
1Scientific Data |         (2024) 11:1423  | https://doi.org/10.1038/s41597-024-04279-9

www.nature.com/scientificdata

A dataset exploring urban comfort 
through novel wearables and 
environmental surveys
Patrick Chwalek   1,6 ✉, Sailin Zhong1,2,6, Nathan Perry1, Tianqi Liu3, Clayton Miller   4, 
Hamed Seiied Alavi5, Denis Lalanne2 & Joseph A. Paradiso1

This study presents a comprehensive dataset capturing indoor environmental parameters, physiological 
responses, and subjective perceptions across three global cities. Utilizing wearable sensors, including 
smart eyeglasses, and a modified Cozie app, environmental and physiological data were collected, 
along with pre-screening, onboarding, and recurring surveys. Peripheral cues facilitated participant 
engagement with micro-EMA surveys, minimizing disruption over a 5-day collection period. The 
dataset offers insights into urban comfort dynamics, highlighting the interplay between environmental 
conditions, physiological responses, and subjective perceptions. Researchers can utilize this dataset 
to deepen their understanding of indoor environmental quality and inform the design of healthier built 
environments. Access to this dataset can advance indoor environmental research and contribute to the 
creation of more comfortable and sustainable indoor spaces.

Background & Summary
Indoor environmental health and comfort have received increased attention since the onset of the most recent 
pandemic. In developed countries, we typically spend over 90% of our time indoors, yet indoor environments 
exhibit significant variability both between and within buildings1,2. Adding complexity, individual comfort is 
highly subjective, influenced by factors such as local climate, personal preferences, and individual physical and 
psychological attributes3,4. To gain deeper insights into individual exposure and preferences, comprehensive 
datasets ideally should encompass diverse environmental measurements closely linked to human health and 
comfort, along with synchronized subjective assessments.

Measuring individuals’ environmental conditions and physiological responses across different contexts poses 
challenges. While many commercially available sensor-rich systems are readily accessible, they often abstract 
away pre-processing and system intricacies from the user. Although technologies exist for monitoring physio-
logical parameters (e.g., smartwatches), there is a scarcity of solutions optimized for continuous environmental 
monitoring throughout the day. The placement of environmental sensors around users is a topic of debate and 
depends on the specific characteristic being measured5,6. For instance, for gases related to human breathing 
dynamics, proximity to the mouth is optimal, whereas temperature sensors afford more flexibility in placement. 
However, placing sensors near or on the face may present logistical constraints and discomfort for users, which 
could impact data accuracy. Additionally, longitudinal studies of environmental exposure should encompass 
periods spent outside buildings and during commuting, as these factors can vary significantly based on geo-
graphical location, local events, and transportation modes7.

Various methods exist in the literature and practice for collecting subjective data on users’ comfort and 
perception of their environments. A recent example is the Cozie iOS and Apple Watch application, offering an 
open-source approach for collecting survey data in a reliable, longitudinal, and non-intrusive manner8. The 
application incorporates a dynamic micro-ecological momentary assessment (EMA) question flow, capturing 
users’ location and discomforts, including thermal comfort and noise, with the flexibility to tailor assessments 
for specific data collection needs.
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When seeking accurate sensor measurements to correlate with user perception or exposure (e.g., light lev-
els, temperature, humidity, air quality), smart glasses emerge as an attractive option. Positioned near the eyes, 
ears, mouth, and nose—critical areas for visual and auditory perception, as well as inhalation and exhalation of 
contaminants—smart glasses offer promising avenues for data collection. For our study, we utilized the AirSpec 
Platform, designed for both quantitative and qualitative data collection9. Based on a previous smart eyeglass 
design, AirSpecs have been evaluated for physical comfort and appearance, demonstrating equivalence to other 
popular commercial smart eyeglass systems10.

In this paper, we present our data collection efforts across three geographical using the AirSpecs platform9 
in conjunction with a custom iOS and Apple Watch application built for AirSpecs with inherited traits from the 
Cozie app8. We outline our data collection methodology, summarize dataset variance, provide access instruc-
tions, and offer guidance on utilization.

Methods
Experimental design.  The study encompassed three geographical regions to diversify cultural backgrounds 
and climatic conditions: Boston, Massachusetts, USA, in March/April 2023 (Site 1); Fribourg, Switzerland, 
in May/June 2023 (Site 2); and Singapore in June/July 2023 (Site 3). The experiment was approved by the 
Institutional Review Board (IRB) of each study site, specifically, the Massachusetts Institute of Technology’s 
IRB (2301000858), the University of Fribourg’s IRB (2023-826-R2), and the National University of Singapore’s 
IRB (NUS-IRB-2023-135). Ten participants were recruited via lab-wide email advertising at each location, and 
data collection occurred continuously over five days during working hours. Collection mechanisms involved 
pre-screening, onboarding, and recurring Ecological Momentary Assessment (EMA) surveys adapted from the 
Cozie iOS application8, Apple Watch, Empatica E4 wristband, AirSpecs9, and an exit interview (see Fig. 1). All the 
participants were invited to an in-person onboarding session where a consent form showing the purpose, study 
procedures, risks, and potential discomfort were explained to the participants. In addition, a datasheet with a full 
list of sensor data to be acquired through Empatica E4, Apple Watch/iPhone, and AirSpecs as well as a data stor-
age flow (a simplified version of Fig. 2) were presented. The ethical committees considered this study to have a low 
level of security risk since (1) the smart glasses did not record dialog;(2) the data through glasses was transmitted 
in binary format and without source code, it could not be decoded; (3) in all Apps (both AirSpec and Cozie iOS 
App), participant’s identifiable personal information were not recorded, instead, their data was annotated with 
participant ID only; (4) the Empatica E4 data was stored locally (without any personal information). With the 
understanding of this information, the participants were informed that they would be able to withdraw from the 
experiment at any time and would have the option not to have the Cozie App if they had concerns about data 
being shared with Apple.

In total, 30 participants were selected, comprising 14 women, 14 men, 1 non-binary/third gender partic-
ipant, and 1 who preferred not to disclose, aged between 21 and 52 (refer to Table 1). Participants received 
compensation totaling 150 local currency vouchers (equivalent to $112-172 USD) for the entire study period, 
including onboarding and interview sessions. Twenty-nine participants used their own iPhones, with eight also 
utilizing their own Apple Watches. Others were provided with an Apple Watch 7/8 and an iPhone SE (2nd Gen). 
Approximately 26.6% and 36.6% of participants reported being slightly to extremely unsatisfied with their office 
and home environments, respectively. Twenty-nine participants completed five-day studies, while one com-
pleted a three-day study due to contact lens issues.

The pre-screening survey covered university status, time spent in work locations, satisfaction with work 
locations, and prerequisites such as vision status. The onboarding survey included demographic information 
and sensitivity to Indoor Environmental Quality (IEQ) parameters.

The study leveraged the AirSpecs9 platform to collect local environmental and physiological data. The 
platform integrated various sensors configured at fixed sample rates and resolutions (see Table 2). Data were 
streamed via Bluetooth Low Energy (BLE) through a custom iOS application, allowing users to view real-time 
data and interact with micro-EMA surveys (see Fig. 2). All data were forwarded to an external server for moni-
toring by researchers to prevent data loss.

To prompt users to take surveys, peripheral cues were employed to reduce disruption to natural experiences. 
Inspired by Ramsay and Paradiso’s work on using a slowly changing peripheral LED as a secondary task11, the 
study utilized LEDs built into AirSpecs to signal survey times at random intervals between 1 and 1.5 hours. The 

Fig. 1  Overview of study design.
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Fig. 2  System overview of AirSpecs device and apps. The sensor readings of the device in the top figure (except 
those in italic) are accessible by the user. Most readings are presented in raw form, except that skin temperature 
data was used to estimate cognitive load. Screenshots of the AirSpecs apps design in iOS and the corresponding 
watchOS are shown, including home, historical records, settings, and the survey. The watchOS app aims to 
provide spontaneous information, so we eliminated the historical records and settings screens in its design. 
Two sets of sensors that measure air temperature, humidity, VOC, and NOx are located in the left temple 
(on a sideboard) and bridge, considering that measurements near the breathing area and the surrounding 
environment can differ.
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LED gradually transitioned from blue to green over 53 seconds to indicate survey availability (see Fig. 3). If users 
did not respond within 15 minutes, a vibration notification was sent to their Apple Watch. Once users engaged 
with the micro-EMA survey, the LED reverted to blue until the next survey interval. The micro-EMA survey 
focused on introspective aspects, querying perceived focus level, time perception related to flow states, current 
context, and sources of discomfort.

Data Records
The dataset has been uploaded to Figshare and includes all data sources, including metadata12. The data records 
collected from four sources (AirSpecs, AirSpecs App, Cozie App, and Empatica E4) are synchronized using a 
UTC timestamp and a unique participant ID assigned to each participant. The participants’ experiment sched-
ule, along with pre-screening, demographic information, exit surveys, and open coding of sensor rearrangement 
co-design, are included in this dataset (participants.csv and consolidated_atlas.csv). The 
meanings of the columns in the consolidated data, as well as the columns in the environmental and physiolog-
ical data files, can be found in Summary_of_derived_data.xlsx, under the “column meanings” tab. 
The consolidated_atlas.csv includes answers to exit interview questions, which are documented in 
Exit_survey_and_interview_questions.pdf in the repository.

The details of the raw data and pre-processed consolidated data frames for each source are as follows:

Environmental and physiological sensing data around the user’s face from AirSpecs.  The raw 
sensing data were exported from InfluxDB and stored in CSV format, and were consolidated into data frames in 
pickle format per sensor name and location. All of these data frames share timestamps, a unique participant ID, a 
phone ID (reflecting the connected glasses), and the experiment location. The rest of the columns reflect the envi-
ronmental and physiological parameters recorded (e.g., ambient temperature, humidity, and skin temperature). 
The consolidated data is compressed within AirSpec_data.7z.

EMA from AirSpecs App.  We aimed to capture users’ intuitive comfort perceptions using our Ecological 
Momentary Assessment (EMA) questionnaire. The questionnaire automatically progressed to the next ques-
tion for single-answer queries (up to 11 questions), and participants were instructed to click “next” after com-
pleting multiple-choice questions (maximum of 3 questions). Recognizing that participants might be engaged in 

Fig. 3  The question flow is designed based on the micro-ecological momentary assessment (micro-EMA) 
question flows for building occupants’ experience of space14.
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PID Age Gender Race/ethnicity Occupation Site
Work in built 
environment

1 24 Female White Master student 1 No

2 25 Female White University stuff 1 No

3 29 Non-Binary/third gender Hispanic/Latinx Master student 1 No

4 24 Male Hispanic/Latinx, White PhD student 1 No

5 26 Female East Asian University stuff 1 No

6 21 Male White Undergraduate student 1 No

7 22 Female Asian-American Undergraduate student 1 No

8 32 Male East Asian PhD student 1 Yes

9 21 Female Hispanic/Latinx, Middle 
Eastern Undergraduate student 1 No

10 24 Male White PhD student 2 No

11 46 Female Hispanic/Latinx Professor 1 Yes

12 31 Male White PhD student 2 No

13 27 Male East Asian, White PhD student 2 No

14 27 Male Hispanic/Latinx, White PhD student 2 No

15 30 Male White PhD student 2 No

16 45 Prefer not to say White Manager 2 No

17 33 Female White PhD student 2 No

18 52 Female White PhD student 2 No

19 27 Male White PhD student 2 Yes

20 25 Female White PhD student 2 No

21 23 Male Southeast Asian Undergraduate student 3 No

22 27 Female East Asian PhD student 3 Yes

23 23 Female East Asian Undergraduate student 3 No

24 24 Male East Asian PhD student 3 Yes

25 23 Female East Asian Master student 3 No

26 35 Male South Asian Master student 3 Yes

27 26 Female East Asian PhD student 3 No

28 24 Female Southeast Asian PhD student 3 Yes

29 23 Male South Asian Undergraduate student 3 No

30 29 Male East Asian Postdoc 3 Yes

Table 1.  30 participants were selected from 23, 14, and 45 registrations at sites 1-3 based on responses to the 
pre-screening survey according to three criteria: (1) prioritizing graduate students, staff, and researchers who 
are likely to have work tasks that require concentration, (2) no need to wear glasses or can wear contact lenses to 
correct their vision, and (3) not extremely satisfied with all work environments.

Parameter Sensor Sample rate Accuracy Location on glasses

Air temperature SHT45 Every 5 sec ± . �0 1 C Temple (right, outside as side-

Humidity ± .1 0% board), bridge (front)

VOC SGP41 Every 5 sec ±15% Temple (right, outside as side-

NOx ±50ppb board), bridge (front)

Iluminance (lux) TSL27721 Every 1 sec — Bridge (front)

Spectrum AS7341 Every 5 sec — Bridge (front)

IAQ BME688 Every 5 sec ±15% Bridge (front)

(e)CO2 ±15%

Noise (dBA) ICS-43434 48000 Hz — Temple (left, outside)

Audio Frequency (activate 85 ms every min) —

Skin temperature TPIS 1S 1385 Every 1 sec �0 3 C± . Temple (right, inside), bridge (back), nose pad (right)

Blink QRE1113 1000 Hz — Nose pad (left)

Table 2.  Summary of sensing parameters, their sampling settings, and corresponding locations on the AirSpecs 
device.
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conversations or otherwise occupied, we allowed them to answer only the initial question on their comfort state (e.g., 
comfy vs. not comfy) to record reaction times accurately. Post-experimental interviews indicated that participants 
could complete the remaining questionnaire within 5 minutes, so we grouped these delayed responses with their ini-
tial reaction times if submitted within this timeframe. Otherwise, these responses were treated as voluntary additions.

The EMA is always initiated from the comfort state question triggered by an Apple Watch wrist-up event or 
iOS icon click, enabling spontaneous reaction time recording upon selecting a comfort state. User interactions 
with the app interfaces were logged to gauge interest in Indoor Environmental Quality (IEQ) dimensions. In our 
consolidated dataset, timestamps and corresponding clicks were matched with EMA, and reaction time data was 
recorded within a 10-minute window.

We recommend working with the consolidated data due to the complexity of interpreting raw data without 
familiarity with the app’s architecture and data transmission protocols.

We collected 1,175 micro-EMA surveys with associated reaction times across 30 participants across three 
sites: 352 from Site 1, 491 from Site 2, and 332 from Site 3. The average number of surveys per participant was 
39 2 15 6. ± .  (mean ± SD). Surveys were predominantly completed via the Apple Watch application (1,004) 
compared to the phone application (161). The results of the survey data across participants is stored in sur-
vey_reactionTime_uiClick.csv.

Activity and physiological data at the user’s non-dominant hand from Cozie App.  When 
worn on the non-dominant wrist, the Apple Watch facilitated effortless navigation using the dominant hand. 
Participants were instructed to wear the Apple Watch on their non-dominant hand and the Empatica E4 on their 
dominant hand. The Cozie App, being open-source, integrates its EMA function into the AirSpecs App described 
earlier, eliminating the need for participants to switch between apps during the experiment. Meanwhile, the Cozie 
App continued to run in the background, fetching Apple HealthKit data recorded by the Apple Watch and iPhone. 
Detailed parameters retrieved from HealthKit are outlined in the Cozie App’s documentation available at https://
cozie-apple.app/docs/download_data/data_overview. The data from the Cozie App is stored in pickle format 
(cozie.pkl) and can be deserialized using the Python pickle module.

Physiological data at the user’s dominant hand from Empatica E4.  Empatica E4 data were stored 
locally on the wristband for five days, and we downloaded original CSV files per sensing parameter per Empatica 
E4 session ID using its official app. To link session IDs with participants, we pre-processed these raw E4 files, 
aggregating all sensing parameters per participant per session based on their experiment schedule. These data can 
be further synchronized with other sources using unique participant IDs and timestamps. The data is compressed 
within E4_formatted.7z.

Discontinuity
During the experiment, we experienced a data storage failure that resulted in the loss of physiological data from 
AirSpecs for Site 2. We did not institute an automatic data backup system because of the potential additional 
load it would have put on our server during data collection. The error was the result of a default InfluxDB data 
retention policy of 3 months that the authors were not aware of. Site 1’s data was backed up to an external AWS 
server before beginning work at Site 2 but that data wasn’t backed up until the collection at Site 3 was complete. 
However, survey data, as well as Empatica E4 and Apple Watch data, were preserved for all sites. To mitigate this 
issue for future experiments, the retention policy should be set to a range more appropriate for the experiment 
and data should be backed up automatically during off-peak hours or manually on a more periodic basis. We 
also do not have the blink data from Site 1 due to an issue with the initial firmware on the AirSpecs glasses that 
was resolved in an update prior to starting the other sites. The initial firmware did not fully power on the blink 
detection sensor in low- to medium-light conditions (e.g., indoor environments) which resulted in a sensor sig-
nal with limited visibility of blink occurrences. These issues causing the discontinuity have been fixed after the 
study in this paper for potential future studies with other researchers using the AirSpecs system.

For the Cozie data, we don’t have data for P8 and P30, likely due to the Cozie App being accidentally shut off 
by the participants for the duration of the experiment. The Empatica E4 dataset also doesn’t include data for P23 
and P26 for reasons unknown but likely hardware failures.

Technical Validation
The accuracy of individual environmental sensors (part numbers listed in Table 2) can be found in their respec-
tive data sheets on the manufacturers’ websites. We validated the non-contact skin temperature sensors by 
recording 30 consecutive measurements after stabilization and comparing them against the reference sensor, 
iButton® temperature loggers DS1922L (MAXIM Integrated, US) mounted at the same location (Table 3).  

Thermopile Location Average (°C) Standard Deviation

Nose Tip 0.78 0.43

Nose Bridge 1.05 0.57

Temple (Front) −0.20 0.40

Temple (Mid) −0.10 0.38

Temple (Rear) 0.11 0.39

Table 3.  Average difference of non-contact skin temperature measurements using calibrated thermocouple as 
reference (n = 30).
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The iButton skin temperature sensors were calibrated at the Laboratory of Integrated Comfort Engineering 
(ICE), École Polytechnique Fédérale de Lausanne, using a Julabo CORIO CD water bath and a precision ther-
mometer with an uncertainty of 0.015 °C. The calibration resulted in an accuracy of ±0.2 °C for the iButtons13. 
Since we could not use both the reference sensor and the non-contact sensor simultaneously, we took a series of 
measurements alternating between the two in quick succession. We found that the average difference between 
the reference sensor and ours for the temple location was negligible, likely due to the large, relatively flat surface 
of the temple providing ideal conditions for the optical temperature sensors. The nose locations showed a larger 
temperature offset between the reference and our non-contact sensors, but the standard deviation was nearly the 
same as for the temple locations. This indicates that, aside from requiring a temperature offset, the performance 
should be similar across temperature sensors.

Usage Notes
Within our data, there is variability in the length of sensor collections for each participant each day and in any 
discontinuities throughout a given day. This variability is due to the study being unsupervised by researchers, 
allowing participants to remove the sensors when performing tasks that might damage the units (e.g., swim-
ming) or disrupt their activities. When using the data, discontinuities should be taken into consideration, and 
interpolation should be approached with caution. While some physiological and environmental parameters 
generally change slowly (e.g., face temperature, ambient temperature), others can vary abruptly (e.g., gases).

We have both quantitative and qualitative data that can be used to experiment with personalized model 
building and determine which sensing modalities and locations are the most optimal for a particular objective 
function. Researchers can also use the recorded response delay of the survey and results from prior work on 
relating response delay to focus levels to build more intelligent comfort models that consider human internal 
states11.

We did not perform further validation of the sensor subsystems beyond what was provided by the manufac-
turer. The AirSpec systems were all constructed for the study in the months prior, using new batches (late 2022) 
of sensors procured from the manufacturer. Given that this experiment was conducted in uncontrolled environ-
ments, we cannot guarantee the proportional contribution of an individual’s environment to their own thermo-
dynamic microclimate. This is influenced by both the individual’s physiological responses and the environment 
they are in (e.g., ventilation levels). For instance, if a person is sweating and/or breathing heavily in a room with 
low airflow, the humidity around their face is expected to increase. Thus, a humidity sensor mounted on a pair 
of eyeglasses will record a combination of the environmental humidity level and the individual’s contribution to 
it. The participants were informed on the potential difference between measurement from the glasses and other 
ambient environmental sensing devices with a note on the Settings screen of the App in Fig. 2 to minimize the 
impact of sensor value ranges on the subjective reflection during EMA.

We also did not measure any potential sensor drift between sites, as all studies across the three locations were 
conducted within a continuous five-month period. However, no manufacturer datasheets report long-term drift 
except for the SHT45 temperature and humidity sensors, where the drift is less than 0.2% relative humidity per 
year. If an additional study is conducted to measure long-term comfort, it is recommended to calibrate the sen-
sors more regularly to compensate for any potential drift in absolute readings or sensitivities.

The total sample size of the study was 30 participants, evenly distributed across three cities in distinctly differ-
ent geographic regions. Singapore is generally more tropical year-round, with higher humidity and temperature 
compared to the other two cities, while Fribourg typically experiences the mildest temperature and humidity 
ranges during the summer months. In a tropical region such as Singapore, it was particularly interesting to 
understand user comfort as people experience significant temperature and humidity fluctuations when entering 
or exiting buildings, as opposed to climatic regions where such variations are less pronounced (e.g., Fribourg).

A goal of this study was to conduct a limited exploration in each of these cities using a variety of collection 
mechanisms to identify potential failure modes when scaling to larger populations or longer durations. The 
participants were limited to university students and staff due to the access to participant pools. Therefore, the 
results are not representative of the larger populations in each region nor are they indicative of long-term com-
fort variations. However, these data can be used to understand short-term comfort and its relation to individuals’ 
perceptions, as well as to support a preliminary analysis of variations across geographical regions. Nevertheless, 
a larger study with a wider demographic is warranted for more generalizable results.

There are no access restrictions or no limitations on data use for our collected dataset.

Code availability
The AirSpec firmware code to reference specific sensor settings and system architectures can be found here: 
https://github.com/pchwalek/airspec. The iOS application with survey implementation can be found here: https://
github.com/sailinz/AirSpec_iOS.
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