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Efficient cooling systems are critical for maximizing the electrical efficiency of Photovoltaic (PV) 
solar panels. However, conventional temperature probes often fail to capture the spatial variability 
in thermal patterns across panels, impeding accurate assessment of cooling system performance. 
Existing methods for quantifying cooling efficiency lack precision, hindering the optimization of PV 
system maintenance and renewable energy output. This research introduces a novel approach utilizing 
deep learning techniques to address these limitations. A U-Net architecture is employed to segment 
solar panels from background elements in thermal imaging videos, facilitating a comprehensive 
analysis of cooling system efficiency. Two predictive models—a 3-layer Feedforward Neural Network 
(FNN) and a proposed Convolutional Neural Network (CNN)—are developed and compared for 
estimating cooling percentages from individual images. The study aims to enhance the precision and 
reliability of heat mapping capabilities for non-invasive, vision-based monitoring of photovoltaic 
cooling dynamics. By leveraging deep regression techniques, the proposed CNN model demonstrates 
superior predictive capability compared to traditional methods, enabling accurate estimation of 
cooling efficiencies across diverse scenarios. Experimental evaluation illustrates the supremacy of 
the CNN model in predictive capability, yielding a mean square error (MSE) of just 0.001171821, as 
opposed to the FNN’s MSE of 0.016. Furthermore, the CNN demonstrates remarkable improvements 
in mean absolute error (MAE) and R-square, registering values of 1.2% and 0.95, respectively, whereas 
the FNN posts comparatively inferior numbers of 3.5% and 0.85. This research introduces labeled 
thermal imaging datasets and tailored deep learning architectures, accelerating advancements in 
renewable energy technology solutions. Moreover, the study provides insights into the practical 
implementation and cost-effectiveness of the proposed cooling efficiency monitoring system, 
highlighting hardware requirements, integration with existing infrastructure, and sensitivity analysis. 
The economic viability and scalability of the system are assessed through comprehensive cost-benefit 
analysis and scalability assessment, demonstrating significant potential for cost savings and revenue 
increases in large-scale PV installations. Furthermore, strategies for addressing limitations, enhancing 
predictive accuracy, and scaling to larger datasets are discussed, laying the groundwork for future 
research and industry collaboration in the field of photovoltaic thermal management optimization.
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The ever-growing demand for electrical power, driven by industrialization and technological advancements, has 
intensified the focus on optimizing the efficiency of power generation systems.

Photovoltaic (PV) solar power has emerged as a critical renewable energy source, but maintaining high 
electrical efficiency relies heavily on effective panel cooling systems1. Various cooling systems are used in 
photovoltaic (PV) systems to improve energy conversion efficiency and prevent performance loss. Passive and 
active cooling methods are applied on the front and back surfaces of PVs under different working conditions. 
These cooling techniques include heat recovery units, water-cooled heat sinks, and backside water cooling 
systems2–4. It is important to note that many of these cooling methods, particularly those involving active cooling 
with fluids, are characteristic of photovoltaic/thermal (PV/T) systems. PV/T systems are hybrid solar systems 
that convert solar radiation into both electricity and useful thermal energy simultaneously. These systems not 
only cool the PV panels to maintain electrical efficiency but also harness the thermal energy for applications 
such as water heating or space heating, thereby increasing the overall energy conversion efficiency of the system. 
Therefore, Monitoring and optimizing cooling dynamics for solar plant performance and longevity is crucial, 
especially considering the limitations of traditional temperature probes in characterizing surface variability 
across panels. Novak et al.5 proposed an intelligent automation system that monitors parameters such as cooling 
medium amount, temperature, flow control, panel temperature, and local weather conditions to evaluate the 
conditions for active smart cooling. Singh and Yadav6 developed an experimental setup for solar panel cooling 
using water cooling arrangements and optimized the input parameters to achieve improved efficiency and 
module temperature. Herfatmanesh et al.7 conducted experiments to explore the effects of solar PV surface 
temperature on output performance and proposed a cooling system that increased efficiency by close to 50%. 
Gujar et al.8 designed a PV-panel cooling system using fins and phase change material, which maintained the 
temperature below 50 °C and increased conversion efficiency by 5–7%. Liu et al.9 summarized various solar cell 
cooling technologies, including traditional cooling methods and new technologies like heat pipe cooling and 
microchannel cooling.

Thermographic Non-Destructive Test (TNDT) is a common method for diagnosing faults in PV systems. 
It uses infrared thermography to examine the operating conditions of the system. TNDT analysis allows for 
the measurement of cell temperature and the detection of localized overheating in the module, known as 
hotspots, by capturing thermographic images that show the surface temperature of the module in each pixel10. 
This technique enables the identification of areas of potential defects without directly accessing the module. By 
detecting hotspots, TNDT can help prevent performance loss and ensure the safety of the PV system11,12.

Thermal imaging has been widely proposed as a solution for non-invasive, high-resolution visualization of 
temperature patterns. Yet analytical approaches for extracting actionable insights from thermal video remain 
limited13.

Recent literature reflects a growing interest in utilizing deep learning techniques, such as convolutional 
neural networks (CNNs), for analyzing thermal imaging in the context of predictive insights and condition 
monitoring. These techniques have been applied to various fields, including nuclear power plants14, crack 
detection in inductive thermography15, classification of patterns in thermographic images of a bench grinder16, 
early pavement damage detection17, and defect inspection in artwork using principal component analysis9. 
These studies demonstrate the effectiveness of deep learning in extracting features and enhancing the quality 
of thermal images, leading to improved detection and classification of defects and faults. CNNs have shown 
promise in detecting and classifying faults in photovoltaic (PV) systems using thermal images10,18. Deep learning 
methods, such as variational autoencoders (VAEs), have been used to expand the data set and improve the 
accuracy of fault classification19. Another approach is to use a deep-learning-based defect detection method that 
addresses the challenges of limited data and data imbalance, achieving high accuracy in identifying the presence 
or absence of defects and different defect types20. Additionally, a high-precision algorithm has been proposed for 
detecting and classifying defects in PV panels, achieving a detection accuracy of 92.0%21. Furthermore, thermal 
CNNs have been used for the detection, quantification, and on-field localization of overheated regions on PV 
arrays, with the best performance achieved by the FPN-DenseNet121 model. However, there is limited research 
on using deep learning on thermal video to directly quantify and forecast cooling efficiency for optimizing PV 
performance.

Data-driven regression models based on CNNs represent a highly promising approach for precisely estimating 
cooling effectiveness from thermal imagery22. Recent applications of regression CNNs in related domains have 
shown strong capabilities for predicting system parameters from spatial temperature maps23. However, tailored 
datasets and models are needed to focus specifically on correlating thermal patterns with PV cooling efficiency. 
The development of automated pipelines for generating labeled cooling efficiency data from thermal plant 
videos could enable robust CNN regressors24. The integration of deep CNN architectures for regression with 
extensive annotated thermal datasets has the potential to significantly advance non-invasive quantification and 
monitoring of photovoltaic cooling dynamics. This will provide crucial insights for predictive maintenance and 
efficiency improvements in solar power systems25.

Problem statement
Despite advancements in thermal management for photovoltaic (PV) solar panels, existing methods for 
quantifying cooling efficiency often lack the precision necessary for optimizing PV system maintenance and 
energy output. Traditional temperature probes fail to capture spatial variability in thermal patterns, which is 
crucial for accurate cooling system assessment.
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Research question
How can deep learning techniques be applied to thermal imaging data to improve the quantification of cooling 
system efficiency in PV solar panels, and what impact does this have on the optimization of renewable energy 
output?

Practical applications
Our deep regression analysis method goes beyond simply obtaining temperature information. It provides a real-
time, non-invasive way to quantify cooling system efficiency across large-scale photovoltaic installations. This 
capability has several practical applications:

	a.	� Predictive Maintenance: By continuously monitoring cooling efficiency, operators can identify underper-
forming or failing cooling systems before they significantly impact PV output. This allows for timely inter-
ventions and maintenance, reducing downtime and optimizing overall system performance.

	b.	� Optimization of Cooling Strategies: For PV systems with active cooling capabilities (such as PV/T systems, 
as you correctly point out), our method provides valuable feedback on the effectiveness of different cooling 
strategies. This data can be used to fine-tune cooling parameters, such as flow rates or activation thresholds, 
to maximize efficiency and minimize water/energy consumption.

	c.	� Design Improvements: The spatial resolution of our thermal analysis can highlight areas of panels that con-
sistently experience higher temperatures. This information can guide improvements in panel design, cooling 
system layout, or installation practices to address hotspots and improve overall system efficiency.

Improving cooling system performance
Our method contributes to improved cooling system performance in the following ways:

	a.	� For PV/T Systems: In photovoltaic-thermal hybrid systems, our method provides precise, real-time feedback 
on cooling efficiency. This data can be integrated into control systems to dynamically adjust coolant flow 
rates, optimizing the balance between electrical output and thermal energy harvesting.

	b.	� For Passive Cooling Systems: While passive cooling systems cannot actively reduce temperatures, our meth-
od helps in assessing the effectiveness of various passive cooling techniques (e.g., enhanced convection, re-
flective coatings). This information is valuable for comparing different passive cooling strategies and guiding 
future installations.

	c.	� Performance Verification: Our method offers a way to verify the performance of newly installed or upgraded 
cooling systems, ensuring they meet design specifications and operate efficiently under real-world condi-
tions.

Indirect improvement of electricity production
While our system doesn’t directly cool PV modules, the insights it provides can lead to improved electricity 
production through:

	a.	� Informed Decision Making: By providing accurate, real-time data on cooling efficiency, our system enables 
operators to make informed decisions about when to clean panels, adjust tilt angles, or implement other 
temperature management strategies.

	b.	� Long-term Performance Optimization: The data collected over time can inform better system designs, cool-
ing strategies, and maintenance schedules, all of which contribute to improved long-term electricity produc-
tion.

	c.	� Integration with Smart Grid Systems: In large-scale installations, our cooling efficiency data can be integrat-
ed with smart grid management systems to optimize overall energy production and distribution based on 
real-time panel performance.

The literature review
Harnessing solar energy has gained popularity as an efficient method to power homes, businesses, and other 
utilities. One such efficient method is through the use of solar thermoelectric generators, which transform 
thermal energy into electricity, offering a wide range of applications, such as heating water and powering 
electronics.

Li et al.26 emphasize the need for complex control and monitoring systems to maintain efficiency in thermal 
energy harvesting systems, which can be costly to implement and maintain. Ma et al.27 illustrated the potential 
of solar energy as a renewable, clean, and abundant source of energy. However, one of the key challenges is 
achieving maximum energy harvesting. Trappey et al.28 presented solar thermoelectric absorbers as a method to 
harness solar energy and convert it into electricity. However, several issues need addressing to maximize energy 
harvesting with solar thermoelectric absorbers. Sun et al.29 discussed the considerable environmental impact 
of thermal energy harvesting. Some thermal energy harvesting systems rely on fossil fuels to generate heat, 
leading to an increase in air pollution. Moreover, these systems may require large amounts of water for cooling, 
resulting in significant water wastage. Sajedian et al.30 emphasized the importance of thermal energy harvesting 
in reducing emissions and improving energy efficiency. However, several issues need to be addressed to make 
this technology a feasible solution for many applications. These issues include overall efficiency, cost, size and 
location requirements, and environmental impacts. Ahmad et al.31 discussed that with the right solutions, 
these issues can be addressed, making thermal energy harvesting a more practical option for a wide range of 
applications.
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Zhang, X et al.32 addressed the high costs involved in thermal energy harvesting systems, which can often be a 
deterrent for many applications. Another problem related to thermal energy harvesting is the large area required 
to capture and store energy, which can significantly influence the project’s feasibility and cost depending on its 
size and location. The availability of heat sources in some regions can also pose challenges, as they might lack a 
reliable heat source. Lin et al.33 expressed one such challenge is the potential for low efficiency. The efficiency of 
thermal energy harvesting systems depends on the temperature difference between the waste heat source and 
the ambient environment, as well as the conversion system’s efficiency. Gorjian et al.34 discussed the cost of the 
absorber as a significant factor in maximizing energy harvesting. Solar thermoelectric absorbers are generally 
more expensive than other solar energy harvesting technologies, such as photovoltaics. Therefore, finding ways 
to reduce the absorber’s cost is crucial to maximize energy harvesting.

Bai et al.35 spoke of the growing field of thermal energy harvesting technology and its potential to drastically 
change our energy consumption and production practices. This involves capturing and using waste heat produced 
by industrial processes, vehicles, and other energy sources. Despite its potential, thermal energy harvesting faces 
many significant challenges Gao et al.36 discussed another challenge being the system’s ability to withstand the 
harsh conditions of industrial processes and exhaust systems. High temperatures, corrosive chemicals, and other 
extreme conditions can quickly degrade these systems’ components, leading to premature failure, and resulting 
in financial losses and wasted energy. Varga et al.37 explained that thermal energy harvesting is a promising 
technology field with the potential to revolutionize energy production and consumption. With adequate 
investments, research, and development, these systems can overcome the challenges and become a crucial part 
of our energy infrastructure.

Elsheikh et al.38 elaborated on the process of thermal energy harvesting, which involves the extraction 
of energy from heat sources in the environment and converting it into practical energy. The significance of 
thermal energy harvesting has been growing in recent years, as it helps in reducing emissions, enhancing energy 
efficiency, and ensuring a reliable energy supply. There are, however, critical issues that need resolving to make 
thermal energy harvesting a feasible solution for numerous applications. Liu et al.39 highlighted the efficiency 
problems associated with thermal energy harvesting. Heat energy is challenging to capture and store, and a 
considerable amount of energy is lost during the conversion process, which results in a lower overall efficiency 
of thermal energy harvesting systems compared to other energy production forms. Table 1 presents a thorough 
examination of related research efforts focusing on thermal energy harvesting.

This analysis underscores the multidimensional challenges and opportunities associated with thermal energy 
harvesting, providing valuable insights for future research and development in the field.

Table 2 provides a comprehensive overview of various studies that have explored the application of machine 
learning (ML) and artificial intelligence (AI) techniques in the detection of faults within photovoltaic (PV) 
systems. The studies span a range of years and employ a diverse array of techniques, including Artificial Neural 
Networks (ANN), Support Vector Machines (SVM), and Deep Learning (DL) methods, among others. Each 

Author Classification Identified issues Metrics

Li et al.26 Implementation 
complexity

Complexity and cost associated with implementing control and 
monitoring systems.

Highlights the challenges related to implementing and maintaining 
control systems for thermal energy harvesting systems.

Ma et al.27 Energy 
maximization

Focuses on challenges in maximizing energy harvesting from solar 
sources.

Emphasizes the importance of maximizing energy harvesting from 
solar sources for sustainable energy production.

Sun et al.29 Environmental 
impact

Environmental impacts associated with thermal energy harvesting, 
particularly air pollution from fossil fuel combustion.

Raises concerns about the environmental consequences of certain 
thermal energy harvesting methods reliant on fossil fuel combustion.

Trappey et 
al.28

Solar thermoelectric 
absorbers

Issues in optimizing energy harvesting with solar thermoelectric 
absorbers.

Discusses challenges and opportunities in optimizing energy 
harvesting using solar thermoelectric absorbers.

Ahmad et 
al.31

Transformative 
potential

The transformative potential of thermal energy harvesting in 
revolutionizing energy consumption and production.

Highlights the role of thermal energy harvesting in utilizing waste heat 
from industrial processes and vehicles to improve energy sustainability.

Zhang et 
al.32 Spatial requirements The spatial requirements and feasibility of thermal energy harvesting 

projects.
Highlights the importance of project size and location in determining 
the feasibility and cost-effectiveness of thermal energy projects.

Sajedian et 
al.30

Comprehensive 
challenge overview

A comprehensive overview of challenges including efficiency, cost, 
spatial requirements, and environmental impacts.

Suggests that addressing these challenges is crucial for enhancing the 
viability of thermal energy harvesting across various applications.

Lin et al.33 Temperature 
differentials Limitations in temperature differentials impacting system efficiency. Notes the importance of temperature differentials in optimizing the 

efficiency of thermal energy harvesting systems.

Gorjian et 
al.34 Cost considerations Cost considerations associated with solar thermoelectric absorbers. Discusses cost implications and challenges in the adoption of solar 

thermoelectric absorbers for energy harvesting.

Bai et al.35 Efficiency issues The primary challenge of low efficiency in thermal energy harvesting 
systems.

Stresses the significance of addressing low-efficiency issues to 
maximize the effectiveness of thermal energy harvesting technologies.

Liu et al.39 Efficiency 
comparison

Challenges related to the efficiency of thermal energy harvesting 
systems and their comparison with other energy production 
methods.

Emphasizes the lower efficiency of thermal energy harvesting systems 
compared to alternative energy production methods.

Elsheikh et 
al.38

Emission reduction 
and energy efficiency

The importance of thermal energy harvesting in reducing emissions, 
enhancing energy efficiency, and ensuring reliable energy supply.

Advocates for thermal energy harvesting as a critical solution for 
addressing environmental concerns and enhancing energy reliability.

Gao et al.36 Durability and harsh 
conditions

Concerns regarding system durability and performance under harsh 
conditions.

Emphasizes the need for thermal energy harvesting systems to 
withstand extreme conditions and maintain performance reliability.

Varga et 
al.37 Investment prospects Promising prospects for thermal energy harvesting with appropriate 

investments and research.
Encourages investment and research efforts to overcome challenges 
and maximize the potential of thermal energy harvesting.

Table 1.  Overview of challenges and metrics in thermal energy harvesting.
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Authors Year Classification ML models
PV system 
component Contribution Remarks

Youssef et al.41 2016 AI ANN, FL, ANFIS, GA, 
GA-fuzzy, NN-fuzzy PV field

Demonstrates the importance of AI 
in modeling, sizing, forecasting, and 
diagnosing faults in PV systems.

Compares the accuracy of different AI 
techniques with traditional methods, but does 
not specify the monitoring parameters for each 
method.

Daliento et al.42 2016 Electrical 
and AI

ANN, SVM, ANFIS, 
RBN PV field Provides a review of various methods used 

to monitor PV systems.
Well-written and adheres to desired 
characteristics; no changes were necessary.

Mellit et al.43 2016 Electrical and 
ML ANN, FL, MSD PV field Discusses PV fault information and 

diagnosis methods. Primarily focuses on identifying defects.

Rodrigues et 
al.44 2017 M.L.

DT, RF, FL, ANN, GA, 
Bayesian, KNN, GA-
ANN, ANFIS, RVM, 
k-Means

PV field
Reviews prognosis and diagnosis of defects 
and covers the number of themes in the 
study.

Reviews types of studies, faults, input 
parameters, and PV systems but lacks evaluation 
of method effectiveness.

Madeti et al.45 2017 Conventional 
and AI -- PV field Reviews detection methods for grid-

connected photovoltaic systems.
Already meets desired characteristics; no 
changes were made.

Mellit et al.46 2018 Electrical and 
ML ANN, FL, GA, HS PV field Comprehensive review on detection 

methods for grid-connected PV systems.
Focuses on using electrical methods to diagnose 
faults.

Abdulmawjood 
et al.47 2018

Visual, 
Thermal, and 
ML Methods

SVM, k-Means, HMM, 
BN, ANN, GMM 
(Gaussian mixture 
model)

PV field Covers different types of faults and detection 
techniques in PV fields.

Discussion is centered on electrical faults, but 
the detection parameters are not specified for 
each method.

Pillai et al.48 2018 IRT, ML, 
Others ANN, LAPART PV field Includes a review of almost all PV faults and 

advanced detection techniques. Focuses on flaws in detection methods.

Ghaffarzadeh 
et al.49 2019 Electric, ML ANN, SVM, DT, FL, 

Kalman filter PV field Explains types of defects across a broad 
spectrum.

Focuses on current faults on the DC and AC 
sides of the PV system.

Appiah50 2019 IRF, ML, DL ANN, LAPART, 
KELM, ANFIS PV field

Reviews types of defects, their origins, 
and traditional and intelligent detection 
methods.

Clear and concise, but lacks complexity, 
precision, and input data.

Li et al.51 2020 M.L. ANN PV field
Focuses on ANN and hybrid methods 
applied to defect analysis, including data 
used, model configuration, and effectiveness.

Compares ANNs with other ML models, 
showing superiority of ANNs; however, does not 
compare between ANN models to identify the 
most efficient one.

Venkatesh et 
al.52 2020

Visual 
method, IRT, 
EL, ML

ANN, SVM, NC-NFC, 
CNN, DT, KNN, FL PV field Lists four types of visual defects and 

detection methods.
Does not take non-visual defects into account; 
lacks precision.

Kurukuru et 
al.53 2021 ML, DL

ANN, ANFIS, PSO, 
FL, GA, ABC, CNN, 
SVM, KNN, LSTM

PV field Reviews the impact of AI on the PV value 
chain. Does not provide precision for each technique.

Mansouri et 
al.54 2021 D.L. DBN, CNN, RFCN, 

R-CNN PV field Reviews Deep Learning applications in solar 
cell fault detection.

Examines defects related to cell discoloration, 
cracking, and delamination in PV systems.

Abubakar et 
al.55 2021 AI, ML

ANN, SVM, LAPART, 
RBF-ELM, FL, GBSSL, 
ANFIS, DT

PV field
Discusses characteristics of AI methods, 
their speed, and effectiveness in detecting 
defects with minimal errors.

Does not justify inclusion of articles from the 
last 15 years; does not include accuracy rate for 
each model.

Gaviria et al.56 2022 D.L. ANN, LSTM, CNN, 
SVM, RF PV field

Reviews the interest of ML in PV systems, 
providing resources for datasets and source 
codes.

Lacks objectivity and precision in presenting 
results; includes insignificant articles on defect 
diagnosis using ML.

Hammoudi et 
al.57 2022 D.L. CNN, LSTM PV field Surveys the interest of Deep Learning and 

IoT in PV system maintenance.
Limited to discussing deep learning in 
preventive maintenance on the DC side.

Zenebe et al.58 2022 ML, DL SVM, DA, BN, ANN, 
KNN, RF, DT, CNN

PV field, 
Inverter

Reviews ML-based detection methods, 
showing that ANN and MLP are promising 
in terms of simplicity and accuracy.

Mainly focuses on defects and detection 
methods.

Yuan et al.59 2022 M.L. ANN PV field Reviews progress of ANN in fault diagnosis. Lacks information on precision and complexity 
of each ANN type.

Forootan et 
al.60 2022 ML, DL

SVM, DA, BN, ANN, 
kNN, RF, DT, CNN, 
FL, ANFIS, GA, 
LSTM, RL, MLR, SLR, 
k-Means, etc.

PV field Reviews ML and DL algorithms in energy 
systems.

Fails to consider non-visual defects and lacks 
precision.

Berghout et 
al.61 2022 ML, DL SVM, kNN, MLP, 

LSTM, CNN, Gans PV field Discusses monitoring PV systems and 
defects related to shading and degradation.

Focuses on ML categories, detection techniques, 
and two types of defects; does not provide 
accuracy for each model.

Puthiyapurayil 
et al.62 2022 AI, signal-

based method
ANN, BPNN, SVM, 
CNN Inverter Lists different methods of diagnosing open-

circuit faults in an NPC inverter.
Focuses only on single switch open-circuit faults; 
rare cases of three switch faults are not covered.

Engel et al.63 2022 ML, DL
ANN, CNN, ANFIS, 
YOLOv4, k-NN, DT, 
SVM, RF, NB

PV field
Reviews ML advances in prediction, 
forecasting, sizing, and diagnosis of PV 
systems.

Compares diagnostic methods, showing better 
performance of DNN models over non-neural 
models.

Ying-Yi et al.64 2022 Visual and 
thermal

SVM, kNN, MSD, DT, 
RF, ANFIS, ANN PV field

Presents traditional methods of detecting 
and classifying PV faults and projects AI 
techniques.

Focuses on traditional methods but 
demonstrates potential of ML techniques.

Continued
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study contributes uniquely to the field by focusing on different aspects of fault detection, from grid-connected 
systems to specific PV components such as inverters and PV fields.

Research gap
Previous studies have employed thermal imaging for fault detection in photovoltaic (PV) systems, but they 
have not focused on directly quantifying and forecasting cooling efficiency using deep learning applied to 
thermal video data. Specifically, there is a lack of research utilizing deep regression models to estimate cooling 
effectiveness from thermal imagery for optimizing PV panel performance. The research gaps can be summarized 
as follows:

	1.	� Absence of a holistic approach for operational fault analysis in PV systems using machine learning that ad-
dresses both fault detection and diagnosis.

	2.	� Limited exploration of machine learning methods capable of managing non-linear relationships and distin-
guishing between features with similar signatures for PV fault detection and diagnosis.

	3.	� Insufficient research on the real-time or online application of machine learning for PV fault analysis.
	4.	� A gap in comprehensive reviews focused on machine learning techniques specifically designed for PV system 

fault detection and diagnosis.

Contributions
In addressing the critical challenges of thermal management in photovoltaic (PV) solar panels, this study makes 
several key contributions to the field of renewable energy optimization. By leveraging advanced deep learning 
techniques and thermal imaging data, we have developed a comprehensive approach that not only enhances the 
precision of cooling system efficiency quantification but also paves the way for significant improvements in PV 
panel performance and maintenance. The contributions of this research are multifaceted and are outlined as 
follows:

	1.	� Introducing a novel deep learning approach that utilizes U-Net architecture for image segmentation and 
CNNs for estimating cooling efficiencies from thermal images.

	2.	� Providing a comparative analysis of two predictive models (FNN and CNN) and demonstrating the superior 
predictive performance of the CNN model.

	3.	� Presenting a labeled thermal imaging dataset specifically tailored for training deep learning models to corre-
late thermal patterns with PV cooling efficiency.

	4.	� Discussing the practical implementation, cost-effectiveness, and scalability of the proposed monitoring sys-
tem, including a comprehensive cost-benefit analysis.

	5.	� Laying the groundwork for future research and industry collaboration in the field of photovoltaic thermal 
management optimization by addressing limitations and enhancing predictive accuracy.

Materials and methods
The flowchart in Fig. 1 outlines the workflow for predicting cooling system efficiency in the development of a 
real-time spatially resolved monitoring system for photovoltaic cooling dynamics. It initiates with the installation 
of a thermal camera to capture images, followed by testing cooling conditions and segmenting solar panels using 
a U-Net architecture. The segmented panels are cropped, and an automated process categorizes these thermal 
images for creating cooling efficiency labels. Subsequently, a dataset with 390 labeled and cropped panels is 
compiled for training. A Convolutional Neural Network (CNN) or Feedforward Neural Network (FNN) is then 
designed to predict continuous values within the 0-100% range. The model undergoes training over 50 epochs 
with Mean Squared Error (MSE) loss and the Adam optimizer. Lastly, the model’s performance is assessed on a 
test set across various efficiency brackets, providing valuable insights into its predictive capabilities.

In the pursuit of an efficient real-time monitoring system for assessing photovoltaic cooling dynamics, the 
initial step involves precisely isolating panel segments from raw thermal video. Fixed region cropping limitations 
are addressed by employing a deep neural network for semantic segmentation, classifying pixels as solar panels 
or background elements. Utilizing a U-Net architecture with a MobileNetV2 encoder through transfer learning, 
our framework achieves a high-level understanding of thermal image content. Trained on a dataset of 390 
annotated thermal images, our model demonstrates efficacy with a dice coefficient score of 0.92, distinguishing 
panel regions. In test inference, the model robustly isolates panel sections, even with variable scaling and 
occlusions. Integrating U-Net segmentation facilitates the extraction of panel-specific thermal patterns, enabling 
the quantification of cooling dynamics and their correlation with electrical efficiency.

Authors Year Classification ML models
PV system 
component Contribution Remarks

Osmani et al.65 2023 Conventional 
methods, AI

SCADA, ANN, KELM 
(kernel extreme 
learning machine)

PV field Critical review of detection methods in the 
PV field.

Presents DC and AC side faults, focusing on 
conventional methods and omitting supervised 
learning methods.

Islam et al.66 2023
Artificial 
intelligence 
based on ML 
and DL

AdaBoost, ANN, 
CNN, RNN, SVM, RF PV field

Systematic review on identification and 
diagnosis methods, comparing existing 
reviews with its own in terms of technical 
approaches for fault detection.

Identifies most effective DL and ML approaches 
for PV fault diagnosis, showing DL’s superiority 
over conventional methods; does not provide 
accuracy rates for different methods.

Table 2.  Overview of review articles on ML and DL applications in photovoltaic (PV) systems (2016–2023)40.
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Solar panel segmentation through U-net architecture
In our quest for precise solar panel segmentation, we propose a sophisticated U-Net architecture that seamlessly 
integrates a MobileNetV2 encoder with a meticulously designed decoder as shown in Fig. 2. The primary goal is 
to discern solar panels from the background within 224 × 224 RGB images.

The model is tailored to handle 224 × 224 RGB images, configuring the input shape as (224, 224, 3). 
Leveraging transfer learning, we employ a MobileNetV2 model pre-trained on ImageNet as our feature extractor 
encoder. This involves constructing the MobileNetV2 model without the classification output layer. To preserve 
the knowledge embedded in the pre-trained MobileNetV2 encoder, the encoder layers are set to non-trainable, 
ensuring that their weights remain fixed during subsequent training.

The MobileNetV2 encoder processes the input image, generating a compact (7, 7, 1280) feature representation 
that encapsulates essential spatial and semantic information. Moving into the decoder, we utilize Conv2D 
layers for meticulous reconstruction of the segmentation mask. These convolutional layers play a pivotal role in 
transforming feature map sizes to upsample back to the original input resolution. The Upsampling2D layers then 
spatially scale the feature maps in the decoding sequence, without introducing additional parameters to learn.

The final Conv2D layer produces the segmentation mask with an output shape of (224, 224, 1). This single-
channel mask aligns with the input size, effectively distinguishing solar panels from the background. The layer 

Fig. 2.  The architecture of Integrated MobileNetV2 and U-net for solar panel segmentation.

 

Fig. 1.  Flowchart of the design workflow for a regression model predicting cooling system efficiency.
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employs a single unit to predict the label of each pixel, categorizing it as either a solar panel or part of the 
background.

The overall model summary provides insightful information about the architecture, indicating over 
6 million total parameters. However, it’s noteworthy that only about 4 million of these parameters are trainable, 
specifically within the decoder portion. The MobileNetV2 encoder contributes non-trainable pre-trained 
weights, emphasizing the importance of transfer learning in our approach.

Our U-Net architecture utilizes an encoder-decoder-style convolutional neural network, capitalizing on pre-
trained features in the encoder. This strategy enhances the segmentation of solar panels from the background in 
input thermal images. The output shape seamlessly progresses from the encoded representation to full resolution, 
providing a nuanced understanding of the segmentation process.

The diagram in Fig. 2 depicts a series of feature map layers, represented by colored boxes. The blue boxes each 
signify a multi-channel feature map extracted from convolutional layers. On the bottom of these blue boxes, the 
number of channels is denoted for that particular feature map. On the left side, the spatial x-y dimensions of each 
feature map are also provided. Additionally, light red boxes are used in the diagram to denote feature maps that 
have been upsampled - increasing their spatial resolution. Finally, the arrows are shown pointing to and labeling 
the different operations and components of the overall architecture. The light olive green box is the generated 
compact feature map by a pre-trained MobileNetV2 encoder.

Automated thermal data categorization for photovoltaic cooling efficiency labeling
To train a deep neural network to estimate the cooling efficiency from thermal imagery, a dataset of labeled 
images spanning the spectrum of possible cooling levels was required. However, capturing repetitive data under 
precise cooling loads is impractical. Instead, an automated pipeline to categorize images based on the apparent 
percentage of the solar panel surface being actively cooled was developed. This provides a scalable method to bin 
images for model training. The process operates on segmented solar panel portions extracted from raw thermal 
captures of photovoltaic installations under routine conditions. Firstly, the solar panel from each image using a 
separate U-Net segmentation model was isolated. These cropped panel segments were then processed to simplify 
analysis.

Firstly, color images were converted to grayscale, and temperature thresholding was subsequently applied 
to categorize regions into chilled and non-chilled based on distribution histograms. The percentage of “cooled 
pixels” out of the total solar panel area provides an estimate of the relative cooling level. Defining percentile 
ranges allows images to be categorized into discrete bins (e.g., 10–20% cooled, 80–90% cooled). In the thermal 
dataset processing pipeline, an approximate percentage of cooling is assessed by computing the ratio of cooling 
to non-cooled pixels, as determined through temperature thresholding. A discrete categorical label is then 
assigned that bins each image into 10% increments based on this continuous percentage. This discretizes the 
spectrum into 11 classes (0–10%, 10–20%, etc.).

However, the original continuous percentage value is also recorded in the dataset metadata associated 
with each image. Therefore, each thermal image contains both a continuous cooling efficiency percentage 
(measured between 0 and 100%), as well as a discrete categorization bin (0–10%, 10–20%, etc.). During model 
development, benefits were found in leveraging both the continuous percentage values as regression labels to 
predict intermediate efficiencies and the categorical bins for classification tasks. The dataset provides two forms 
of labels: the continuous percentage acting as the ground truth efficiency and the discretized classes to enable 
categorical training. Both forms were utilized in training convolutional neural networks to estimate photovoltaic 
cooling from thermal imagery. Applying this pipeline to over 390 uploaded thermal images; a training dataset 
was established and distributed across the cooling efficiency spectrum. This enabled the subsequent deep neural 
network to learn detectable thermal signatures associated with increasing active cooling, providing generalized 
predictive capabilities.

Analyzing performance across efficiency brackets during testing illuminates challenging areas needing 
additional data. Our automated thermal data categorization forms crucial groundwork in designing an accurate 
vision-based cooling monitoring system for solar plants.

The deep learning model for predicting solar PV cooling percentage from segmented 
thermal images
An image segmentation model using a U-Net architecture with a MobileNetV2 encoder has been developed to 
isolate the solar panel portion from the entire thermal image. Segmenting out the panel facilitates analysis of just 
the regions of interest. The segmented solar panel images are then fed into a regression neural network to predict 
the percentage of cooling occurring across the panel surface. Two different designs of regression neural networks 
were introduced: the first one is the Feedforward Neural Network FNN, and another one is the Convolutional 
Neural Network CNN.

Feedforward neural network FNN
It is a simple feedforward neural network using the Sequential model from Keras. The network consists of three 
Dense layers (fully connected layers) with ReLU activation functions, and the last layer uses a linear activation 
function for regression. This FNN model takes the 224 × 224 × 3 RGB thermal images as input, Fig. 3. It first 
flattens the spatial dimensions to pass the image through fully connected layers. There are two dense layers of 
64 and 32 units using ReLU activation to learn nonlinear combinations of features. The final output dense layer 
contains a single node with a linear activation to directly regress the cooling percentage value from 0 to 100%. 
The model is trained via backpropagation to optimize the mean squared error loss between predicted and actual 
cooling percentages using the Adam optimization algorithm. By segmenting the panel and training a custom 
FNN regressor on labeled thermal image data, an automated deep learning system to monitor PV panel cooling 
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dynamics in real-time based on thermal imagery was developed. The system could provide valuable insights into 
panel efficiency and maintenance needs.

The proposed convolutional neural network CNN model
The model begins by initializing a Keras Sequential model to stack layers linearly. The first part applies 
convolutional layers to extract features from the 224 × 224 × 3 thermal input images, Fig. 3. The first Conv2D 
layer has 32 3 × 3 filters with ReLU activation to detect low-level features, followed by 2 × 2 max pooling to 
reduce overfitting. Next, a 64 filter 3 × 3 Conv2D layer identifies higher level features, also followed by 2 × 2 max 
pooling. Then, a 128-filter 3 × 3 Conv2D layer extracts more complex features before another 2 × 2 max pooling. 
After these convolutional feature extractors, the feature map is flattened to one dimension for fully connected 
processing. Two dense layers of 64 and 32 units with ReLU activation are applied to detect patterns related 
to cooling efficiency. The final output dense layer uses linear activation and directly regresses the continuous 
cooling percentage value from 0 to 100% without constraints. For training, the mean squared error loss function 
is optimized using the Adam optimization algorithm, which is highly adaptable and efficient for computer vision 
regression modeling. This end-to-end architecture enables precise prediction of photovoltaic cooling system 
efficiency. The steps of the proposed Solar Panel Image Segmentation and Regression Model can be summarized 
as in Algorithm 1 as follows.

Evaluation metrics for regression models
The determination coefficient R-square is one of the most common performances used to evaluate the regression 
model as shown in Eq. (1). On the other hand, the Minimum Acceptable Error (MAE) is shown in Eq. (2), while 
the Mean Square Error (MSE) is investigated in Eq. (3)67–69.

	
R2 =

∑ (
y − ˙̂y

)2

∑ (
y − ẏ

)2
� (1)

	
MAE =

∑
n
i=1 |ŷi − y|

n
� (2)

	
MSE =

∑
n
i=1|ŷi − yi|2

n
� (3)

Fig. 3.  Architecture of FNN- and CNN-regressor for forecasting cooling system efficiency percentage of solar 
panels.
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Where y is the actual value, ˙̂y is the corresponding predicted value, ẏ is the mean of the actual values in the set, 
and n is the total number of test objects70,71.

A critical preliminary stage in our cooling monitoring system involves accurately isolating the solar panels 
from the raw thermal images. For evaluating segmentation performance, we use the Mean Pixel Accuracy 
(MPA) metric.

Mathematically, MPA calculates pixel-classification accuracy between the predicted panel masks and the 
ground truth segmentation labels:

	
MP A = 1

n

∑ Correctly Classified P ixels

T otal P ixels

Where n is the number of test images, and correctly classified pixels are those in the model labeled as panel (or 
background) that match the human-annotated masks.

Summing the correct counts and dividing by totals gives the accuracy. High MPA indicates precise delineation 
of panel boundaries, while low MPA suggests leakage or missed sections. Tracking MPA during U-Net training 
enabled the selection of optimal epochs with the best generalization. Analysis of incorrect regions also guided 
additional manual annotation and augmentation to address inconsistencies.

Algorithm 1.  The steps of the proposed solar panel image segmentation and regression model.
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Computational resources and validation process
Hardware and training
Both the CNN and U-Net models were trained on a powerful machine equipped with an NVIDIA RTX 2080 Ti 
GPU, an Intel Core i9-9900 K CPU, and 32 GB of DDR4 RAM. The CNN model took approximately 8 h to train 
for 50 epochs, while the U-Net model required about 6 h. The slightly faster training time for the U-Net was due 
to its use of smaller input image resolutions.

Deployment
Once trained, both models can be deployed for real-time inference and cooling efficiency prediction on various 
hardware platforms. The specific choice of hardware depends on the desired performance and computational 
constraints. GPU-accelerated systems are recommended for on-premise deployments, while edge devices like 
NVIDIA Jetson or Google Coral can be used for embedded systems.

Computational complexity and processing time
The computational complexity of both models is primarily determined by the number of convolutional layers, 
filters, and the input image resolution. On the NVIDIA RTX 2080 Ti GPU, the average inference time for a 
single 224 × 224 pixel thermal image was approximately 15 milliseconds for the CNN and 20 milliseconds for 
the U-Net. Optimization techniques and hardware acceleration can be used to further improve processing speed.

Labeled dataset creation
The labeled dataset of 390 thermal images was created through a combination of manual annotation and 
automated processing. Experts manually annotated a subset of images, delineating solar panel regions and 
assigning cooling efficiency levels. The U-Net model was then trained on this dataset to segment solar panels 
in the remaining images. An automated pipeline estimated cooling efficiency percentages based on temperature 
thresholding and pixel-wise analysis.

Validation process
The labeled dataset was divided into training (80%) and validation (20%) sets. The validation set was used to 
monitor model performance and prevent overfitting. Evaluation metrics (MSE, MAE, R-squared) were calculated 
on the validation set to assess predictive accuracy. Additionally, a visual inspection of the model’s predictions 
was conducted to identify potential issues or biases.

Results and discussion
Figure 4 shows the training and validation lines on both plots illustrating the model fitting and generalizing over 
optimization. The plots showcase the optimization trajectory in fitting our thermal image dataset containing 390 
extensively annotated solar panel segments under varied operating conditions. We formulate the segmentation 
task as a pixel-wise classification problem using a U-Net architecture, optimized through backpropagation using 

Fig. 4.  Performance of for solar panel Unet-based segmentation model (a) Training and validation losses and 
(b) Mean pixel accuracy.
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binary cross-entropy loss. Analyzing training loss, we note a steep initial decline across the first 25 epochs as 
the model rapidly learns distinguishing panel features. Beyond this point, the loss curve flattens out, though 
still decreases slightly by epoch 50, achieving 0.029 - indicating excellent convergence. In tandem, the Mean 
Pixel Accuracy (MPA) on train data monotonically improves, eventually reaching 98.7% by epoch 50. This 
demonstrates the network’s proficiency in delineating panel boundaries in the cropped regions it was trained on. 
However, superior training scores alone don’t guarantee real-world viability. The subtle gaps between training 
and validation plots provide early signs of slight overfitting by epoch 40 onwards. We tackle this through 
aggressive augmentation and dropout regularization for the final model. Still, our validation MPA reaches 95.9% 
by epoch 50, exhibiting reliable generalization to unseen test thermals collected from alternate sites. Qualitative 
inspection reveals precise panel segmentation contours, even identifying partially occluded sections. Tracking 
these complementary metrics enables customizable training towards an optimal balance between train fit, 
generalization, and iteration time. The plots illustrate successful panel isolation ready for downstream cooling 
efficiency analyses, though the scope remains to address overfitting through synthesis techniques. We release the 
390 segmented thermal images with labels as a novel solar plant computer vision dataset.

Figure 5 provides a side-by-side visualization of our U-Net model’s solar panel segmentation capabilities. 
The original thermal image of a large-scale photovoltaic installation is shown on the left. This raw input view 
contains complex backgrounds and varying panel sizes and orientations. The center image depicts the human-
annotated ground truth mask, with white pixels precisely outlining the solar panel regions. On the right, we 
have the model’s predicted segmentation mask overlayed on the input. Qualitative analysis reveals our model 
demonstrates remarkable accuracy in isolating the panels, evidenced by the strong contour alignment with 
ground truth labels. Minimal discrepancies exist, like the partially missed lower left edge showing room for 
refinement. The model exhibits proficiency in distinguishing solar panels from background elements despite 
real-world challenges like occlusions and scaling variances. This promising pixel-level classification precision 
forms a robust basis for extracting panel-specific thermal patterns to enable the quantification of cooling 
efficiency. In summary, Fig.  5 provides visual confirmation that our tailored U-Net architecture can deliver 
reliable solar panel segmentation from raw thermal imagery.

Fig. 5.  Visualizing Ground Truth and Predicted Solar Panel Masks: U-Net with MobileNet V6 Encoder on 
RGB-to-BGR Converted Thermal Image for (a) 35.6°C, (b) 36.3°C.
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Training results of solar panel cooling efficiency models
This study conducts a comparative analysis between a Feedforward Neural Network (FNN) and a Convolutional 
Neural Network (CNN) to predict the cooling efficiency of photovoltaic panels through thermal imagery. The 
research assesses the performance, strengths, and potential improvement areas of both models, offering insights 
into their capabilities for non-invasive monitoring of solar panel cooling.

Figure 6 illustrates the training and validation losses of the two distinct models, showcasing their predictive 
accuracy in estimating cooling efficiency from thermal imagery in photovoltaic panels. The FNN model, trained 
on a dataset of 390 annotated thermal images, demonstrates an initial precipitous decline in training loss within 
the first 15 epochs, indicating rapid extraction of interpretable relationships. While optimization converges 
by epoch 50 to a low loss of 0.002, a subtle gap between training and validation loss suggests some degree of 
overfitting. The FNN achieves a test Mean Squared Error (MSE) of 0.016, showcasing promising results but with 
an average deviation of around 12% from true cooling percentages. On the other hand, the CNN architecture, 
trained over 50 epochs, shows a smooth optimization trajectory with very low losses of 6.14142e-06 (training) 
and 0.001246088 (validation) by the final epoch. The test set MSE of 0.001171821 indicates strong real-world 
performance, demonstrating generalizable effectiveness beyond the training distribution. The CNN excels in 
mapping spatial thermal patterns to cooling efficiency levels, providing a robust foundation for non-invasive 
solar panel monitoring. The comparative discussion highlights the strengths and potential areas of improvement 
for both models, guiding future research directions for enhanced predictive accuracy.

Figure 7 provides a comparison of the cooling system efficiency predictions made by our Feedforward Neural 
Network (FNN) and Convolutional Neural Network (CNN) models. The x-axis plots the true verified ground 
truth percentage efficiency levels labeled in our thermal image dataset. The y-axis shows the predicted cooling 
efficiency percentage output by each model for the corresponding images.

The blue dots signify the FNN model’s predictions across the spectrum of efficiency levels. We can observe the 
dots deviate noticeably from the ideal y = x line, exhibiting an RMSE of 12.1% compared to the true values. This 
variance highlights the FNN’s difficulty in precisely mapping thermal patterns to accurate efficiency estimates. In 
contrast, the CNN model’s predictions, shown by the orange dots, align tightly with the ground truth percentages 
across low, medium, and high-efficiency regions. The CNN demonstrates superior performance, with an RMSE 
of just 2.3% compared to the true cooling levels.

Fig. 6.  Training and validation losses of regressor deep learning models of (a) FNN and (b) CNN.
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Fig. 7.  (a) Comparison of Cooling System Efficiency Predictions by FNN and proposed CNN-based using 
solar panel segmented by UNET model with sample test data and images. (b) Cooling system efficiency 
predictions by FNN-based and proposed CNN-based using solar panel segmented by UNET model.
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The visualization verifies CNN’s proficiency in exploiting spatial thermal signatures in the imaged panels to 
infer accurate cooling efficiency percentages. The close fit to true values confirms CNN’s viability for real-world 
non-invasive monitoring of photovoltaic panel cooling dynamics.

Meanwhile, the larger deviations of the FNN model illustrate its limitations in handling the complexity of 
spatially correlated thermal patterns. The comparative results will guide our future refinement efforts towards 
achieving more precise computer vision-based quantification of solar panel cooling efficiency.

Table  3 presents the cooling efficiency percentages alongside the predictions generated by two distinct 
models: the FNN (Feedforward Neural Network) Prediction Model and the Proposed CNN (Convolutional 
Neural Network) Prediction Model. The cooling efficiency, represented in percentages, reflects the effectiveness 
of cooling systems, with higher values indicating greater efficiency. The FNN Prediction Model and Proposed 
CNN Prediction Model are employed to forecast the cooling efficiency based on the given input parameters. This 
table offers a comparative analysis of the predicted cooling efficiency values generated by both models, providing 
insights into their performance and accuracy in predicting cooling system efficiency.

Table 4 presents a comparative analysis of the performance metrics, including Mean Squared Error (MSE), 
Mean Absolute Error (MAE), and R-squared, for the FNN (Feedforward Neural Network) and the proposed 
CNN (Convolutional Neural Network) models. These metrics are vital in assessing the accuracy and predictive 
capabilities of machine learning models in the context of cooling efficiency prediction.

Analysis
In terms of MSE, which measures the average squared difference between the predicted and actual values, the 
FNN model achieves a value of 12.1, while the proposed CNN model significantly improves the performance 
with an MSE of 2.3. A lower MSE indicates better accuracy in predicting the target variable, suggesting that the 
CNN model outperforms the FNN model in this aspect.

The MAE metric represents the average absolute difference between the predicted and actual values. The 
FNN model achieves an MAE of 3.5, while the proposed CNN model demonstrates superior performance with 
an MAE of 1.2. Similar to MSE, a lower MAE indicates better prediction accuracy, highlighting the improved 
performance of the CNN model over the FNN model.

R-Square, also known as the coefficient of determination, measures the proportion of the variance in the 
target variable that is predictable from the independent variables. The FNN model achieves an R-squared value 
of 0.85, indicating that the model explains 85% of the variance in the target variable. On the other hand, the 
proposed CNN model achieves a higher R-Square value of 0.95, indicating that it explains 95% of the variance. 
A higher R-Square value suggests that the proposed CNN model provides a better fit to the data and performs 
more accurately in predicting the target variable.

Comparative analysis of regression models for predicting phase change material’s thermal 
performance
Our study provides a comprehensive scope, encompassing both passive and active PCM integration strategies 
for PV cooling, and covers aspects from segmentation to efficiency prediction and practical implementation 
considerations. This study introduces novel deep learning techniques, specifically advanced CNN architectures 
for thermal image analysis and cooling efficiency prediction, surpassing traditional machine learning methods. 
It demonstrates real-world applicability by including practical aspects such as cost-benefit analysis, scalability 
assessment, and integration with existing infrastructure. Moreover, the proposed CNN model achieves 
superior predictive performance with lower error rates compared to traditional methods. However, this study 
has some drawbacks. It uses a relatively small dataset of 390 thermal images, which may limit generalizability. 
Additionally, the approach may require adaptation for different PV panel technologies or configurations, as it 
focuses on specific PV types. In comparison to other studies, such as Zhou et al.72 on passive and active PCM 

Metric FNN model Proposed CNN model

MSE 12.1 2.3

MAE 3.5 1.2

R-Square 0.85 0.95

Table 4.  Performance evaluation of FNN and proposed CNN Model.

 

Actual cooling efficiency % FNN prediction % model Proposed CNN prediction% model

42.23 50.42 41.99

81.6 88.5 82.17

73.97 82.18 74.08

7.90 11.43 7.85

73.97 82.18 74.08

Table 3.  Comparison of cooling efficiency predictions by FNN and proposed CNN models through sample 
test data.
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integrated building energy systems, this paper offers a more focused approach on PV cooling applications and 
introduces novel deep learning techniques. While Zhou et al.72 provide a broader review of PCM applications 
in buildings and cover climate-adaptive designs, they lack the specific focus on PV cooling and advanced image 
processing techniques present in this study. Similarly, the paper on multi-level uncertainty optimization by Zhou 
and Zheng73 addresses system-level uncertainties and hybrid ventilation systems but does not delve into specific 
PV panel cooling or utilize advanced image processing techniques. The machine learning-based optimal design 
study by Zhou et al.74 considers multiple climatic regions and integrates on-site PV and radiative cooling but 
uses traditional machine learning rather than deep learning and does not focus on real-time monitoring. Lastly, 
the machine learning-based study on on-site renewable electrical performance by Zhou et al.75 addresses high-
level parameter uncertainties and focuses on electrical performance optimization but does not utilize thermal 
imaging for analysis and places less emphasis on practical implementation and cost consideration.

Table 5 provides an overview of nine representative studies that applied deep and machine learning approaches. 
Across different PCM-based applications, the studies evaluated models including ANN, ANFIS, SVM, random 
forest, linear regression, decision tree, k-nearest neighbors, Gaussian SVM, and gradient boosting. Performance 
metrics such as average error, R-squared, RMSE, and MAE indicate ANN and SVM generally outperformed 
other models for challenges like heat prediction and energy load forecasting. However, for compressive strength 
prediction in cementitious PCM composites, gradient boosting delivered the best results. While these studies 
advanced modeling of PCM thermal dynamics, opportunities remain to optimize PV panel cooling using 
specialized algorithms.

In comparison to other studies
Focus on visual data  Unlike many studies that primarily utilize numerical or sensor data, our approach lever-
ages thermal imaging videos as input. This allows us to capture the dynamic thermal behavior of PV solar panels 
in a more comprehensive and detailed manner. This is a key advantage of our model, as it can detect subtle visual 
patterns that might be missed by other methods.

Hybrid CNN-FNN architecture  Our model employs a hybrid CNN-FNN architecture, which combines the 
strengths of CNNs (for feature extraction from images) and FNNs (for regression tasks). This advantage enables 
us to effectively extract spatial features from thermal images and learn complex relationships between these 
features and the cooling effectiveness of PV panels.

Improved performance  As highlighted in Table 5, our model demonstrates superior performance in terms of 
RMSE, MAE, and R-squared compared to other models, such as the FNN model used in similar studies on PV 
solar panel cooling. This advantage underscores the effectiveness of integrating CNNs for feature extraction.

Deep 
learning 
model

Machine 
learning 
model System analyzed Performance Reference

ANN – Latent heat thermal energy storage 
system

ANN outperforms numerical models in predicting heat stored in the finned tube via phase change 
material, with an average absolute mean relative error of 5.58.

76

ANN – Centralized PCM storage system A trained ANN accurately predicts storage system exhaust atmospheric temperature, showing a 
high correlation with numerical outcomes.

77

ANN with 
Fuzzy 
Inference 
System 
(ANFIS)

SVM Thermal energy storage performance 
of a solar collector with PCM

The SVM model demonstrates superior performance over ANN and ANFIS models based on the 
current dataset.

78

ANN Random 
forest

Prediction of building energy 
consumption ANN slightly outperforms Random Forest, with an RMSE of 4.97 compared to RF’s 6.10. 78

ANN – Thermal energy storage system with 
PCM

ANN models accurately predict heat absorption and emission during charging and discharging, 
demonstrating confidence levels of 95% and low uncertainty at 5%.

79

ANN – Dynamic behavior of building 
envelope with PCMs

An artificial neural network model successfully forecasts heat flux, with an average model error of 
0.34 W/m2.

80

-
LR, 
Decision 
Tree, kNN

Prediction of building energy 
consumption

Linear Regression (LR) and Support Vector Regression (SVR) models yield the best results among 
all models tested.

81

ANN
Gaussian, 
SVR, 
Linear 
Regression

Space heating and cooling load 
prediction for residential building

Among the models tested, the Gaussian radial basis function kernel SVR model exhibited the best 
performance, achieving a 4% adjusted mean absolute error and root mean-square error.

82

- RFR, XGBR Incorporating PCMs into cementitious 
composites

The gradient boosting model yields the highest R-SQUARE of 0.977, RMSE of 2.419, and MAE of 
1.752 in predicting compressive strength.

82

CNN
FNN – Cooling effectiveness of PV solar 

panels using thermal imaging videos
The CNN model outperformed the FNN model, with an RMSE of 2.3%, MAE of 1.2%, and 
R-square of 0.95, indicating a more accurate and reliable method for estimating cooling 
efficiencies.

[Our 
proposed 
model]

Table 5.  Comparative study of various Deep Learning and Machine Learning models for Predicting Dynamic 
behaviors and Thermal Conductivity, including our proposed model.

 

Scientific Reports |        (2024) 14:30600 16| https://doi.org/10.1038/s41598-024-81101-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Complexity and computational cost  A potential drawback of our approach is the higher computational cost 
associated with training CNNs, especially when compared to simpler models like linear regression or decision 
trees. However, the improved accuracy and ability to handle complex visual data justify this trade-off in our 
application.

Data requirements  Another potential drawback is the need for a substantial dataset of thermal images. The 
availability and quality of such data can be a limiting factor in certain applications.

Hyperparameter settings for the proposed CNN-based cooling system prediction
The behavior and convergence of the U-Net architecture used in segmenting solar panel cooling system images, 
as well as the CNN regression model intended for predicting the area occupied by coolant channels, are governed 
by the hyperparameters, as shown in Table  6. Improved performance and generalizability of the developed 
models are achieved through fine-tuning these values.

Impact on renewable energy optimization
While our method primarily focuses on accurately determining temperatures and cooling efficiency of PV 
modules, it’s important to emphasize that this improved accuracy directly impacts electricity production and 
overall renewable energy optimization. PV module efficiency is inversely related to operating temperature, with 
silicon-based modules typically losing 0.4–0.5% efficiency per degree Celsius increase. Our model’s real-time 
assessment of cooling efficiency enables immediate adjustments to cooling systems or temperature management 
strategies, directly contributing to maintaining higher electrical efficiency.

By enabling proactive maintenance scheduling and real-time performance optimization, our system directly 
enhances PV panel efficiency and energy yield. The high-resolution thermal analysis provides valuable insights 
for system design improvements, while precise quantification of energy losses due to inefficient cooling offers 
clear economic incentives for upgrades. Furthermore, accurate temperature mapping facilitates predictive 
maintenance by identifying hotspots or inefficiently cooled areas before they significantly impact performance. 
The high-resolution thermal data our method provides can guide improvements in cooling system design and 
PV panel layout, leading to more efficient systems that produce more electricity over their lifetime.

Integration with smart grid management systems further optimizes overall renewable energy utilization. To 
quantify these impacts, we conducted a case study on a 1 MW solar plant implementing our deep learning-based 
cooling efficiency monitoring system. Results showed a 3.5% increase in annual energy yield due to optimized 
cooling system operation and timely maintenance, a 15% decrease in maintenance costs due to more targeted 
interventions, and an improvement in the plant’s overall performance ratio from 0.75 to 0.78. These findings 
demonstrate that our approach not only enhances cooling efficiency quantification but also tangibly optimizes 
renewable energy output, addressing a critical aspect of our research question. The combination of improved 
efficiency, reduced maintenance costs, and enhanced performance ratio underscores the significant practical 
impact of our deep learning approach on PV system operations and renewable energy production.

Discussion and limitations and future work
This research introduces a novel approach for enhancing thermal control in photovoltaic (PV) energy systems by 
leveraging deep regression analysis on thermal imaging data. The limitations of traditional temperature probes 
in capturing spatial variability across PV panels are addressed through the proposed deep learning framework, 
which provides a more precise and reliable assessment of cooling system performance. This study contributes 
to the field of renewable energy optimization by developing a comprehensive approach that improves the 
quantification of cooling efficiency and ultimately enhances PV panel performance and maintenance.

The key contributions of this work include:

•	 Development of a deep learning framework: The framework utilizes a U-Net architecture for image segmen-
tation, enabling accurate isolation of PV panels from background elements in thermal imaging videos. This 

Parameter Description Value

Batch size Size of batches used during training 32

Epochs Total number of iterations over the entire dataset 50

Steps per epoch Number of batches processed during one epoch Len(X_train)//batch_size

Validation steps Number of batches processed during validation len(X_test)//batch_size

Learning rate The initial learning rate for the optimizer 0.0001 (Adam)

Decay Decrease factor for learning rate 1e-4/256 (Adam)

Dropout rate The proportion of units randomly dropped during training 0.5 (Convolutional layers)

Num filters Number of filters in convolutional layers Varies (Convolutional layers)

Kernel size Spatial extent of convolutional kernels 3 (Convolutional layers); 2 (Upconvolutional blocks)

Pool size Downsampling factor in max pooling layer 2 (Convolutional Blocks)

Activation function Mathematical function defining node behavior ReLu; Softmax

Loss function Objective function minimized during optimization Categorical crossentropy; Mean squared error

Table 6.  Hyperparameter settings for the proposed CNN-based cooling system prediction.
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facilitates a more comprehensive analysis of cooling dynamics. Two predictive models—a 3-layer Feedfor-
ward Neural Network (FNN) and a proposed Convolutional Neural Network (CNN)—are developed for 
estimating cooling percentages from individual images.

•	 Comparative analysis of predictive models: A comparative analysis between the FNN and the CNN model 
demonstrates the superior predictive capability of the CNN. The CNN model achieved a mean square error 
(MSE) of 0.001171821, significantly lower than the FNN’s MSE of 0.016. This indicates that the CNN model 
provides a more accurate estimation of cooling efficiencies across diverse scenarios.

•	 Development of a labeled thermal imaging dataset: This study introduces a labeled dataset specifically de-
signed for training deep learning models to correlate thermal patterns with PV cooling efficiency. This dataset 
provides a valuable resource for future research and development in this area.

•	 Practical implementation and cost-effectiveness analysis: A comprehensive analysis of the practical imple-
mentation and cost-effectiveness of the proposed monitoring system is presented. This includes discussions 
on hardware requirements, integration with existing infrastructure, and sensitivity analysis. The economic 
viability and scalability of the system are assessed through cost-benefit analysis and scalability assessment, 
demonstrating significant potential for cost savings and revenue increases in large-scale PV installations.

•	 Addressing limitations and future research: The study discusses strategies for addressing limitations, enhanc-
ing predictive accuracy, and scaling the proposed approach to larger datasets. This provides a roadmap for 
future research and industry collaboration in the field of photovoltaic thermal management optimization.

•	 The proposed deep regression analysis method offers a real-time, non-invasive way to quantify cooling system 
efficiency across large-scale PV installations. This capability has several practical applications, including:

•	 Predictive Maintenance: By continuously monitoring cooling efficiency, operators can identify underper-
forming or failing cooling systems before they significantly impact PV output. This allows for timely inter-
ventions and maintenance, reducing downtime and optimizing overall system performance.

•	 Optimization of Cooling Strategies: The data generated by the system can be utilized to fine-tune cooling 
parameters, such as flow rates or activation thresholds, to maximize efficiency and minimize water/energy 
consumption.

•	 Design Improvements: The spatial resolution of the thermal analysis highlights areas of panels experiencing 
consistently higher temperatures. This information can guide improvements in panel design, cooling system 
layout, or installation practices to address hotspots and improve overall system efficiency.

Furthermore, the proposed method contributes to improved cooling system performance in PV/T systems, 
passive cooling systems, and provides a way to verify the performance of newly installed or upgraded cooling 
systems. By providing accurate, real-time data on cooling efficiency, the system enables operators to make 
informed decisions about when to clean panels, adjust tilt angles, and implement other temperature management 
strategies. This ultimately leads to improved long-term electricity production and integration with smart grid 
systems for optimized energy management.

The research presented here contributes to the growing body of work that investigates the application of deep 
learning techniques for monitoring and optimizing PV systems. By providing a novel and practical approach to 
quantify cooling efficiency, this study paves the way for further advancements in renewable energy technology 
solutions. The proposed deep regression analysis method has the potential to significantly impact the efficiency 
and sustainability of photovoltaic energy systems.

Limitations

•	 This research focuses on quantifying cooling efficiency, and further research is needed to explore the ap-
plication of deep learning for other aspects of PV system performance, such as predicting energy output or 
identifying potential faults.

•	 The accuracy of the proposed method may be affected by factors such as image quality, lighting conditions, 
and the presence of obstructions. Further investigation is needed to assess the robustness of the method under 
different conditions.

•	 The current dataset is limited in size and scope, and further data collection and annotation are required to 
improve the model’s generalization ability and ensure its applicability to a wider range of PV systems.

•	 The cost of implementing the proposed system needs to be further investigated to determine if it is economi-
cally viable for smaller-scale PV installations.

Future work

•	 Expanding the dataset: Collecting a larger and more diverse dataset of thermal images from various PV sys-
tems under different conditions will significantly improve the model’s generalization ability and accuracy.

•	 Developing more sophisticated models: Exploring more advanced deep learning architectures, such as recur-
rent neural networks or attention mechanisms, to further improve the accuracy and efficiency of the cooling 
efficiency estimation.

•	 Integrating with other monitoring systems: Integrating the proposed system with other monitoring systems, 
such as those that track weather conditions, panel performance, and grid connectivity, to provide a more 
comprehensive view of the PV system’s overall health.

•	 Exploring applications beyond cooling efficiency: Investigating the application of deep learning techniques 
for other aspects of PV system performance, such as predicting energy output, identifying potential faults, 
and optimizing energy harvesting.
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•	 Developing a user-friendly interface: Developing a user-friendly interface that allows operators to easily ac-
cess and interpret the data generated by the proposed system.

This research provides a strong foundation for future advancements in the field of photovoltaic thermal 
management optimization. By addressing the limitations and pursuing the proposed future work, this research 
can contribute significantly to the development of more efficient and sustainable PV systems.

Conclusions
This study has presented a novel deep-learning approach for evaluating the cooling effectiveness of photovoltaic 
(PV) solar panels using thermal imaging videos. By employing a U-Net architecture for image segmentation, 
we have successfully automated the classification of cropped panels based on their cooling efficiency. This 
process has resulted in the creation of a comprehensive labeled dataset of thermal images, encompassing a broad 
range of cooling efficiencies from 0 to 100%. Our evaluation of two predictive models, a traditional three-layer 
Feedforward Neural Network (FNN) and a Convolutional Neural Network (CNN), has demonstrated the CNN’s 
superior performance in terms of root mean squared error (RMSE), mean absolute error (MAE), and R-square 
value. The CNN’s RMSE of 2.3%, MAE of 1.2%, and R-square of 0.95 significantly outperform the FNN’s results, 
indicating a more accurate and reliable method for estimating cooling efficiencies. While these results are 
encouraging, we acknowledge the limitations of our research. The models were developed and validated under 
specific conditions, and their applicability to different types of PV panels and environmental settings remains to 
be fully investigated. The generalizability of our findings to real-world scenarios, where factors such as varying 
panel materials, designs, and unpredictable environmental influences come into play, requires further testing. 
To address these limitations, future work will focus on expanding the diversity of the dataset to include a wider 
array of PV panel types and environmental conditions. Field trials will be conducted to evaluate the robustness 
and practicality of our models in operational settings. Additionally, we will explore the integration of additional 
sensor data to refine the models’ predictive capabilities. The vision-based, contactless evaluation method we 
have developed offers significant adaptability and potential for integration into existing PV infrastructure. This 
could lead to improved maintenance practices and enhanced overall system efficiency. The curated thermal 
imaging datasets and deep learning architectures provided by this research represent a substantial advancement 
in the field of renewable energy technology.

Data availability
The dataset and code used in this study are public and all test data are available at this portal ​(​h​t​t​p​s​​:​/​/​u​n​i​​v​e​r​s​e​.​​r​
o​b​o​f​l​​o​w​.​c​o​m​/​k​a​f​r​e​l​s​h​e​i​k​h​-​u​n​i​v​e​r​s​i​t​y​/​p​h​o​t​o​v​o​l​t​a​i​c​_​t​h​e​r​m​a​l​_​i​m​a​g​e​s​/​d​a​t​a​s​e​t​/​2 ).
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