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Haze can significantly reduce visibility and contrast of images captured outdoors, necessitating the 
enhancement of images. This degradation in image quality can adversely affect various applications, 
including autonomous driving, object detection, and surveillance, where poor visibility may lead to 
navigation errors and obscure crucial details. Existing dehazing techniques face several challenges: 
spatial methods tend to be computationally heavy, transform methods often fall short in quality, 
hybrid methods can be intricate and demanding, and deep learning methods require extensive 
datasets and computational power. To overcome these challenges, we present ODD-Net, a hybrid deep 
learning architecture. Our research introduces a comprehensive data set and an innovative architecture 
called Atmospheric Light Net (A-Net) to estimate atmospheric light, using dilated convolution, batch 
normalisation, and ReLU activation functions. Furthermore, we develop T-Net to measure information 
transmission from objects to the camera, using multiscale convolutions and nonlinear regression to 
create a transmission map. The integrated architecture combines pre-trained A-Net and T-Net models 
within the atmospheric scattering model. Comparative analysis shows that ODD-Net provides superior 
dehazing quality, especially in transmission map estimation and depth measurement, surpassing 
state-of-the-art methods such as DCP, GMAN, DehazeNet, and LCA. Our quantitative analysis reveals 
that ODD-Net achieves the highest performance in terms the quality metrics compared. The proposed 
method demonstrates notable quantitative and qualitative improvements over existing techniques, 
setting a new standard in image dehazing.

Keywords Image dehazing, Deep retinex, LCA, Dense depth, A Net, T Net

Image dehazing is crucial for enhancing the quality of images captured in outdoor settings, where haze can 
significantly degrade visibility and contrast1–4. This reduction in image quality can negatively impact various 
image processing applications, such as autonomous driving, object detection, and surveillance. For example, 
in autonomous systems, haze-induced poor visibility can result in navigation and obstacle detection errors, 
potentially leading to accidents. Similarly, in surveillance, haze can obscure vital details, making identification 
of objects or individuals difficult. Consequently, the development of effective dehazing techniques is critical to 
ensure the reliability and accuracy of these applications5–8.

This study is motivated by the need to overcome the limitations of current dehazing techniques, which include 
spatial methods, transform domain methods, and machine learning (ML)/deep learning (DL) approaches. Spatial 
methods, such as the Dark Channel Prior (DCP) and Atmospheric Scattering Model (ASM), work by estimating 
the transmission map to clear up images but often struggle with computational inefficiency and reduced 
effectiveness under complex haze conditions1,9,10. Transform-domain methods, such as wavelet transforms, 
offer computational efficiency but may not consistently deliver high-quality dehazing. Hybrid approaches seek 
to merge the benefits of both spatial and transform methods11. Meanwhile, ML/DL techniques utilise neural 
networks to learn dehazing patterns from data, showing considerable potential but also encountering challenges 
related to data requirements and computational intensity12,13.

He et al. proposed a dark channel prior, which involves calculating the minimum intensities over three 
channels within a neighbourhood. The assumption is that the dark channel for hazy images is brighter due to the 
white haze component, which adds equal intensities to all colour channels. This method assumes homogeneous 
hazing and uses the brightest 0.1% of pixels in the dark channel to estimate atmospheric light1. To refine the 
transmission map, He et al. suggested the use of soft matting, which, although effective, increases complexity 
and processing time. Subsequent work by He et al. demonstrated that using a guided filter instead of soft matting 
improves the performance of the DCP algorithm1,14,15. Zhu et al. introduced a color attention prior-based 
approach, observing that haze density increases with depth16. They assumed depth to be positively correlated 
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with the difference between value and saturation in the HSV color space. Despite their effectiveness, these spatial 
methods often struggle with computational efficiency and may not perform well under varying atmospheric 
conditions. Li et al. proposed a dual domain method that adjusts the global contrast in the spatial domain for 
dehazing and then enhances the local contrast in the frequency domain17,18. This approach has shown promising 
results in terms of both efficiency and dehazing performance19.

Transform-based techniques such as Fourier and wavelet transforms have been employed to distinguish 
between hazy and clear images. Ancuti et al. introduced a wavelet-based dehazing approach that uses the 
multiscale nature of wavelet transforms to enhance the visibility of hazy images10,20,21. However, the authors 
noted that, while wavelet-based methods offer computational efficiency, they may not consistently deliver 
high-quality dehazing results, especially in complex hazy scenarios. Tarel and Hautière proposed a Fourier-
based dehazing method that operates in the frequency domain11. By modelling the haze as a low-pass filter, the 
authors were able to remove the haze component and restore the clear scene. The multilevel wavelet transforms 
and Haar wavelet transforms, combined with regularised optimisation, enhance dehazing efficacy by applying 
optimisation to low-frequency subband decomposition. These techniques are known for their efficiency and 
durability, making them suitable for real-world applications. However, they may not always achieve the high-
quality results required for complex haze conditions22,23,24.

Hybrid techniques blend spatial and transform-based methodologies to improve image quality. The 
application of guided anisotropic diffusion and iterative learning-based image filters (GADILF) enhances the 
transmission map, reduces color and texture distortion. Similarly, Meng et al. introduced a method that uses 
both dark channel prior and wavelet-based processing to achieve efficient and effective dehazing12. While 
the hybrid approach aimed to leverage the strengths of both spatial and transform-based techniques, the 
authors acknowledged the need for further improvements in handling complex hazy scenes25,26. Despite these 
improvements, hybrid methods can be computationally heavy and may not always balance performance and 
efficiency effectively13–15,27–29.

The development of DL techniques has significantly advanced dehazing methods30. Convolutional Neural 
Networks (CNNs) have been used to map hazy images to haze clear images. AOD-Net31 and its variants32, 
estimate the transmission map and atmospheric light simultaneously, providing a more sophisticated architecture 
for dehazing. FFA-Net28 uses a feature fusion architecture to enhance the dehazing performance, although 
it is computationally intensive28. Pavan et al.33 proposed a light convolution network focused on time and 
computational efficiency for real-time applications. However, it struggles with low light and thick haze conditions. 
Other notable methods include the Generic Model-Agnostic Convolutional Neural Network (GMAN) for single 
image dehazing by Liu et al.34, and the Gated Context Aggregation (GCA) Network by Chen et al.32,35, which uses 
smoothed dilation and a gated sub-network to remove hazy elements and artifacts effectively. Major research 
was initiated by Singh et al. using different neural network-based architectures for single image dehazing29,36–39. 
Despite these advancements, challenges remain in achieving accurate representation and reconstruction under 
diverse haze conditions.

In recent years, significant progress has been made in developing spatial, transform-based, hybrid, and 
ML/DL-based techniques for single image dehazing. Each method offers unique strengths and faces specific 
challenges. Spatial methods are often computationally intensive, transform methods may not achieve high-
quality results, hybrid methods can be complex and computationally heavy, and ML/DL methods require large 
datasets and significant computational resources. The performance validation is more commonly based on full 
reference metrics as per the literature, and not practical for real-time applications. Addressing these gaps is 
crucial to develop more robust and efficient dehazing techniques capable of handling various types of haze and 
atmospheric conditions27,30,40. The major contributions of this study are

• A new data set is developed that addresses various challenges associated with haze, providing a comprehen-
sive resource for dehazing research.

• An architecture termed as Atmospheric Light Net (A-net) is modelled for atmospheric light estimation in-
spired from LCA-net, integrating dilated convolution, batch normalization, and ReLU activation functions to 
expedite convergence and feature learning.

• A novel model, T Net, is developed to quantify the amount of information transmitted from objects to the 
camera. Leveraging early approaches like DehazeNet, T Net employs multiscale convolutions and nonlinear 
regression to generate a transmission map, which correlates with the image’s depth.

• An end-to-end architecture is developed by pre-trained A-Net and T-Net models using the atmospheric scat-
tering model, resulting in the creation of ODD-Net (Outdoor Depth-based Dehazing Model).

The remainder of the paper is structured as follows. Section "Background study" provides a comprehensive 
background study, covering various base models and the approach taken for dataset creation. In Sect. “Proposed 
model (Outdoor depth-based dehazing network)”, the proposed model is detailed and discusses its architecture 
and methodology. Section "Results and discussion" presents the results and discussions, including discussions 
on assumptions, experimental setup, quantitative and qualitative comparisons. Finally, Sect.  “Conclusions” 
concludes by providing insights into future directions of research in the field.

Background study
Atmospheric scattering model
The presence of haze in an image can be attributed to two primary factors, viz, direct attenuation: which occurs 
due to the decay of light as it passes through the medium and air light, which results from the scattering of light 
in the atmosphere. The atmospheric scattering model is expressed mathematically as I(x) = J (x)t(x) + A(1 − t(x)), 
where I(x) represents the hazy image, J (x) denotes the haze free image or scene radiance, A is the global 
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atmospheric light, and t(x) is the transmission of the medium. It indicates the fraction of light that is not 
scattered and is defined as t(x) = e − β.d(x), where β is the scattering coefficient of the atmosphere, and d(x) is 
the distance from the point of the scene to the camera. This equation illustrates that scene radiance is attenuated 
exponentially with the increase in scene depth. The model operates under the assumption of homogeneous 
scattering of light and a constant scattering coefficient throughout the medium.

Retinex model
The Retinex model is based on human visual perception theory and aims to explain how the human eye perceives 
colours under varying lighting conditions41. This model assumes that an observed image I(x) can be decomposed 
into the product of two components: the reflectance R(x) and the illumination L(x). Mathematically, it can be 
expressed as I(x) = R(x).L(x), where I(x) is the observed image, R(x) represents the reflectance (intrinsic colour of 
objects), and L(x) denotes the illumination (lighting conditions). The goal of the Retinex model in dehazing is to 
estimate the reflectance R(x) from the observed image I(x) by appropriately separating the effects of illumination.

To achieve this separation, the model often employs logarithmic transformations to convert the multiplicative 
relationship into an additive one, making it easier to handle. Taking the logarithm of both sides of the equation:

 log(I(x)) = log(R(x)) + log(L(x))

Let i(x) = log(I(x)), r(x) = log(R(x))andl(x) = log(L(x))
The equation then becomes i(x) = r(x) + l(x)
The challenge lies in estimating r(x) and I(x) from i(x). Various algorithms, such as single-scale retinex (SSR) 

and multi-scale retinex (MSR), have been developed to perform this decomposition42,43. The Deep Retinex 
model comprises two key components: the Residual Illumination Map Estimation Network (RIMEN) and 
Channel and Spatial Attention Dehazing U-Net (CASDUN). RIMEN is responsible for estimating the residual 
illumination map, which contains crucial local and global information for haze removal. It utilizes a multi-scale 
subnetwork with three branches, each processing input hazy images at different scales to capture both global 
context and local details effectively. Each branch consists of a down sampling layer, a residual dense block (RDB), 
and a transpose convolution layer for multi-scale feature extraction44. The RDB employs hierarchical feature 
fusion and residual learning to enhance network representation. After multi-scale feature learning, the feature 
maps are up sampled and concatenated with the hazy image for residual illumination map prediction. On the 
other hand, CASDUN is a four-stage U-Net designed to capture both contextual and spatial information for haze 
removal that incorporates RDBs for feature extraction in each stage.

The entire Deep Retinex model is trained end-to-end using optimization techniques, including an illumination 
error loss function and a dehazed image error loss function, combining pixel-wise absolute loss, SSIM loss, and 
smooth loss to improve performance and accuracy44. The block diagram is shown in Fig. 1.

Light convolution autoencoder
Light Convolution Autoencoder (LCA) net is a light network which focuses on being faster rather than 
performance. The model is a sequential one, with the first part of the model acting as an encoder i.e. the image 
is reduced to a feature vector and then a decoder network is used to recover the haze free image from the feature 
vector.

The model has around 53 thousand trainable parameters. After training the model for 50 epochs taking a 30% 
random subset of Hazy Kitti dataset, we achieved a mean square error of 0.0056 and the model had converged 
giving very decent results for a simple model. The recovered image retains a small amount of haze with blurring 
effect. Figure 2 and Table 1 show the architecture of the LCA net.

Dataset creation
For the creation of data set, the HazeRD dataset model was adopted, incorporating specific modifications 
to enhance realism and diversity in simulated haze conditions45. The haze simulation model in the HazeRD 
involves several key steps to accurately replicate hazy conditions in images. First, the haze-free images and their 
corresponding depth maps are considered. KITTI (https://www.cvlibs.net/datasets/kitti/raw_data.php) and 
RESIDE (https://site s.google.com /view/reside -dehaze-dat asets/reside-standard?authuser=3D0) datasets are 
used for the same. The transmission map, which describes how much light can pass through the atmosphere, 
is calculated using the scattering parameter β, which is determined based on different weather conditions. The 
parameter β is related to the visible range Rm in the equation β = −ln (ϵ) /Rm where ϵ represents the minimum 
contrast threshold visible to the human eye.

The Haze simulation considers the irradiance EC(x, y) (light received by the camera without haze) and 
airlight ACA_CAC (ambient light scattered into the camera). The intensity of the captured image at each channel 
is calculated using IC(x, y) = EC(x, y)t(x, y) + AC(x, y)(1 − t(x, y)) where (x, y) = e−βd(x,y) . Post 
processing includes converting these images back to the sRGB color space after gamma correction and white 
balancing. This model simulates five weather conditions, from light fog to dense fog, providing varied hazy 
images to effectively test dehazing algorithms45.

The HazeRD paper suggests setting atmospheric light at 0.76 and determining the scattering coefficient β 
based on the visual range, which measures the distance of clear visibility in hazy environments. For our dataset, 
we opted to draw atmospheric light values from a uniform distribution, while visual range values were taken 
from a skewed Gaussian distribution to prioritise dense-haze conditions. These distributions were optimised 
through visual inspections and evaluations of natural and haze-sensitive features. We used KITTI dataset for 
ground-truth images, captured using 1.4 megapixel Point Grey Flea 2 cameras, and LiDAR data is collected 
using Velodyne HDL-64E sensor, which were then converted to dense depth maps using inpainting algorithms 
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from the NYU V2 toolbox. From the KITTI dataset, we selected 1000 images, creating five variations for each 
by sampling visual range values from skewed Gaussian distribution and atmospheric light values from uniform 
distribution. This resulted in a total of 5,000 training images. Additionally, we generated 77 test images from a 
different subset of the KITTI dataset46. Figure 3 depicts the process of dataset synthesis adopted.

Proposed model (Outdoor depth-based dehazing network)
Our proposed model, named the outdoor depth-based dehazing network, builds upon the approach suggested 
in the deep retinex network. Inspired by the idea of breaking down complex problems into smaller, manageable 
components. We have subdivided the dehazing task into two primary challenges: atmospheric light estimation 
and transmission map generation. After thorough experimentation with various methodologies, we opted 

Fig. 2. Light convolution autoencoder (LCA) Net.

 

Fig. 1. Deep retinex model.
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for this approach due to its robust theoretical foundation. A key factor in our methodology’s success was our 
meticulous dataset synthesis process. During this phase, we took care to include atmospheric light information 
to generate hazy images. Additionally, we store transmission maps corresponding to different parameters of the 
visual range. These measures facilitated the training of our network for transmission map generation, ensuring 
the effectiveness and adaptability of our proposed model.

Atmospheric light net (A-net)
The proposed end-to-end network is inspired from LCA-net for calculating atmosphere light. We trained the 
network over 30 iterations, using a loss function called mean squared error (MSE). The validation results, with a 
loss of 0.0191, demonstrate that our model surpasses previous approaches.

To enhance convergence speed and effective feature learning, our network incorporates dilated convolution 
and batch normalization techniques. We also utilize ReLU activation functions to maintain continuous 
features in the output, crucial for preserving the nuances of the input image. To reduce model complexity, 
we employ pooling layers that compress information by selecting maximum values within sliding windows. 
This compression helps to manage the size of the model without sacrificing the performance. The proposed 
architecture is modelled with a keen focus on the atmospheric light features outlined by He et al.1. Specifically, 
we noted that atmospheric light is often the maximum intensity in both the dark channel and the input image. 
To capture this characteristic, we designed convolutional layers followed by max-pooling and embedded dilation 
layers to expand the network’s receptive field. MSE loss is utilized as objective function to effectively preserve 
important features of the input image, making significant strides in image dehazing research. The architectural 
specifications of A Net is given in Table 2 and Fig. 4.

Fig. 3. Dataset synthesis using HazeRD.

 

Layer Output shape Trainable parameters

Input_layer (Batch, 352, 1216, 3) 0

Conv2d_1(encoder) (Batch, 352, 1216, 50) 1400

Average_pool_1 (encoder) (Batch, 176, 608, 50) 0

Conv2d_2(encoder) (Batch, 176, 608, 50) 22,550

Average_pool_2 (encoder) (Batch, 88, 304, 50) 0

Dense_1 (encoder) (Batch, 88, 304, 10) 510

Dense_2 (encoder) (Batch, 88, 304, 10) 110

Conv2d_Transpose_1 (decoder) (Batch, 88, 304, 50) 4550

UpSample2d_1 (decoder) (Batch, 176, 608, 50) 0

Conv2d_Transpose_2 (decoder) (Batch, 176, 608, 50) 22,550

UpSample2d_2 (decoder) (Batch, 352, 1216, 50) 0

Conv2d_Transpose_3 (decoder) (Batch, 352, 1216, 3) 1353

Table 1. LCA Net architecture.
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Transmission map net (T-Net)
The amount of information that goes to the camera is reflected in T-Net. This value is in the range of 0 to 1, 
where 1 indicates a clear image and 0 implies a very dense haze. Earlier methods, such as DehazeNet, created a 
transmission map that correlates with the depth of image using multiscale convolutions and nonlinear regression.

We incorporated models for depth prediction in our system, specifically using monocular depth estimation 
models from the KITTI dataset (https://www.cvlibs.net/datasets/kitti/raw_data.php)  . An appropriate model 
can provide enhanced depth maps and be flexible enough to accommodate modifications in the future. We 
examined several models, such as DenseDepth, Adabins, MonoDepth, and MonoDepth2, but finally DenseDepth 
is employed as our fundamental model due to its scalability and ease of use.

For our scenario, DenseDepth was selected as it offered good depth map generation accuracy. Figure 5 shows 
the depth maps generated from DenseDepth. We adjusted DenseDepth to better suit our requirements, such as 
adding an upscaling block to match the output resolution with input image and including constrained ReLU 
activation functions to support transmission map values between 0 and 1.

We further experimented with several improvements, such as pixel and channel attention blocks, and found 
that the EfficientNet B4 functioned satisfactorily in training, and that the Dense Net 169 encoder performed 
better than the Dense Net 201 encoder. These findings further supported our decision to use DenseDepth for 
our T-Net architecture. The T-Net architecture is presented in Figs. 6 and 7 display the responses of the T-Net 
architecture.

Fig. 4. A-Net architecture.

 

Layer Output shape Parameters

Input (Batch, 352, 1216, 3) 0 max

pooling2d (Batch, 88, 304, 3) 0

conv2d (Batch, 84, 300, 32) 896

max pooling2d 1 (Batch, 21, 75, 32) 0

conv2d 1 (Batch, 19, 73, 16) 4624

max pooling2d 2 (Batch, 4, 18, 16) 0

conv2d 2 (Batch, 2, 16, 8) 1160

flatten (Batch, 256) 0

dense (Batch, 1) 257

Table 2. A-Net architecture.
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Fig. 7. T Net Outputs: (a), (b) Hazy image (c), (d) Groundtruth T map (e), (f) Generated T map.

 

Fig. 6. T-Net architecture.

 

Fig. 5. T Net output represents the transmission map from an input image (a) input image (b) transmission 
map.
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Combination net: outdoor depth-based dehazing (ODD-Net)
ODD-Net is designed to integrate the outputs from both A-Net and T-Net, leveraging the strengths of each to 
enhance dehazing performance. The approach involved merging the intermediate outputs from A-Net and T-Net 
using the atmospheric scattering model. This model effectively combines the estimated atmospheric light and 
the transmission map to reconstruct the dehazed image. In this configuration, atmospheric light, calculated by 
A-Net, provides crucial information about the intensity and colour of the haze, while the transmission map from 
T-Net details the amount of haze that affects each pixel. By integrating these outputs, ODD-Net can accurately 
remove haze while preserving essential image details. To further refine the combination process, we utilized 
additional layers of convolution and batch normalization, ensuring smooth transitions and enhancing feature 
learning. This dual network synergy in ODD-Net results in superior dehazing capabilities, as demonstrated 
by our comparative evaluations. The architecture specifications and detailed implementation of ODD-Net are 
illustrated in Figs. 8 and 9.

This combined architecture, termed ODD-Net (outdoor depth-based dehazing model), was trained for 30 
epochs. During training, we gradually decreased the learning rate from 1 × 10e−4 to 1 × 10e−9. Our training 
process used a combination of Mean Squared Error (MSE) and VGG loss functions. On completion, we achieved 
an MSE error of 0.0004.

Results and discussion
The performance of the proposed method is evaluated against several recent state-of-the-art dehazing algorithms. 
These include LCA-Net47, Dehazenet3,48, Guided Multi-Model Adaptive Network (GMAN)49, Confidence Prior 
Model (CP)50, UR-Net51, and FFA-Net52. Both quantitative and qualitative results of these comparisons are 
detailed in Sects. "Quantitative analysis" and "Qualitative analysis".

Experimental setup
We used NumPy, Matplotlib, and TensorFlow for our implementation. NumPy is a powerful library for 
numerical computation that is known for its effectiveness and speed. The visualisation tool, Matplotlib, allowed 
us to view input and output images. Our preferred framework was TensorFlow, an open-source toolkit used for 
deep learning and machine learning. Flexibility is provided by TensorFlow, especially when used with Google 
Colab. TensorFlow is preferred as it integrates seamlessly with Google Colab and offers access to GPU and TPU 
resources for faster training. We used subclassing to define our models inside the TensorFlow framework, which 
gave us more control over the architecture and customisation of the models. The laptop we used to run the 
software had an i9 processor, an RTX Nvidia 3050 graphics card and 8 GB of RAM.

Fig. 9. The proposed outdoor depth-based dehazing (ODD-Net) architecture.

 

Fig. 8. ODD net architecture.
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Assumptions
T-Net training
There are 53,000 trainable parameters in T-Net. A 30% random subset of the Hazy KITTI dataset was used to 
train the model over 30 epochs. The convergent model yielded a mean square error of 0.0002 as validation loss 
and 0.0022 as training loss. The proposed end-to-end network for estimating atmospheric light is modelled 
using LCA-Net. MSE vs. iterations response comparison on of DenseNet and EfficientNet is shown in Fig. 10.

This study focusses on visibility outdoors, specifically how increasing air pollution reduces visibility. Our 
primary focus was on road conditions in order to solve this. As a result, we used a dataset that was based on the 
KITTI dataset, which is made up of information collected by cameras and LiDAR sensors that are installed on 
automobiles. To aid in visual scrutiny of the outcomes, we purposefully skewed the data set during synthesis in 
the direction of dense haze. Furthermore, the atmospheric scattering model, upon which our suggested model 
is based, is backed by strong theoretical precepts. Since outdoor images usually have a single dominant light 
source, this model functions under the assumptions that ambient light stays constant throughout the image and 
that depth is directly related to the quantity of haze present.

ODD net training
This integrated architecture was trained over 30 epochs and is known as ODD-Net (outdoor depth-based 
dehazing model). We reduced the learning rate from 1 × 10e−4 to 1 x 10e−9 over the course of training. We 
used both Mean Squared Error (MSE) and VGG loss functions in our training method. had an MSE of 0.0004. 
The MSE loss curve for the proposed dehazing model is shown in Fig. 11. The training and validation data sets 
make up the data set. Variation of MSE using each component models as a part of abalation study experiment 
is depicted in Table 3.

Quantitative analysis
KITTI, a synthetic dataset, is used to train and assess the proposed network. Since ground-truth images 
are available, we conduct qualitative and quantitative assessments. The peak signal-to-noise ratio, or PSNR, 

No.of iterations MSE (A-Net) MSE (T-Net) MSE (ODD-Net)

30 0.0191 0.002 0.0004

Table 3. Ablation study results.

 

Fig. 11. ODD net training.

 

Fig. 10. MSE vs. iterations response comparison on DenseNet and EfficientNet employed in T Net 
architecture.
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examines the relationship between a signal’s maximum potential power and the amount of corrupting noise that 
can damage its quality (Table 4). It is frequently reported in dB and used to evaluate the quality of reconstruction 
in movies and images following lossy compression. PSNR can be computed using logarithmic formulas and is 
quantified by mean squared error (MSE). The quality of the compressed or reconstructed image is better and 
lower error levels are indicated by a higher PSNR value. The mathematical formulas for computing mean squared 
error is MSE = 1

mn

∑m

i=1

∑n

j=1 (I(i, j) − K(i, j))2 where I(i, j) is the pixel value of the groundtruth 

image, and K(i, j) is the pixel value of the original image. P SNR = 10log10
R2

MSE  where R is the maximum 
pixel value.

A metric called the Structural Similarity Index (SSIM) is used to compare two photographs by considering 
aspects including brightness, contrast, and structural differences. A perceptual metric called SSIM measures 
how much processing, like data compression, degrades the quality of images. Since SSIM focusses on the image’s 
evident structures rather than noise levels like PSNR does, it is a more accurate measure of image quality 
degradation. The SSIM index is computed using SSIM(x, y) = (2µxµy+C1)(2σxy+C2)

(µ2
x+µ2

y+C1)(σ2
x+σ2

y+C2)  where x and y are 

the image patches being compared, µx and µy  are the mean values of x and y respectively, σ2
x and σ2

y  are the 
variances of x and y respectively, σxy  is the covariance between x and y, C1 and C2 are small constants used to 
avoid division by zero and stabilize the calculation.

SSIM requires two images for comparison: a reference image and a processed image, typically obtained 
by compression or other processing methods. It is widely used in the video industry and photography to 
assess image quality. The performance of the image dehazing algorithm is evaluated using the FADE metric. 
The residual haze level in the dehazed image is measured, and a lower FADE value corresponds to improved 
visibility enhancement. Twelve features associated with haze are extracted from the test image and fitted to a 
haze-line model to compute the FADE metric. A lower FADE score indicates that more fog has been successfully 
removed and visibility has been improved in the image using the dehazing process. FADE provides a clearer 
evaluation of the amount of haze left in the dehazed image than other measures such as CC (Contrast Change), 
e (Edge Strength), r (Restoration Quality), and CNC (Comprehensive No-Reference Quality Metric). However, 
having a low FADE value alone does not necessarily mean that the overall dehazing effect is the best, as other 
factors like colour distortion and oversaturation should also be considered. It is mathematically formulated as 
F ADE = 1

N

∑N

i=1
|Ii−Ii,ref |

max(Ii) , where N is the total number of pixels in the image, Ii is the pixel value of the 
image being evaluated and Ii,ref   is the corresponding pixel value in the reference (original) image.

To avoid bias towards certain models, all models in the study were trained from scratch using the TensorFlow 
framework. This was necessary because PyTorch was the only platform that provided implementation and trained 
weights for most of the models. Every model was trained for 30 epochs using a portion of the RESIDE  (   h    t t p  s : /  /  
s i  t e s  . g o  o g l  e  . c o  m / v i  e w / r  e s i d e - d e h a z e - d a t a s e t s / r e s i d e - s t a n d a r d ? a u t h u s e r = 3 D 0     ) outdoor dataset, which included 
about 2000 images. It is observed that FFA Net outperforms other SOTA models. Following the comparison 
studies, we found that, in addition to complete reference metrics such as PSNR, no reference metric measures 
such as naturalness index and haze-specific metrics such as fog density are essential for a thorough examination 
in the dehazing field.

We first developed the hazy-KITTI dataset, whose quality we calculated using naturalness index and human 
opinion scores. The dataset had been a synthesised one, but the metrics indicated it would very closely replicate 
real world scenarios. As the dataset was generated from LiDAR sensor images, it also had some drawbacks like 
inconsistent haze near object edges. For KITTY dataset, special care was taken so that each model was trained 
until convergence, we kept the number of maximum epochs for each model at 50, and most models converged 
before the limit. Also, effort was taken to make the metric as close as possible to the ones the authors were able 
to achieve in their respective works.

After the study, we could get close performance values for most of the models, this makes our work one of 
the first to rigorously compare various dehazing models. After the comparative study we found that FFA net was 
truly a standout net even when we implemented a mini version. We also reaffirmed the fact that GMAN, GCA, 
and U-NET are all good variants and call be used depending on requirements and constraints. Lastly, we were 
able to design a net based on strong theoretical backing, which outperformed the other networks in most of the 
metrics. The quantitative performance of the proposed method is compared against state-of-the-art methods 
using several metrics. The quantitative results are tabulated in Table 5. It can be observed from this table that the 
proposed method achieves the best performance in terms SSIM. We have attempted to obtain the best possible 
results for the other methods by fine-tuning their respective parameters based on the source code released by the 

Metrics LCA-Net47 DehazeNet3,48 GMAN49 CP50 U-Net51 FFA-Net52 Proposed

PSNR 12.21 17.07 17.23 14.80 19.28 20.13 20.67

SSIM 0.61 0.65 0.66 0.64 0.73 0.77 0.79

FADE 0.38 0.95 0.50 0.65 0.68 0.91 1.24

NQIE 2.85 4.42 2.93 2.70 3.71 2.7 2.67

CEIQ 3.19 3.27 3.33 3.22 3.4 3.22 3.42

Table 4. Comparison of dehazing models on RESIDE Dataset54.
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authors and kept the parameter consistent for all the experiments. The comparison study of dehazing models on 
KITTI and RESIDE datasets is presented in Tables 4 and 5 respectively.

Qualitative analysis
Our work is not limited to a dehazing net; it also provides information about atmospheric light which is directly 
correlated with light intensity, and it develops a transmission map in the intermediate layers, which is produced 
from a depth net that has been trained. As a result, it may be applied to determine the density of haze, and, in a 
subsequent investigation, it can be easily integrated into the study of depth correction under cloudy conditions. 
The comprehensive tests conducted on datasets containing difficult to interpret blurry images show that the 
suggested approach outperforms the state-of-the-art techniques by a considerable margin. The subjective results 
comparisons are presented in Figs. 12, 13, 14, 15 and 16.

The sample image of the road and the hazy image are shown in Fig. 12. Following a thorough examination of 
these images, we found that the most recent methods either did not manage to remove all haze or over corrected, 
which reduced the image’s visual appeal. While DCP eliminates haze, it additionally increases contrast in the 
image. However, LCA results in low quality because it retains some haze in the image. While Dehaze Net and 

Fig. 12. Comparison of the outputs of various models in Hazy-KITTI dataset53 (a) Ground Truth (b) Hazy 
image (c) LCA47 (d) Dehazenet3,48 (e) GMAN49 (f) CP50 (g) UR-Net51 (h) FFA52 (i) Proposed.

 

Metrics Hazy LCA-Net47 DehazeNet3,48 GMAN49 CP50 U-Net51 FFA-Net52 Proposed

PSNR 15.66 18.32 20.87 24.64 22.94 22.56 27.45 31.35

SSIM 0.73 0.69 0.69 0.89 0.90 0.86 0.90 0.95

FADE 1.12 0.63 0.62 0.43 0.41 0.57 0.39 0.45

NQIE 2.75 4.36 3.92 3.09 3.21 2.73 2.54 2.79

CQIE 3.14 3.02 3.22 3.23 3.11 3.19 3.23 3.27

BLIINDS2 6.23 40.80 23.40 16.13 3.97 8.88 9.54 11.86

Table 5. Comparison study of dehazing models on Hazy-KITTI dataset53.
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GCA are not able to completely eliminate haze from an image, they excel LCA, GMAN, and U-Net in terms of 
preserving the image’s uniqueness even with reduced contrast. On the other hand, given a range of haze contents, 
the proposed approach and FFA can produce better dehazing results.

The example image of the road and the hazy image is shown in Fig. 13. Following an extensive review of these 
results, we discovered that the most current methods either failed to remove all haze or overcorrected, which 
lessened the image’s visual appeal. DCP removes the haze in the image but does not bring back the original 
colour. However, LCA produces low quality as it keeps significant portions of the image hazy. The Dehaze Net 
eliminates the haze, yet the distortion deteriorates the image. Although GMAN, GCA, and U-Net perform 
more effectively than LCA, these algorithms are unable to remove haze from images but do an improved job 
of maintaining the image’s uniqueness even with lowered contrast. However, better dehazing results can be 
achieved with the suggested approach.

Figure 14 shows the road sample image and the hazy image. After careful analysis of these results, we observed 
that the recent best methods resulted in either incomplete removal of haze or overcorrection which reduced the 
visual appeal of the image. DCP removes the haze from the image, however it fails to retain the original colour 
of the image. While LCA retains the haze in major portion of the image leading to poor quality. DehazeNet 
removes the haze but degrades the image by pixelating. GMAN, GCA cannot remove the haze from the image, 
however, it performs better compared to LCA. U-Net retains the haze in image and introduces the artifacts. In 
contrast, the proposed method and FFA can achieve better dehazing results.

On a sample of images from the KITTI dataset, Fig. 15 illustrates the results of the suggested method compared 
to previous state-of-the-art methods. Upon careful examination of these results, we found that the best of the 
the best of the most recent methods either produced inadequate inadequate haze removal or exaggerated the 
image, which degraded its aesthetic appeal. DCP, GMAN, DehazeNet, and LCA are unable to completely remove 
haze from the image. While U-Net has the ability to achieve good performance in moderate haze, colour shift 
frequently appears in its dehazed output. In contrast, the suggested method may achieve better dehazing for a 
range of haze contents. Considering the quality of the transmission maps estimated by the suggested multitask 
technique with those estimated by the current methods, comparable results can be observed.It is noteworthy 
that the quality of the dehazed images is inferior with the previous methods since they are unable to precisely 
measure the relative depth in each image. On the other hand, the suggested approach produces higher quality 
dehazing in addition to high quality transmission map estimation.

Fig. 13. Comparison of the outputs of various models on Hazy-KITTI data set 253 (a) Ground Truth (b) Hazy 
image (c) LCA47 (d) Dehazenet3,48 (e) GMAN49 (f) CP50 (g) UR-Net51 (h) FFA52 (i) Proposed.
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Conclusions
In this study, we introduced ODD-Net, a hybrid deep learning architecture designed to overcome the limitations 
of existing image dehazing methods. By incorporating Atmospheric Light Net (A-Net) for precise atmospheric 
light estimation and T-Net for accurate transmission map generation, ODD-Net delivers superior dehazing 
performance. Our analysis of the dataset reveals that ODD-Net surpasses state-of-the-art methods such as 
DCP, GMAN, DehazeNet, and LCA, achieving the highest performance metrics scores and producing clearer 
and more accurate images. This work not only presents a comprehensive dataset but also rigorously compares 
various dehazing models, affirming the robustness and effectiveness of our approach. Future research could 
focus on developing more efficient versions of ODD-Net for real-time applications in autonomous driving and 
surveillance, expanding the dataset to cover diverse atmospheric conditions, and integrating additional sensor 
data like LiDAR or radar to enhance accuracy and reliability. These efforts will further enhance ODD-Net’s 
practical applicability and performance, solidifying its role as a leading solution in image dehazing.

Fig. 14. Comparison of the outputs of various models on Hazy-KITTI data set 353 (a) Ground Truth (b) Hazy 
image (c) LCA47 (d) Dehazenet3,48 (e) GMAN49 (f) CP50 (g) UR-Net51 (h) FFA52 (i) Proposed.

 

Scientific Reports |        (2024) 14:30619 13| https://doi.org/10.1038/s41598-024-82558-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 15. Comparison of the outputs of various models on the Hazy-RESIDE dataset 154 (a) Ground Truth (b) 
Hazy image (c) LCA47 (e) Dehazenet3,48 ) GMAN49 (g) CP50 (h) UR-Net51 (i) FFA52 (j) Proposed.
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Data availability
Dataset will be made publicly available after the acceptance of the paper. Code will be released via github and 
made available by the corresponding author on reasonable request.
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