74, assembly with MEGAHIT 
(v.1.2.9)75 and binning with metabat276 (v.2.12.1); (2) read trimming with 
sickle (v.1.33), random filtering to 25% of reads, assembly with IDBA-UD77 
(v.1.1.0) and binning with metabat276 (v.2.12.1); (3) bins derived from 
the JGI-IMG pipeline78 (that used metaSPAdes79 and metabat276) were 
downloaded. All of the resulting bins were assessed for quality using 
checkM80 (v.1.1.2) and medium and high-quality MAGs with >50% com-
pletion and <10% contamination were retained. The resulting 3,284 
MAGs across all samples and assemblies were dereplicated at 99% 
identity using dRep81 (v.2.6.2) to obtain the dereplicated first version 
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of the GROW database (n = 2,093 MAGs). MAG taxonomy was assigned 
using GTDB-tk82 (v.2.1.1, r207) and annotated using DRAM (v.1.4.4)83.

To quantify MAG relative abundance across samples, trimmed 
metagenomic reads were mapped to the dereplicated MAG set using 
Bowtie284 and output as SAM files, which were then converted to sorted 
BAM files using samtools. Sorted BAM files were then filtered to paired 
reads only with a 95% identity match using reformat.sh. To obtain 
the mean coverage for each MAG, we used CoverM85 (-m trimmed_
mean). The mean coverage table was then filtered to MAGs that had 
at least 60% coverage across a MAG with at least 3× coverage within 
a sample, using additional CoverM85 outputs (-m relative_abundance 
--min-covered-fraction 0.6 and -m reads_per_base, respectively). Cov-
erM outputs were merged in R; the script is available on the GROWdb 
GitHub69.

Metatranscriptomic mapping and analysis
RNA was prepared for metatranscriptome sequencing according to JGI 
established protocols. In brief, rRNA was removed from 10 ng of total 
RNA using Qiagen FastSelect probe sets for bacterial, yeast and plant 
rRNA depletion (Qiagen) with RNA blocking oligo technology. The 
fragmented and rRNA-depleted RNA was reverse transcribed to create 
first-strand cDNA using the Illumina TruSeq Stranded mRNA Library 
prep kit (Illumina) followed by second-strand cDNA synthesis, which 
incorporates dUTP to quench the second strand during amplification. 
The double-stranded cDNA fragments were then A-tailed and ligated to 
JGI dual-indexed Y-adapters, followed by an enrichment of the library 
through 13 cycles of PCR. The prepared libraries were quantified using 
the KAPA Biosystems’ next-generation sequencing library qPCR kit and 
run on the Roche LightCycler 480 real-time PCR instrument. Sequenc-
ing of the flowcell was performed on the Illumina NovaSeq sequencer 
following a 2 × 150 nucleotide indexed run program.

The resulting fastq files were mapped using Bowtie284 (-D 10 -R 2 -N 1  
-L 22 -i S,0,2.50) to the dereplicated GROWdb. SAM files were trans-
formed to BAM files using samtools, filtered to 97% ID using reformat.
sh and name sorted using samtools. Transcripts were counted for each 
gene using feature-counts86. Counts were transformed to geTMM (gene 
length corrected trimmed mean of M-values) in R using edgeR pack-
age87. Genes were considered if they were expressed in 10% of samples. 
Core calculations in Fig. 2 had an additional requirement to express at 
least 20 genes per genome.

Microbial metabolism trait and carbon usage classification
To classify microbial genes and genomes based on their carbon metabo-
lism, we curated the metabolism assignments made by DRAM83 using 
rulesets to assign genomes to functional guilds (Extended Data Fig. 5). 
For example, genomes were classified by respiratory capacity based 
on the presence of >50% of the subunits required for complex 1 of the 
electron-transport chain and the presence at least one gene for an 
electron acceptor. As such, for a genome to be classified as a micro-
aerophile, we required the genome to have more than 50% of com-
plex 1 subunit and at least one subunit of a low-affinity cytochrome 
oxidase. Likewise, if a genome did not have more than 50% of the 
subunits required for complex 1 of the electron-transport chain or 
the potential for any electron acceptor, it was classified as an obligate 
fermenter (Extended Data Fig. 5). All calls made by the defined rule 
set were checked manually to account for misbins, low bit scores and 
genome incompleteness.

From the DRAM output, we further assigned genomes as capable of 
carbon fixation if they encoded >70% of one of six seven carbon fixation 
pathways. We then assigned each MAG in each river metatranscriptome 
as a photoautotroph, photoheterotroph, chemolithoautotrophy, het-
erotroph or mixotroph by assessing the gene expression in that system. 
We then focused in on genes required for using different carbon sub-
strates in the genomes identified for heterotrophy. We assigned carbon 
gene expression into the following categories: polymer, sugar, aromatic 

compound, methanotrophy, methylotrophy, short chain fatty acid uti-
lization and carbon monoxide utilization using DRAM assigned rules. 
Carbon usage curation scripts are available on the GROWdb GitHub69. 
P/R ratios were defined by the ratio of expression of light-driven energy 
metabolisms (aerobic photosynthesis, anaerobic photosynthesis and 
photorhodopsins) divided by aerobic respiration metabolisms (aerobic 
respiration and microaerophilic respiration).

Phylogenetic analyses were performed to refine the annotation of 
nitrogen related metabolism including genes annotated as respira-
tory nitrate reductase (nar), nitrite oxidoreductase (nxr), ammonia 
monooxygenase (amo) or methane monooxygenase (pmo) to improve 
the assignment the nitrogen cycling capabilities of GROW MAGs. Specif-
ically, Nxr/Nar and PmoA/AmoA amino acid reference sequences were 
downloaded30,88,89 and this set of reference sequences was combined 
with amino acid sequences of homologues from the GROWdb, aligned 
separately using MUSCLE (v.3.8.31) and run through a Python script 
for generating phylogenetic trees (ProtPipeliner; https://github.com/
WrightonLabCSU/Protpipeliner/tree/main)90,91. ProtPipeliner runs as 
follows: (1) alignments are curated with minimal editing by GBLOCKS92; 
(2) model selection is conducted via ProtTest93; and (3) maximum- 
likelihood phylogeny for alignments are conducted using RAxML94 
v.8.3.1 with 100 bootstrap replicates. This resulted in two phylogenies, 
one for Nxr/Nar and one for Pmo/Amo, that were visualized using iTOL95 
(https://itol.embl.de/shared/wrighton_lab) and were used to refine 
the homology-based gene annotations in the MAG database. Raw tree 
files are also available as newick files available at Zenodo (https://doi.
org/10.5281/zenodo.8173286).

For in silico predictions of ARGs, GROWdb-predicted proteins were 
searched for homology to proteins in the Comprehensive Antibiotic 
Resistance Database (CARD; v.3.2.7, downloaded June 2023) using the 
Resistance Gene Identifier (RGI; v.6.0.2)43. RGI was run locally in protein 
input mode with distributed input and default parameters and with 
the ‘include loose’ option. However, the final list of candidate ARGs 
analysed here includes only proteins identified by RGI as ‘perfect’ or 
‘strict’ hits, and includes only protein homologue models (that is, no 
protein variant models were included in the analysis). Other contami-
nant annotations were derived from DRAM annotations with the list of 
targeted genes included (Supplementary Data 4).

SRA analysis
To analyse the distribution of microbial lineages recovered by GROW 
across public datasets, the Sandpiper96 database (https://sandpiper.
qut.edu.au) was used as a basis96. At the time of analysis, it contained 
metagenomes that were publicly available on 15 December 2021. Rea-
nalysis of these datasets was performed with SingleM 1.0.0beta796. The 
‘supplement’ subcommand was first used to add 95% ANI dereplicated 
GROW MAGs to the SingleM96 reference metapackage built with GTDB 
RS07-207 (https://doi.org/10.5281/zenodo.7582579). The ‘renew’ sub-
command was then used to reanalyse all metagenomes present in the 
Sandpiper database, outputting a taxonomic profile, detailing the 
microbial lineages and unclassified lineages in each metagenome, 
together with their relative abundance.

To search for public metagenomes in which GROW MAGs were pre-
sent, taxonomic profiles of metagenomes containing microbial lineages 
that had an associated GROW MAG (either novel or already represented 
in GTDB) were further analysed. To reduce the incidence of false iden-
tification, we required at least two microbial lineages represented 
by a GROW MAG to be present and the combined relative abundance 
to be >1%. Metadata of metagenomes containing GROW MAGs were 
gathered using Kingfisher ‘annotate’ (https://github.com/wwood/
kingfisher-download).

Statistical analysis
Geospatial variables were categorized into site or local, land-use or 
watershed characteristic groups and combined with microbial data 
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to generate the biogeography dataset (Fig. 3b). Biogeographical 
patterns were assessed in three ways: (1) a pairwise Pearson correla-
tion matrix was calculated for all variables using cor.test to test for 
significance, with all correlations with P > 0.05 removed; (2) for each 
variable non-microbial variable, a distance matrix was calculated using 
the Euclidean distance metric and then individual mantel tests were 
conducted to assess the correlation between the variable distance 
matrix and a Bray–Curtis distance matrix of metatranscriptome or 
metagenome MAG abundance; (3) PERMANOVA was conducted using 
the adonis2 function with 999 permutations to assess the influence of 
various environmental predictors on microbial community expres-
sion. For (3), spatial distance metrics were calculated and assessed 
against microbial communities as either latitude, longitude or through 
a primary spatial variable calculated as the first principal component 
of latitude and longitude. Likewise, a collective land use variable was 
calculated as the as the first principal component of land-use metrics 
in Fig. 3b. Several models were run, with the two reported in the text as 
model 1: effects of stream order, month, land use and maximum tem-
perature on microbial community composition; and model 2: effects 
of stream order and spatial variable on microbial community compo-
sition. Note that spatial variables often covary with abiotic and biotic 
factors; thus, correlations make it challenging to disentangle whether 
shifts in the relative abundances of specific microbial taxa are directly 
influenced by temperature or by concurrent changes in other factors 
that also affect river microbial communities. Here we provide multiple 
levels of testing, to evaluate those variables in a pairwise manner, as 
well as collectively.

Metagenomic and metatranscriptomic composition, function and 
diversity were related to 36 selected site, land-use or watershed vari-
ables using Mantel tests (top two rows). This was followed with pairwise 
comparisons using Pearson’s correlation (heat map Fig. 3b). Variables 
are coloured by category including microbial (purple), site or local 
(light blue), land-use (orange) and watershed metrics (dark blue). For 
pairwise comparisons of microbial data, metatranscriptomic metrics 
were used for diversity and function abundance calculations.

All data analysis and visualization was done in R (v4.2.1) with the 
following packages: stats (v.4.1.1), vegan (v.2.6), ggplot2 (v.3.3.6), Com-
plexUpset (v.2.8.0), tidyr (v.1.2.0), dplyr (v.1.0.9), corrplot (v.0.92), 
pheatmap (v.1.0.12), RColorBrewer (v.1.1-3), pls (v.2.8), edgeR (v.3.16). 
Scripts for figure generation and data analysis are available on GitHub69. 
Map data were derived from publicly available data sources: (1) Fig. 1b,c 
and Extended Data Fig. 7 were generated using the state bounda
ries developed using the tigris (https://github.com/walkerke/tigris);  
(2) Fig. 1b,c was generated using the flowlines from National Hydrogra-
phy Plus Version 271; and (3) Extended Data Fig. 7 was generated using 
the ecoregions50 provided from https://www.epa.gov/eco-research/
ecoregions.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data underlying GROWdb are accessible across multiple platforms 
to ensure many levels of data use and structure are widely available. 
First, all reads and MAGs are publicly hosted at the National Center 
for Biotechnology (NCBI) under BioProject PRJNA946291. Second, 
all data presented in this Article, including MAG annotations, phylo-
genetic tree files, antibiotic-resistance gene database files and expres-
sion data tables are available at Zenodo97 (https://doi.org/10.5281/
zenodo.8173286). Data visualized as maps were derived from publicly 
available data sources: (1) state boundaries developed using the tigris 
R package (https://github.com/walkerke/tigris); (2) flowlines from 
National Hydrography Plus Version 271; (3) ecoregions50 provided from 

https://www.epa.gov/eco-research/ecoregions. Beyond the content 
listed above, our aim for GROWdb was to maximize data use by making 
the data available in searchable and interactive platforms including 
the National Microbiome Data Collaborative (NMDC) data portal, the 
Department of Energy’s Systems Biology Knowledgebase (KBase)3 and 
a GROW-specific user interface released here, GROWdb Explorer. Each 
platform provides different ways to interact with data in the GROWdb. 
GROWdb was a flagship project for the newly formed NMDC. Specifi-
cally, individual GROWdb datasets (metagenomes, metatranscriptomes 
and so on) are easily accessible and searchable through the NMDC data 
portal98 (https://data.microbiomedata.org/), where they are system-
atically connected to each other and to a rich suite of sample informa-
tion, other data collected on the same samples and standard analysis 
results, following findable, accessible, interoperable and reusable data 
practices26. GROWdb is also a publicly available collection (https://
narrative.kbase.us/collections/GROW) within KBase3, with samples, 
MAGs and corresponding genome-scale metabolic models found in 
the KBase narrative structure (https://doi.org/10.25982/109073.30/
1895615). Access within KBase allows for immediate access and reuse 
of data, including comparison to private data analyses using KBase’s 
500+ analysis tools, in a point and click format. GROWdb Explorer is a 
graphical user interface built through the Colorado State University 
Geospatial Centroid (https://geocentroid.shinyapps.io/GROWdata-
base/), enabling users to search and graph microbial and spatial data 
simultaneously. Here the microbial data, metabolite and geospatial 
data are included. The microbial data were distilled into functional gene 
information, so that biogeochemical contributions and the microor-
ganisms catalysing them can be assessed and visualized rapidly across 
the dataset. In summary, GROWdb represents to our knowledge the first 
publicly available genome collection from rivers and offers data that 
can be leveraged across microbiome studies. GROWdb is an expand-
ing repository to incorporate and unify global river multi-omic data 
for the future.

Code availability
All scripts involved with microbial data generation, processing, cura
tion and visualization are available at GitHub and Zenodo99 (https:// 
github.com/jmikayla1991/Genome-Resolved-Open-Watersheds-database- 
GROWdb/tree/main, https://doi.org/10.5281/zenodo.11041178). Code 
for geospatial analysis and GROWdb Explorer are available at GitHub 
(https://github.com/rossyndicate/GROWdb). Code for figures and 
data analysis are available in Zenodo100 (https://doi.org/10.5281/
zenodo.11188634).
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Extended Data Fig. 1 | Distribution of river characteristics sampled in 
GROWdb. A) Heatmap of geospatial and chemical parameters sampled in 
GROWdb, where columns are environmental and variables and rows are 
corresponding samples within GROWdb. Each variable has been scaled by 
subtracting the vector mean for each variable and dividing by its standard 

deviation. Variables in grey text were determined by FTICR. Blue histogram 
plots above highlight the distribution of samples for each variable, with high 
values at the top of the plot. Histogram plots of key variables used throughout 
the main text including stream order (B) and ecoregion (C) are also shown.
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Extended Data Fig. 2 | GROWdb comparison to other metagenomics data 
sources. A) Sequencing depth comparison of GROWdb metagenomes (n = 158) 
to SRA metagenomes classified as riverine (n = 222) shows 3x increase in 
average sequencing depth for GROWdb. Each point represents a single 
metagenome, with mean and median values listed at the top of the graph. For 
the boxplot, upper and lower box edges extend from the first to third quartile 
and the line in the middle represents the median. The whiskers are 1.5 times the 
interquartile range and every point outside this range represents an outlier.  
B) Stacked bar chart shows novelty of GROWdb MAGs when compared to GTDB 

(r207). Each MAG was placed at the highest level of novelty, with no assignment 
within a taxonomic level (e.g., unnamed family or genus) being highest level  
of novelty and alpha numeric identifiers being the second highest (e.g., UBA 
lineages). Bars are coloured by Phylum. C) Stacked bar chart shows the 
proportion of SRA metagenomes that a GROWdb lineage (95% identity) was 
detected (black) or not detected (grey) within an SRA environment category. 
D) The top ten MAGs most frequently detected across river surface water 
related SRA metagenomes are displayed at the genus level on the bar chart, 
with colours denoting phyla (key above).



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Taxonomic diversity of 2,093 unique surface water 
metagenome assembled genomes (MAGs) in GROWdb. A) Cladogram shows 
GROWdb MAGs taxonomy with each sequential ring noting taxonomy level 
(Phylum, P; Class, C; Order, O; Family, F). Circle size indicates the number of 
genomes within a given taxonomy level and is further noted by MAG number 
inside the circle when sampling at that taxonomic position exceeds 50 MAGs 
sampled. Colours highlight phylum level taxonomy denoted on the outermost 
ring. Open triangles represent unnamed lineages within a particular level of 
taxonomy. B) MAG accumulation curve where the black line represents the 
mean richness of 100 random permutations and grey shading represents 

standard deviation. C) One dimensional boxplot displays the environments 
GROWdb MAGs were detected in across 266,764 metagenomes in the Sequence 
Read Archive with each point representing a single MAG. Upper and lower  
box edges extend from the first to third quartile and the line in the middle 
represents the median. The whiskers are 1.5 times the interquartile range and 
every point outside this range represents an outlier. Environments are ordered 
by number of metagenomes GROWdb MAGs were detected in from left to right, 
with the number of metagenomes also noted along the x-axis. Freshwater 
related environments are highlighted in blue.



Extended Data Fig. 4 | GROWdb comparison to global freshwater MAGs.  
In order to compare GROWdb MAGs in this study derived from United States 
watersheds, we have compiled MAGs from other biogeography studies with 
freshwater MAGs24–26, as well as included 1,286 additional MAGs derived from 
23 metagenomes released in this study, including 6 countries beyond the 
United States (UK, Canada, Italy, Germany, Israel, Republic of the Congo).  
A) Area plot shows the dereplication results of 9,798 MAGs from freshwater 
sources (lakes and rivers) at 99% identity. This dereplication status, with winner 
defined as the best MAG representative of the cluster, is reported by outline 
colour with black outline denoting winner and grey outline denoting loser. The 
area plot within these sections has area size proportional to MAGs recovered, 
divided first by study (colour in legend), then by country (noted on area plot). 
B) Stacked bar chart summarizes area plot in A by study, with GROW contributing 
the most representative MAGs (dRep winners). C) Venn diagram shows the 
number of MAG representatives (dRep winners) derived from rivers only  

(does not include lakes) by location, with USA being compared to Non-US sites. 
Circle area is sized by number of MAGs. D) Nayfach, et al. is a comprehensive 
catalogue of Earth’s microbiomes that includes 52,215 MAGs, of which we 
retain 5,336 MAGs from aquatic freshwater environments for our global 
comparison, excluding soil, sediment, and wastewater related habitats within 
the aquatic freshwater ecosystem to more directly compare to surface water 
GROWdb. Pie chart shows the breakdown of sample types for this subset of 
MAGs, highlighting that a majority are derived from lake systems. E) Bar chart 
shows clustering of MAGs from other studies with GROWdb non-US studies, 
with bars coloured by study. F) Venn diagram compares the number of MAG 
representatives (dRep winners) derived from rivers and lakes across studies, 
with circle area sized by number of MAGs. Stacked bar chart below summarizes 
these results by study. All data for this comparison is reported in Supplementary 
Data 2 (tab 5), with MAG files available at Zenodo.
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Extended Data Fig. 5 | Metabolic trait assignment ruleset. Each trait is defined by a set of genes and the percent of genes required for that function. Lines flow 
from the genome (top black box) to traits (ovals), passing through boxes of gene requirements to be consider TRUE for that particular trait.



Extended Data Fig. 6 | Gene level expression across rivers. Genes detected in 
more than 50% of metatranscriptomes, with gene functions (n = 365) grouped 
by broad categories (n = 9, A) and refined to subcategories (n = 41, B). Thickness 
of lines and line order in A show the number of functions within a particular 
category (right) and subcategory (left). A and B are linked by subcategory number 
(1–41). For each of the 41 subcategories, the number of genes and occupancy 
defined as the percentage of samples detected across metatranscriptomes is 
shown by bar charts. Hypothetical and genes with unknown annotations are not 
shown, albeit 21 genes with these annotations were considered core or expressed 
in all metatranscriptomes. C) Focusing on carbon, carbohydrate-active enzyme 
(CAZyme) family gene expression is shown across river metatranscriptomes 

(n = 57) as log-transformed expression (geTMM). In the box plot, upper and 
lower box edges extend from the first to third quartile and the line in the middle 
represents the median. The whiskers are 1.5 times the interquartile range and 
every point outside this range represents an outlier. D) The prevalence of each 
CAZyme family across the metatranscriptomes is shown by stacked bar plots, 
which represent the fraction of river metatranscriptomes with expression for 
each family, with bar colour corresponding to river size as denoted in the 
legend. The dotted line marks 50% of metatranscriptome samples. At right, the 
substrate type for each CAZyme family is given based on the DRAM metabolism 
summary; see Shaffer and Borton et al for substrate logic91. If more than one 
box is present, the CAZyme family can act upon multiple substrate types.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | GROWdb membership and structure across 
geospatial parameters. A) Stacked bar chart of the singleM profiles of 
GROWdb metagenomic reads, with bars coloured by domain. By domain, the 
most reads are assigned to the Bacteria (mean=91.1%), followed by Eukaryota 
(mean=6.1%), Archaea (mean=2.6%), and Unknown (mean=0.2%). B) Correlations 
of Patescibacteria relative abundance (metagenomics, top) and expression 
(metatranscriptomics, bottom) with stream order. Correlation significance was 
tested in R using cor.test (two-sided), with p-values shown. C) Permutational 
analysis of variance (PERMANOVA) results for metagenomes (metaG) and 
metatranscriptomes (metaT) indicate that drivers of community structure  
and expression, respectively. These drivers and their interactions explain  
68% of the metagenome and 41% of the metatranscriptome variance. Bar height 
represents the R2, with green bars denoting significant drivers (p < 0.05), while 
black bars are not significant drivers. D) Sparse Partial Least Squares (sPLS) 

regressions show significant function (top) and MAG level (bottom) expression 
predictions of watershed maximum temperature, with key variables (Variable 
Importance Projection >1) denoted in bar graphs below. Fitted regression line 
is shown with grey shading representing 95% confidence interval. E) Non-metric 
multidimensional scaling of genome resolved metagenomic Bray-Curtis 
distances shows clustering of microbial communities by ecoregion (classified 
by Omernik II), with sampling location depicted on map above (mrpp, p < 0.001). 
Abbreviations: NPOC, Non-Purgable Organic Carbon; DNRA, Dissimilatory 
Nitrite Reduction to Ammonia; WWTP Density, Waste Water Treatment Plant 
Density; NPP, Net Primary Production. F) Non-metric multidimensional scaling 
of genome resolved metagenomic Bray-Curtis distances shows clustering of 
microbial communities by hydrological unit (HUC-2), with sampling location 
depicted on map on Fig. 1c.
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Extended Data Fig. 8 | GROWdb inventory of Emerging Contaminant  
Genes. A) Heatmap shows the genomic potential for emerging contaminant 
transformation categories by genus, with number of genes normalized to the 
number of genomes within a genus and scaled by column. Black boxes indicate 
no detection of a related gene, while red box outlines indicate expression of a 
gene within at least six metatranscriptomes. B) Several genera encoded the 
potential for Terephthalate and Phthalate microplastic related metabolisms, 
with the entire pathway from polyethylene terephthalate (PET) and Phthalate 
shown. Heatmap corresponds to the pathway with steps 1–7, where box colour 
indicates the number of genes encoded per genus. Red outlines indicate 

expression of a gene within at least six metatranscriptomes. C) Emerging 
contaminant gene expression categories were related to land use, with 
significant relationships detected among the percent of the watershed 
classified as low-intensity, urban impacted shown by horizontal red bars 
(p-value < 0.05). Each point represents a single metatranscriptome (n = 43). 
Boxplot upper and lower box edges extend from the first to third quartile and 
the line in the middle represents the median. The whiskers are 1.5 times the 
interquartile range and every point outside this range represents an outlier.  
A similar trend was shown with high-impact urban land use, but lacked power 
based on number of samples. Significance (p-value < 0.05) is noted by red bar.



Extended Data Fig. 9 | GROWdb metagenomic analysis pipeline and results. 
A) Metagenomic pipeline for GROWdb that resulted in three assemblies per 
sample (A, B, and F), with all parameters and version used outlined in methods 
and on GitHub (10.5281/zenodo.11041178). B) Stacked bar graph shows the 
number of medium (MQ) and high (HQ) quality dereplicated MAG representatives 

recovered from each assembly type. C) Bar graph shows the number of 
singleton dereplicated MAG representatives from each assembly type. D) Venn 
diagram compares the number of dereplicated MAG cluster representatives 
(dRep winners) recovered from each assembly type with overlaps indicating 
MAGs within the same cluster were recovered from multiple assembly types.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All scripts involved with microbial data generation, processing, curation, and visualization are available on GitHub (https://github.com/
jmikayla1991/Genome-Resolved-Open-Watersheds-database-GROWdb/tree/main). Code for geospatial analysis and GROWdb Explorer are 
available on GitHub (https://github.com/rossyndicate/GROWdb). 

Data analysis The following published software was used in data analysis: R (v4.2.1),  sickle (1.33), SPAdes (v3.12), CheckM (v1.1.2),  MEGAHIT (v1.2.9), 
bowtie2 (v2.4.1), MetaBAT2 (v2.12.1), GTDB-tk (v2.1.1), DRAM (v1.4.4), samtools (v1.9), coverM (v0.6.0), bbtools v38.51, idba-ud (1.1.0), 
Resistance Gene Identifier (6.0.2), SingleM (1.0.0beta7), MUSCLE (3.8.31)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data underlying GROWdb are accessible across multiple platforms to ensure many levels of data use and structure are widely available. First, all reads and 
MAGs are publicly hosted on National Center for Biotechnology (NCBI) under Bioproject PRJNA946291. Second, all data presented in this manuscript including MAG 
annotations, phylogenetic tree files, antibiotic resistance gene database files, and expression data tables are available in Zenodo (https://doi.org/10.5281/
zenodo.8173286). Code for figures and data analysis are available in GitHub (https://doi.org/10.5281/zenodo.11188634).  
 Beyond the content listed above, our aim for GROWdb was to maximize data use by making the data available in searchable and interactive platforms including the 
National Microbiome Data Collaborative (NMDC)2,27 data portal, the Department of Energy’s Systems Biology Knowledgebase (KBase)3, and a GROW specific user 
interface released here, GROWdb Explorer. Each platform provides different ways to interact with data in the GROWdb:  
• NMDC GROWdb was a flagship project for the newly formed NMDC. Specifically, individual GROWdb datasets (metagenomes, metatranscriptomes, etc) are easily 
accessible and searchable through the NMDC data portal (https://data.microbiomedata.org/), where they are systematically connected to each other and to a rich 
suite of sample information, other data collected on the same samples, and standard analysis results, following Findable, Accessible, Interoperable, and Reusable 
(FAIR) data practices37. 
• KBase GROWdb is a publicly available collection (https://narrative.kbase.us/collections/GROW) within KBase3, with samples, MAGs, and corresponding genome 
scale metabolic models found in the KBase narrative structure (https://doi.org/10.25982/109073.30/1895615). Access within KBase allows for immediate access 
and reuse of data, including comparison to private data analyses using KBase’s 500+ analysis tools, in a point and click format. 
• GROWdb Explorer is a graphical user interface built through the Colorado State University Geospatial Centroid (https://geocentroid.shinyapps.io/
GROWdatabase/), allowing users to search and graph microbial and spatial data simultaneously. Here the microbial data, metabolite, and geospatial data is 
included. The microbial data was distilled into functional gene information, so that biogeochemical contributions and the microorganisms catalyzing them can be 
assessed and visualized rapidly across the dataset.  
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Surface water samples were collected across US rivers following standardized protocols, this resulted in 158 metagenomes and 57 
metatranscriptomes. Sample sizes are sufficient as they are reported with p-values. 

Data exclusions No data was excluded. 

Replication Given the discovery basis of this work, the finidings were not reproduced.

Randomization Experimental groups were derived from the river geospatial information.

Blinding Blinding was not conducted as this was a discovery-based study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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