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Introduction

The benefits of radiation therapy (RT) for the treatment 
of localized cancer include its spatially-localized ablative 
properties; the induction of localized, catastrophic damage 
to the tumoral DNA and subsequent cell death. A compo-
nent of this cell killing is now understood to be a result of 
the immunogenic nature of radiation-induced cell death [7]. 
This can induce local bystander and, rarely, remote abscopal 
effects, where a tumor outside the irradiated region regresses 
[18]. However, there is a lack of an enduring response in a 
clinical setting [62].

The addition of immune checkpoint inhibitors (ICIs) 
capitalizes upon the inflammatory environment induced 
post-RT. Clinical trials in multiple cancer types have shown 
improvement in patient outcomes when both immuno-
therapy (IO) and RT are administered [30, 35, 51, 56]. The 
mechanisms underlying RT/ICI synergy are poorly under-
stood, and the factors necessary to optimize the treatment 
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Abstract
Immunotherapy is a rapidly evolving field, with many models attempting to describe its impact on the immune system, 
especially when paired with radiotherapy. Tumor response to this combination involves a complex spatiotemporal dynamic 
which makes either clinical or pre-clinical in vivo investigation across the resulting extensive solution space extremely 
difficult. In this review, several in silico models of the interaction between radiotherapy, immunotherapy, and the patient’s 
immune system are examined. The study included only mathematical models published in English that investigated the 
effects of radiotherapy on the immune system, or the effect of immuno-radiotherapy with immune checkpoint inhibitors. 
The findings indicate that treatment efficacy was predicted to improve when both radiotherapy and immunotherapy were 
administered, compared to radiotherapy or immunotherapy alone. However, the models do not agree on the optimal 
schedule and fractionation of radiotherapy and immunotherapy. This corresponds to relevant clinical trials, which report 
an improved treatment efficacy with combination therapy, however, the optimal scheduling varies between clinical trials. 
This discrepancy between the models can be attributed to the variation in model approach and the specific cancer types 
modeled, making the determination of the optimum general treatment schedule and model challenging. Further research 
needs to be conducted with similar data sets to evaluate the best model and treatment schedule for a specific cancer type 
and stage.
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even less so. ICI monotherapy itself is a capricious treat-
ment, and the increased complexity of the dual treatment 
requires further investigation.

There is intense interest in the use of ICIs in combination 
therapies in clinical and preclinical research. The most com-
mon inhibitors studied are antibodies antagonistic to PD-1 
(pembrolizumab and nivolumab), PD-L1 (atezolizumab, 
durvalumab, and avelumab) and CTLA-4 (ipilimumab and 
tremelimumab).

The PD-1/PD-L1 axis inhibits the growth and activa-
tion of T cells [28]. The CTLA-4 axis regulates central 
immune tolerance. There is a lack of biomarkers that can 
reliably indicate treatment success for anti-CTLA-4 and 
PD-1/PD-L1 inhibitors, or predict which patients will suffer 
severe, potentially life-threatening side effects [16, 46, 47].

To understand the immune effects of RT and the synergy 
of IO-RT, the optimal treatment schedules and tumor micro-
environment (TME) to elicit RT-immune synergy must be 
found. Exhaustive testing of dose-fractionation protocols 
and tumor microenvironment factors is not feasible through 
preclinical or clinical in vivo research alone.

Developments in the understanding of radiobiology and 
radiation-immune synergy provide the opportunity to char-
acterize the treatment effects on the TME in silico. Robustly 
designed models, informed by data, can explore the myriad 
permutations of the system while requiring minimal physi-
cal resources, thus offering the opportunity to explore the 
dose-fractionation landscape to generate hypotheses regard-
ing promising treatment strategies.

This critical review seeks to summarize in silico RT and 
IO-RT treatment models to consolidate current approaches. 
No standards are widely followed in the building or report-
ing of exploratory in silico models; this review seeks to 
standardize the discussion of non-diagnostic computational 
models.

Methods and materials

A systematic review of the literature was performed using 
the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) approach [48]. Models of IO-RT 
combinations were the focus of this review, with readers 
directed to other reviews that concentrated on the action 
of IO, such as Valentinuzzi and Jeraj’s review of computa-
tional models of cancer immunotherapy [59].

Search strategy

The PubMed, scopus and Web of Science databases 
were used to search for papers up to August 2023 that 
included terms related to immunity and/or immunotherapy, 

radiotherapy, cancer, and computer/mathematical model-
ling. Due to inconsistency in the language and keywords 
used to refer to in silico models of cancer therapy, it became 
necessary to cast a wide net when searching the databases. 
The conditional searches were optimized for each data-
base and are included in the supplementary details for 
reproducibility.

Only studies published in English were considered eligi-
ble. Conference papers were included in the initial searches, 
but no relevant conference papers were found to contain 
models of sufficient quality for discussion in this review.

The breakdown of identified and selected studies accord-
ing to the PRISMA guidelines is given in Fig. 1. The criteria 
for inclusion are given in Table 1. Fifteen studies were iden-
tified that met the criteria for inclusion.

Evidence synthesis

Modeled treatments

The included models seek to understand the interactions 
between radiotherapy and the immune system in the con-
text of cancer treatment. Some of these models simulate the 
effects of RT monotherapy on the tumor microenvironment, 
considering either or both of the immunostimulatory/sup-
pressive effects of the treatment on the TME. The remain-
ing models explore the interactions of radiotherapy with 
immune checkpoint inhibitors and their effects on the TME. 
The findings in this section are summarized in Table 2.

Subject populations

Most models investigated the effects of RT monotherapy 
(n = 5) or IO-RT treatments (n = 10) on either human (n = 6) 
or murine (n = 6) subjects, or both (n = 2). Patient agnos-
tic models explore potential mechanisms underlying IO-RT 
treatments rather than focusing on patients with a specific 
tumor type [3, 54, 55]. The use of murine mathematical 
models is likely due to the relative availability of murine 
preclinical data. Most of the available models used external 
experimental or cancer repository data as part of their mod-
elling process, as opposed to data gathered by the authors 
for the modelling process. Each model focused on differ-
ent aspects of the tumor microenvironment after treatment, 
for instance, immune cell count after RT [57] and kinetic 
features of immune and tumor cells in murine CT26 tumors 
[37].
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Table 1  Inclusion and exclusion criteria for literature review
Inclusion criteria Exclusion criteria
• Modeled the effects of 
combination radiation 
and ICI therapies on the 
tumor microenvironment 
over time
• Modeled the effects of 
radiation therapy on the 
immune characteristics 
of the tumor microenvi-
ronment over time

• Mathematical model not of sufficient quality for analysis i.e. does not detail model equations, does not relate 
parameters to biological/physiological function, does not state method of determining coefficient values in article or 
supplementary material
• Does not use mathematical modelling
to characterize/explore any of the local immunogenic effects of radiotherapy as part of RT treatment of cancer OR 
the combination of ICI immunotherapy and radiotherapy OR the immunogenic effects of radiotherapy and how they 
can/do/may interact with ICI immunotherapy in isolation from the impacts of ANY other intervention
• Treatment models only consider the
genetic expression
• Paper only focuses on remote (abscopal) effects of RT, does not consider local TME effects
• Models do not consider changes in the
tumor microenvironment over time
• Abstract only
• Experimental data used in model training/testing does not allow for the exploration of the immunological effects of 
RT or the interaction of ICI immuno-RT
• Mathematical model does not model
some metric of tumor cure (e.g. changes in tumor volume, tumor surface area, % of initial tumor size) as an outcome
• Review article
• Model considers the use of radionuclides in conjunction with a monoclonal antibody or injected radionuclides, not 
external beam radiotherapy (EBRT)

Fig. 1  Overview of the study selection process according to the PRISMA guidelines. Figure synthesized using the PRISMA Flow Diagram Shiny 
app developed by [27]
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cancer types. For a drug to be approved as a cancer agnostic 
treatment, there should be strong evidence of a molecular 
aberration–drug match, allowing for extrapolation to diverse 
tumors, and an understanding of resistance mechanisms to 
the drug. The effects across different histologies should be 
homogeneous.

Regarding immune checkpoints, the upregulation or 
downregulation of these proteins correlates with improved 
or reduced survival depending on the cancer. For example, 
the prevalence of BRAF mutations, which promote tumor 

Cancer types

Cancer types studied by the models include melanoma, 
hepatocellular carcinoma, sarcoma, and breast cancer [17, 
19, 39, 49, 57, 58].

A few models were cancer agnostic, with the authors 
choosing to explore mechanisms underlying treatment 
effects in generality, rather than for a specific cancer type. 
This means that any agnostic model considers the predictive 
factors for treatment success to be the same across various 

Table 2  Key characteristics of experimental design in identified studies
Model Subject

Population
Cancer Type RT Modeled RT Fractionation IO target IO-RT 

Sequencing
Alfonso et al. [3] Human Cancer Agnostic Photon EBRT 2 Gy/day 5 days a 

weeka
N/A N/A

Alfonso et al. [4] Human Non–small cell
lung cancer

Photon EBRT 10 Fractions of 2 Gy N/A N/A

Butuc et al. [12] Murine BCL1 Lymphoma Photon EBRT Continuous 
Radiation

Unspecified Simultane-
ousb

Byun et al. [13] Murine Breast Carcinoma Photon EBRT 12 Gy/4 fractions
every 3 days

PD-L1 RT before 
IO

Cho et al. [17] Human
and Murine

Sarcomac

and Breast 
Carcinoma

SFRT Varied d PD-L1
and CTLA-4

N/A

Gonzalez-Crespo et al. [14] Murine Breast Carcinoma Unspecified Variede CTLA-4
and PD-L1

Variedf

Kim et al. [35] Human Hepatocellular
Carcinoma

Unspecified Unspecified CTLA-4 Varied

Kosinsky et al. [37] Murine Colon Carcinoma Photon EBRT 2 Gy/5 fractions
on days 7–11

PD-L1 Variedg

Lai and Friedman [39] Human
and Murine

Melanoma Photon EBRT Variedh PD-L1 Variedi

Montaseri et al. [44] Murine Colon Carcinoma Photon EBRT 1 fraction a dayj N/A N/A
Poleszczuk and Enderling [48] Murine Breast Carcinoma Photon EBRT Variedk CTLA-4 RT before 

IO
Serre et al. [54] Patient

Agnostic
Cancer Agnostic Photon EBRT Single Fraction of 

8 Gy
CTLA-4,
PD-L1,
and PD-1

RT 
concurrent
or before IO

Sotolongo-Grau et al. [55] Human Cancer Agnostic Photon EBRT Variedl N/A N/A
Sung et al. [57] Human Hepatocellular

Carcinoma
Proton EBRT 15 fractions

to a total dose of 
58.0 Gy

N/A N/A

Sung et al. [58] Human Hepatocellular
Carcinoma

Proton EBRT 8 Gy/3 fractions PD-L1 Varied

aThe number of fractions was varied between 15, 25 or 35 fractions
bThe system administers a constant amount of radiation in a finite time interval, so both treatments can be considered to be administered 
simultaneously
cThere was only a single human sarcoma patient used to fit the data. The mice received a xenograft of 67NR breast carcinoma
dRadiotherapy dose is varied from 3 Gy to 4 Gy, over 5 days
eRT schedules consisted of: 8 Gy x 3, 5 Gy x 6, and 20 Gy x 1
fThe days on which immunotherapy was administered were varied, with the days that RT was administered being kept constant on days 0, 1, 
and 2
gThe timing of anti-PD-L1 was varied - administered on either day 5, 7 or 12hRadiotherapy dose is varied from 3 Gy to 4 Gy, over 5 daysiRT 
is administered either 1 week before, simultaneously, or 1 week after IO.jRadiotherapy dose is varied from 2 Gy to 6GykRadiotherapy dose 
schedule varied - schedules studied are 20 Gy × 1 fraction, 8 Gy × 3, and 6 Gy × 5lRadiotherapy dose was varied depending on radiosensitivity 
parameters

1 3

1294



Physical and Engineering Sciences in Medicine (2024) 47:1291–1306

the radiosensitivity of organs at risk of receiving the dose 
during treatment. There is an increased drive to understand 
the effects of RT total dose, timing of therapy, and fraction-
ation on the TME, especially on the TME’s oxygenation and 
perfusion.

The models present contrasting results regarding the 
effect of RT fractionation on treatment efficacy. One model 
found that hypofractionation led to a higher inactive tumor 
cell population, which stimulates lymphocytes leading to 
an expedited recovery period of the immune system [57]. 
This is consistent with clinical observations that reducing 
the number of fractions for the same overall dose increases 
treatment efficacy [32, 60]. However, other models found 
that long fractionation schemes do not significantly improve 
the therapeutic success rate compared with shorter schemes 
[3, 58]. Poleszczuk and Enderling [48] found that the opti-
mal number of fractions increases with the biologically 
effective dose (BED) delivered [49].

Immune checkpoint inhibitors

CTLA-4 and the PD-1 pathway both inhibit immune 
response: CTLA-4 regulates T cell activation in the early 
stage of the immune response and PD-1 suppresses T cell 
activity in the late stages [10]. The majority of the mod-
els studying the effect of immunotherapy considered anti-
PD-L1 and/or anti-PD-1 drugs, as shown in Table  2. The 
PD-1/PD-L1 axis plays a significant role in cancer’s eva-
sion of immune defences as the binding of PD-1 to PD-L1 
induces apoptosis in the T cells [28]. A few models consid-
ered anti-CTLA-4 drugs [36, 49], with some models con-
sidering both immunotherapy treatments [17, 19]. Most of 
the models are drug-agnostic, only considering the generic 
action of the drug, for example blocking the PD-1 pathway. 
Byun et al. [13] studied the 10 F.9G2 monoclonal antibody 
[13], and Poleszczuk and Enderling studied the 9H10 anti-
CTLA-4 monoclonal antibody [49]. Kim et al. [35] studied 
the anti-CTLA-4 drug tremelimumab [36] and Sung et al. 
[57 studied durvalumab, an anti-PD-L1 immune checkpoint 
inhibitor [58]. Different immunotherapy drugs have differ-
ences in pharmacokinetics and pharmacodynamics, which 
can affect treatment outcomes depending on the drug used. 
For instance, avelumab and durvalumab are both PD-L1 
inhibitors, however, avelumab has a linear clearance rate 
over the dose range of 1–20 mg/kg, whilst durvalumab dis-
plays a non-linear clearance rate for doses less than 3 mg/
kg [15].

growth and angiogenesis alone, is not an indicator of treat-
ment success; the BRAF inhibitor vemurafenib was effec-
tive in treating melanoma but not colorectal cancer, despite 
both having a high frequency of BRAF mutations [38]. This 
means that the bulk of the in silico models are of interest in 
an academic sense but do not apply to predicting the out-
comes of individual subjects or treatment groups of specific 
cancer subtypes.

Radiotherapy

All considered models pertained to external beam RT. 
The RT therapies investigated are most commonly photon 
EBRT, though one group, Sung et al. [57, 58], models pro-
ton radiotherapy [57, 58].

Cho et al.’s research studied spatially fractionated radio-
therapy (SFRT), and their results supported Kanagavelu et 
al.’s findings that conventional RT relied less on immune 
interaction than SFRT [17, 33]. A single, high dose of SFRT 
has been reported to induce abscopal and bystander effects, 
leading to cell death of non-irradiated cells [41]. Addition-
ally, studies have found that SFRT led to a more significant 
immune response compared to conventional radiotherapy 
[43]. This is thought to be due to the significantly irradiated 
tumor cells releasing more antigens, which activate the T 
cells [43]. Areas of the tumor receiving a lower dose will 
have a greater degree of vasculature, allowing lymphatic 
cells to infiltrate the tumor [31]. When the radiation dose 
was insufficient, the tumor volume exceeded the generalized 
terminal viable tumor volume before the immune response 
was activated.

RT not only leads to the death of cancer cells but also 
causes cell death of immune cells. The cell survival prob-
ability for both cancer cells and immune cells is often 
assumed to follow the linear-quadratic (LQ) model [42]. 
However, Serre et al.’s model [54] assumes that RT leads to 
the complete elimination of all immune cells without using 
the LQ model [54]. Each model considers a different effect 
on the tumor microenvironment, for example, the short and 
long-term effects of RT on tissues in the physical, chemical, 
and biological phases, the interaction of ionized molecules 
with biological components of the cell [55], and the release 
of tumor antigens during radiotherapy [3, 19, 44, 54], which 
leads to the production of immune cells. Sung et al. [58] 
consider immunosuppressive mechanisms of RT, however, 
they did not study the enhancement effects of RT which 
have been observed in other pre-clinical studies [26, 58].

Radiotherapy fractionation

The optimal fractionation of RT dose and duration of treat-
ment varies depending on the cancers being treated and 
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There was only one truly spatiotemporal model in the 
cohort, which investigated the movements of individual 
chemical or cellular actors describing system evolution 
in four dimensions [4]. The three-dimensional location of 
individual cells is a core determinant of tumor outcomes in 
spatiotemporal models. The immune cells and cancer cells 
were modeled on two interacting 3D lattices. The migra-
tion of cancer cells was modeled by random walks. Lai and 
Friedman’s model considered some spatial dependence with 
the movement and diffusion of cells, anti-tumor drugs, and 
cytokines [39]. However, it is assumed that the cell density 
is spatially invariant, so the model is not a true spatiotem-
poral model.

Exploratory vs. Ad-Hoc models

The majority of models in the cohort are ad-hoc, data-driven 
models as they attempt to fit parameter values to patient 
data. The tumor dynamics for varying parameter values 
were investigated by exploratory models [12, 44, 55]. Sta-
bility analysis and bifurcation diagrams are included in the 
results obtained from the exploratory models. Most of the 
models are mathematical as they use ordinary/partial dif-
ferential equations or sequential functions to model the con-
centration/volume of cells. All models assumed the forms of 
the differential equations and sequential functions and did 
not investigate other forms of the differential equations and 
sequential functions.

Stochasticity to reflect individual fluctuations within the 
population

Stochasticity is incorporated in some models to replicate 
the stochastic nature of mechanisms and processes impact-
ing tumor response. Commonly, the movement of cancer 
and/or T cells was considered to be stochastic, following 
a random walk [4, 49]. Gonzalez-Crespo et al. [14] used a 
Markov birth-death stochastic process to model the changes 
in tumor cell population for a small number of tumor cells 
(less than 1000 cells) [19]. Alfonso et al. (4) assumed that 
migration, proliferation and apoptosis of cancer cells are 
stochastic processes [4]. The immune system dynamics, 
including migration and suppression of T cells, as well as 
immune-mediated tumor cell killing, were also modeled as 
stochastic processes.

Use of differential equations or sequential functions

Differential equations are commonly used to model tumor 
and immune system dynamics and evolution with respect to 
time. As discussed in the section titled “Temporal vs Spa-
tiotemporal Models”, most models are purely temporal, so 

Exploring the impact of sequencing of immune checkpoint 
inhibitor and radiotherapy

All the models that considered both RT and IO show that 
treatment is improved when RT and IO are both adminis-
tered, as opposed to only administering one or the other.

This indicates an additive effect between RT and IO. 
However, there is a difference in treatment efficacy when 
the ordering of the therapies is altered.

Current evidence indicates a difference in IO-RT treat-
ment efficacy depending on whether the ICI or the RT is 
administered first. The models did not agree on an optimum 
treatment sequencing; it depends on the doses of ionizing 
radiation delivered and ICI injected, as well as the type of 
ICI. For small doses of RT and anti-PD-L1, it is more effec-
tive to give anti-PD-L1 after RT, compared to administering 
IO simultaneously the reverse is true for large doses, as evi-
denced in Lai and Friedman’s study [39]. This finding aligns 
with a retrospective analysis of patients with resected mela-
noma brain metastases, which found that RT followed by IO 
led to increased patient survival [50]. However, the explo-
ration conducted by Kim et al. indicated that the optimum 
treatment sequencing depended on the type of IO admin-
istered. It was more effective to administer anti-CTLA-4 
before RT, but the opposite was true for anti-PD-L1 [36]. 
This agrees with the experiment conducted by Young et al., 
where mice with colorectal carcinoma were administered 
anti-CTLA-4 and RT. Treatment with anti-CTLA-4 before 
RT increased the proportion of mice with cleared tumors 
[63].

A few models found that administering RT and ICI con-
currently increased the response rate, with the response rate 
decreasing as the interval between treatments increased [22, 
37, 58].

Key characteristics

Broad characteristics have been defined to improve the anal-
ysis and streamline the comparison of the available models. 
Table 3 summarizes the characteristics of each model.

Temporal vs. spatiotemporal models

The majority of models assume that tumor characteristics 
depend solely on time. Characteristics of interest include 
tumor volume or the total number of tumor cells, immune 
cell concentration, and concentrations of key proteins such 
as antigens and cytokines. Poleszczuk and Enderling [48] 
considered two tumor sites (primary and secondary) and the 
migration of tumor cells between the two sites [49]. How-
ever, spatial dependence is not considered for each site.
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Table 3  Key characteristics of models in identified studies
Model Spatiotemporal

Nature
Exploratory
vs. Ad-Hoc

Includes
Stochasticity

Equation 
Forms

Tumor Growth
Model

Radia-
tion
Model

Systemic Changes

Alfonso et 
al. [3]

Temporal Ad-Hoc No ODEs Exponential LQa tumor radius, effector cell
population, therapeutic success rate

Alfonso et 
al. [4]

Spatiotemporal Ad-Hoc Yes PDEs Probabilisticb LQa tumor, effector, and suppressor cell popu-
lations, individual radiation immune
score

Butuc et al. 
[12]

Temporal Exploratory No ODEs Logistic Expo-
nential
decay

tumor and
immune effector cell populations

Byun et al. 
[13]

Temporal Ad-Hoc No ODEs Logistic Expo-
nential
decay

tumor volume, T cell density,
and concentration of PD-L1,
PD-1, and PD-1-PD-L1 complex

Cho et al. 
[17]

Temporal Ad-Hoc No Sequential
Functions

Exponential LQ Viable and doomed cancer cell
volume, primary and secondary immune 
response, antigen and lymphocyte 
dynamics

Gonzalez
-Crespo et 
al. [14]

Temporal Ad-Hoc Yes ODEs Logistic LQc 
and 
LQL

Antigen and drug concentration,
tumor and T cell population

Kim et al. 
[35

Temporal Ad-Hoc No ODEs Exponential LQd Irradiated, non-irradiated, and inactivated 
tumor cells
circulating lymphocytes

Kosinsky et 
al. [37]

Temporal Ad-Hoc No ODEs Logistic LQ tumor volume
T cell concentration concentration of 
PD-L1

Lai and
Friedman 
[39]

Temporal Ad-Hoc No PDEs Logistic LQ tumor cell, macrophage,
dendritic cell,
and T cell population ligand 
concentration

Montaseri
et al. [44]

Temporal Exploratory No ODEs Exponential Expo-
nential
decay

Average tumor radius, effector
cell concentration, fraction of cells killed 
by radiatione

Poleszczuk
and Ender-
ling [48]

Temporal Ad-Hoc Yes ODEs Logistic LQ tumor volume, relative T cell
density, and survival fraction

Serre et al. 
[54]

Temporal Ad-Hoc No Sequential
Functions

Exponential LQ tumor mass, primary and
secondary immune response, antigen and
lymphocyte dynamics

Sotolongo-
Grau et al. 
[55]

Temporal Exploratory No ODEs Exponential N/A Clonogenic and non-clonogenic
tumor and
lymphocyte population

Sung et al. 
[57]

Temporal Ad-Hoc No ODEs Exponential LQd Primary, inactivated, and metastatic 
tumor cells and
circulating lymphocytes

Sung et al. 
[58]

Temporal Ad-Hoc No ODEs Exponential LQd Irradiated, non-irradiated, and inactivated 
tumor cells, circulating lymphocytes

aAn additional parameter scales the radiosensitivity depending on whether the tumor cells are hypoxic or proliferative
bThe probability of mitosis for each time-step of 1 h is quoted. During mitosis, the new cancer cell is placed on a randomly selected free neigh-
bor node
cInvestigated a modification of the quadratic term of the LQ model
dFor survival fraction of circulating lymphocytes, the D2 dependence was omitted. However, the survival fraction of tumor cells included the 
D2 dependence
eLigands considered include PD-1, PD-L1, PD-1-PD-L1, IL-12, IL-2, and TGF-β.
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However, a few models do not consider natural cell death to 
occur for cancer cells [13, 19, 57, 58].

Sotolongo-Grau et al. used a Lotka-Volterra model to 
model the interaction between the tumor cell and lympho-
cyte population [55]. This model assumes that tumor cells 
and lymphocytes can grow without bound [55]. Poleszczuk 
and Enderling [48] did not follow the Lotka-Volterra model 
for their analysis; only the term representing immunogenic 
tumor cell death resembles the Lotka-Volterra model [49].

Parameters

Both exploratory and ad-hoc models involved fixed param-
eters which did not vary as the model was run. These fixed 
parameters were either estimated within a range of feasible 
values or set to literature values. The ad-hoc data-driven 
models aimed to fit parameters, such as radiosensitivity 
and tumor-immune cell interaction parameters, into the 
experimental data. Some models, particularly those using 
sequential functions, included stochastic parameters. These 
stochastic parameters took into account the heterogene-
ity between different patients. Stochastic parameters also 
allowed the tumor growth and proliferation to be modeled 
by a Markov chain in the models involving discrete time 
steps. The numbers of each type of parameter are summa-
rized in Table 4.

Fitted parameters

Parameters such as radiosensitivity and cell survival fraction 
are fitted to the results of the simulation using differential 
equations or sequential functions. Methods of parameter fit-
ting include grid search [57], moving mesh method for solv-
ing partial differential equations [39], and a least-squares 
method [19, 49].

Exploratory models do not attempt to fit parameter val-
ues to the numerical models [12, 44, 55]. Instead, the results 
presented are in the form of graphs of results obtained from 
the simulation [1], for instance, success rate vs. immuno-
stimulation [3], therapeutic diagrams [12] or stability dia-
grams [55].

External parameters

The majority of models rely on data obtained in other litera-
ture to give values for external parameters. It was common 
to use published values for parameters [39, 44, 57]. Two 
studies relied on experimental data to obtain fixed param-
eter values [13, 19].

ordinary differential equations (ODEs) suffice to describe 
the system. The cell concentration is discontinuous at times 
when radiation is applied - these discontinuities are explic-
itly defined using the LQ model. A couple of papers scale 
their ODEs to a dimensionless form before attempting to 
solve them [12, 55]. Notable exceptions to the ODE models 
use partial differential equations to model the spatial distri-
bution of tumor and immune cells [4, 39].

Some models opt to use sequential functions, which 
assume changes to the system occur at discrete time steps 
[17, 54]. The discrete time steps in the models have a length 
of 1  day. They did not use ODEs to describe dynamics 
between treatments.

A few models considered both sequential functions and 
ODEs [36, 57, 58]. The ODEs model the dynamics between 
RT fractions, and the sequential functions model the dynam-
ics when the RT fraction is administered. The dynamics 
when the RT fraction is administered can be incorporated 
into the ODEs with the use of a Dirac-Delta function.

Systemic changes characterized by the models

Though all models are fundamentally looking at tumor cure, 
each model has a distinct approach. The differential equa-
tions and sequential functions are the focus of each model 
and underline the systemic changes the model is investigat-
ing as likely contributors towards tumor cure. Common sys-
temic changes of interest include the presence of immune 
effector and suppressor cells in the TME and the presence 
of immunosuppressive ligands. All the models considered 
model the population or density of immune effector and 
suppressor cells in the TME. A few models considered the 
presence of cytokines in their models and their interactions 
with immune cells [4, 39, 55].

Common foundation models

Many of the treatment models make use of existing equa-
tions describing simpler systems. Some equations are 
reoccurring in various treatment models. The LQ model is 
commonly used to predict the fraction of cancer cells sur-
viving a fixed dose. The LQ model has been modified in 
some models to consider the repair rate and delivery time, 
varying radiation doses each day, the effect of hypofraction-
ation, and the variation in radiosensitivity between prolif-
erative and quiescent tumor cells [3, 4, 19, 49, 54].

Most models assume that in the absence of RT and IO, 
tumor growth is logistic [12, 13, 19, 39, 49]. However, a 
few models assume tumor growth is exponential in the 
absence of treatment [17, 36, 54, 57]. Natural cell death is 
often assumed to cause exponential decay in the cell popu-
lation for both cancer cells and immune cells [49, 57, 58]. 
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bias towards a particular treatment schedule or the model 
only applies to a certain subset of patients, such as those 
with a depleted immune system [44, 49, 54].

Stochastic parameters

Most models assume a one-size-fits-all approach to cancer 
treatment, assuming that parameters such as radiosensitivity 
and growth rate of cells are identical for each simulation. To 
reflect a population, a model should accommodate heteroge-
neity of factors that lead to heterogeneity in response. Cells 
also exhibit variation within the same patient at the genetic, 
phenotypic, and epigenetic levels [45]. A few models did 
incorporate population heterogeneity by sampling param-
eter values from set population distributions. The use of a 
stochastic model (see Sect.  3.2.3) allows a set of simula-
tion results to be generated from the same initial conditions, 
improving the reliability of the model and potentially reflect-
ing population heterogeneity that arises from the stochastic 
nature of underlying response mechanisms. The temporal 
models incorporate population heterogeneity by sampling 
various parameter values, such as tumor doubling time, 
from a given distribution. Distributions used for parameters 
included uniform [13], log-normal [17, 49, 55], and normal 
[36, 55, 58]. This incorporation of stochasticity or distribu-
tion sampling allows a large sample of virtual patients to be 
generated, increasing the reliability of the study and estab-
lishing confidence intervals for predicted quantities.

Model analysis

System behavior

Most of the models did not conduct bifurcation analysis 
or analyze the parametric sensitivity and stability of the 

Assumed or estimated parameters

The models must estimate parameters, as some parameters 
have values that can fall within a given range, or they may 
not have experimentally established values for the partic-
ular patient/cancer type. Alfonso et al. (4) assumed a cell 
cycle length of 35 h, and values for apoptotic and migration 
probabilities [4]. Sung et al. [57] estimated a baseline cell 
density, gross target volume, proportion of metastatic tumor 
cells, and the number of circulating lymphocytes [57].

Montaseri et al. [44] estimated the radiation-induced 
effector cell recruitment rate and decay rate of immunos-
timulatory signals from irradiated tumor cells undergoing 
immunogenic cell death [44]. Lai and Friedman [39] esti-
mated any parameter values that were not taken from the 
literature [39]. Their parameter estimation procedure was 
described in the Appendix, and the estimations are based on 
literature values and steady-state equations.

Model complexity

Each model assumes certain properties of cancer and 
immune cells to simplify it and reduce the number of param-
eters the model is required to fit. Most models are tempo-
ral and assume that the tumor is homogeneous in density. 
The notable exception is Alfonso et al.’s model (4), which 
models the TME as a lattice of points that cells can migrate 
between [4]. Other simplifications include assuming the 
concentration of the PD-1/PD-L1 complex is time-indepen-
dent, linearizing the model about the equilibrium point or 
assuming the tumor to be spherically symmetric [3, 13, 39, 
44, 49]. These simplifications lead to results that are differ-
ent from results obtained when using a more comprehensive 
model, for instance, overestimation of RT dose required, a 

Model Fitted Parameters External 
Parameters

Assumed/Estimated 
Parameters

Total 
Param-
eters

Alfonso et al. (3) N/A 11 2 13
Alfonso et al. [4] 0 9 5 14
Butuc et al. [12] N/A 8 6 14
Byun et al.[13] 26 0 0 26
Cho et al. [17] 2 8 9 19
Gonzalez-Crespo et al. [14] 29 9 0 38
Kim et al. [35 1 13 0 14
Kosinsky et al. [37] 8 13 4 25
Lai and Friedman [39] N/A 36 36 72
Montaseri et al. [44] N/A 12 2 14
Poleszczuk and Enderling [48] 10 1 0 11
Serre et al. [54] N/A 0 13 13
Sotolongo-Grau et al.[55] N/A 0 13 13
Sung et al. [57] 7 4 0 11
Sung et al. [58] 8 7 0 15

Table 4  A summary of section 
“Parameters”
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It was found that the probability of immune-mediated 
tumor elimination (IMTE) depends on the ratio of malig-
nant cell burden/effector immune cell infiltrate and the ratio 
of effector/suppressor immune cell infiltrate [4]. A high 
concentration of effector cells led to a greater probability of 
IMTE. The treatment efficiency is increased when PD-1 is 
more highly expressed than PD-L1 and when the PD-1 level 
on T cells is smaller [13]. The total expression level is not 
positively correlated to tumor size when combination ther-
apy is used. The effect of sequencing IO and RT influenced 
treatment success [39, 58], as well as the dose-per-fraction 
administered [19].

Discussion and further work

A model is promising for future research if it sufficiently 
describes the dynamics between radiotherapy, the immune 
system and the tumor cells. The immune system dynamics 
present additional complexity due to the various immune 
escape mechanisms of tumor cells [8], radiation killing of 
immune cells [14], and release of immunosuppressive or 
immune-stimulating substances from radiation-damaged 
cells [14].

The models studied in this paper do not have a unified 
approach to investigating the effects of combining IO and 
RT. The models tend to focus on very different patients, 
cancer types, and different treatment schedules. Therefore, 
it is difficult to quantify the optimal conditions from these 
models. The different models should be run on data from 
the same cancer type to evaluate the efficacy of the model.

Cancer agnostic models will have limited utility in pre-
dicting the efficacy of treatment schedules for different 
types of cancer. Predictive factors for treatment success 
vary across different cancer types [38]. The predictors for 
treatment success in one type of cancer may differ signifi-
cantly from the predictors for treatment success in another 
type. In extreme cases, the model of tumor-immune system 
dynamics may vary between cancer types. Therefore, these 
models are of academic interest only. This review included 
cancer agnostic models to give a more complete overview of 
the potential models used in analyzing RT-IO combination 
treatments. Cancer agnostic models can always be tested on 
a specific type of cancer - Cho et al. [17] extended Serre et 
al.’s model [54] and tested it on murine breast carcinoma 
data, and a human sarcoma patient [17, 55].

The models by Sotolongo-Grau et al. [55], Montaseri et 
al. [44] and Butuc et al. [12] have limited utility for future 
research [12, 44, 55]. The models are purely exploratory 
and do not attempt to fit to clinical data. However, these 
models still have their use in analyzing the stability of the 
system and calculating a minimum dose for tumor control 
given certain parameters [12, 44, 55]. Future research could 

system. A bifurcation analysis found that changing the 
radiotherapy action factor on effector immune cells does not 
significantly alter the bifurcation diagram’s shape - there are 
still two bifurcation points [12]. However, the bifurcation 
point occurs for a smaller value of the parameter affected 
by treatment when the radiotherapy action factor on effector 
immune cells is larger. A bifurcation analysis was conducted 
on the equations presented in Montaseri et al.’s [44] paper, 
however, the effect of RT was not considered for that spe-
cific analysis [29, 44, 52].

A couple of models studied included stability analy-
sis [17, 55]. It was found that the tumor will vanish if the 
immune system’s efficiency over the tumor is greater than 1, 
and a tumor can escape the immune response if the immune 
suppression exceeds a certain threshold and the tumor is 
untreated [17, 55]. The instability of the system increases 
with the immune suppression effect [17].

Several researchers conducted a sensitivity analysis on 
their proposed model [13, 19, 39, 57]. It was found that the 
system is most sensitive to immune-related tumor cell death 
[19]. However, Sung et al. [57] found that the final tumor 
and lymphocyte count are most sensitive to its radiosensi-
tivity, with lymphocyte count also strongly depending on its 
regeneration and decay rate [57].

The correlation between tumor size and parameters dif-
fers before and after therapy [13]. For instance, the elimina-
tion rate of anti-PD-L1 in tissue and the expression level of 
PD-L1 on activated T cells had little correlation with tumor 
size before therapy. After therapy, the parameters were posi-
tively linear correlated [13]. The concentration of the sum 
of PD-1 and PD-L1 was not proportional to tumor size after 
therapy began, indicating that if tumor size decreases, the 
correlation between them is deregulated. The synergistic 
effect of combination therapy was believed to accelerate the 
dysregulation of this correlation.

Key parameters affecting outcomes

In the absence of treatment, tumor size, PD-1, and PD-L1 
expression were positively and exponentially correlated 
[13]. The tumor grew exponentially over time. While a 
single treatment modality (RT or IO) suppressed tumor 
growth, it did not reduce tumor volume. Notably, RT alone 
demonstrated better efficacy in suppressing tumor growth 
compared to IO alone [13]. However, the administering of 
a combination of RT and IO reduced the tumor volume, 
highlighting the synergistic interaction between RT and IO 
[13, 19, 58]. The ad-hoc models accurately reproduced the 
experimental data [13, 19, 37]. In addition, radiosensitiv-
ity was found to be a decreasing function of dose, support-
ing the use of the linear-quadratic-linear model at high dose 
fractions [19].
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Two of the models were capable of simulating primary 
and secondary tumor volume and tumor rejection prob-
ability, which matched the experimental values relatively 
closely [49, 54]. Butuc et al.’s model [12] explains tumor 
dormancy and radioresistance. The model characterizes two 
regions qualitatively: a region where the tumor remains dor-
mant with a low and constant cell count, and another exhib-
iting radioresistance [12]. Tumor dormancy was achieved 
for doses greater than 0.5 Gy.

Alfonso et al’s model (2021) is most likely to produce 
predictions that align with observations in clinical trials. 
The use of a stochastic spatiotemporal model is more effec-
tive at capturing the tumor microenvironment response to 
radiotherapy. However, the model is lacking as it does not 
model the effect of immunotherapy on the tumor microen-
vironment. The model can always be extended to consider 
immunotherapy - Sung et al. [58] extended their previous 
model (2020) to incorporate immunotherapy [57, 58]. Spa-
tiotemporal models of immune checkpoint inhibitors and 
the tumor microenvironment have been developed; how-
ever, these were not included in this review as they did not 
incorporate the effect of radiotherapy [5, 11].

There are barriers to using these mechanistic models for 
clinical research [40]. In silico models are often simplified 
to reduce the computational complexity of the problem; 
this can give inaccurate results when the model is applied 
to a different type of cancer [9]. The quality of the model 
depends strongly on the quality of the data used to fit the 
model parameters. A small dataset may result in overfitting 
the data points when determining the parameter values, par-
ticularly those with many parameters [9]. This can introduce 
bias towards a particular patient demographic if the sample 
is not representative of the population [40]. In addition, the 
lack of availability of metastatic cancer data means that the 
models’ ability to predict cancer metastasis accurately is 
limited [40]. This is a significant limitation as 2 in 3 cancer 
deaths arise from metastatic tumors [21]. Therefore, most 
mechanistic models are of academic interest only and are 
not commonly used in clinical research [9].

For a mechanistic model to be implemented in clinical 
practice, the values of its parameters must either be directly 
measured or fitted to experimental data. In vitro experi-
ments can be used to measure parameters such as tumor cell 
proliferation, DNA damage, and apoptosis of tumor cells 
[34]. The surviving fraction of cells after irradiation can 
be used to determine the radiosensitivity parameters of the 
tumor [23]. The model’s performance can be evaluated by 
comparing the fitted parameter values to those obtained in 
in vitro experiments. Two of the authors attempted to mea-
sure parameters, such as PD-L1 expression and immune 
cell infiltrate composition proportions [4, 37]. Others have 

incorporate fitting these models to clinical data to evaluate 
their utility for clinical research.

Models that utilize sequential functions are limited com-
pared to models that utilize differential equations. The use of 
sequential functions means that the tumor and lymphocyte 
populations can only be modeled for discrete-time values 
[17, 54]. In the case of Serre et al.’s and Cho et al.’s model, 
the discrete-time step was 1 day [17, 54]. Therefore, if RT 
or IO were administered on consecutive days, the dynamics 
of the tumor microenvironment between treatment fractions 
would be ignored. This limitation can be overcome by con-
verting the sequential functions to differential equations.

The efficacy of radiotherapy and immunotherapy varies 
across patients [53, 61]. One of the factors influencing dif-
ferences in treatment response is differences in the tumor 
microenvironment, which corresponds to different model 
parameter values for each patient [53]. Therefore, the ideal 
model will incorporate stochasticity to account for varia-
tions in the population. The model will be more reliable as 
it will be more likely to apply to the population as opposed 
to a specific individual with specific parameter values. In 
addition, tumor cell proliferation and death are naturally 
stochastic processes. The LQ model gives a probability of 
cell killing and can incorporate stochastic parameters [42].

Cancerous tumors constantly evolve after their growth, 
resulting in a greater degree of spatial heterogeneity [64]. An 
example of this spatial heterogeneity is well-vascularized 
areas of the tumor appearing adjacent to hypoxic areas of 
the tumor [2]. The most comprehensive models will accom-
modate spatial heterogeneity and the evolution of the tumor 
microenvironment in time. However, most of the models 
studied do not model spatial heterogeneity - the only mod-
els that consider the spatial dimension are Alfonso et al.’s 
model [4] and Lai and Friedman’s model [4, 39]. Lai and 
Friedman’s model is not truly spatiotemporal as it assumes a 
homogeneous cell density throughout the tumor [39].

The models developed must be tested to ensure they are 
a good fit for experimental data. The models reviewed are 
capable of predicting results from experimental data. In 
Alfonso et al.’s model (2021), the quality of predictions 
was dependent on the Radiosensitivity Index and Individual 
Radiation Immune Score (iRIS), where patients with low 
iRIS scores had the best predictions [4]. The iRIS metric 
developed by Alfonso et al. (2021), quantifies the likelihood 
that radiation will induce an increased immune eradication 
of tumor cells [4]. A lower iRIS value represents a more 
radiation-responsive tumor microenvironment. iRIS scores 
were accurately predicted given the properties of different 
cancers, for example, radiosensitivity. The p-value for the 
similarity between the median iRIS of lung adenocarcino-
mas and lung squamous confirms the expectation that the 
iRIS score should differ between tumors.
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To evaluate which model is optimal, the models must 
be run on similar cancer types. When the optimal model is 
determined, an optimum treatment schedule can be deter-
mined for the different types of cancer.

Appendix A search conditionals

Note that the literature search was kept broad as the known 
papers had wide diversity in the language used to describe 
this form of in silico research. Preference was given to 
initially identifying a larger pool of potential studies and 
subsequently refining with attention to the inclusion and 
exclusion criteria. Excluding only items that were articles 
removed some of the known studies.

A validation set was used: Byun, Kosinsky, Serre, 
Alfonso. As long as these papers came up across the data-
bases, the search was considered accurate.

Based upon the above keywords, the conditionals for the 
three main databases are:

Scopus

Searches both American and British spellings automatically 
Uses { } for the exact phrase, “” for the approximate phrase.

Test one

(TITLE-ABS-KEY (radiat* OR irradiat* OR radiothera* 
OR radioimmuno*) AND TITLE-ABS-KEY (immun*) 
AND TITLE-ABS-KEY (Biological model OR Mathemati-
cal model OR Mathematical bioscience OR In silico OR 
(predictive W/2 model)) AND TITLE-ABS-KEY (cancer 
OR tumor OR neoplasm OR carcinoma))

FINAL: (994) did not include Alfonso paper

(TITLE-ABS-KEY (radiat* OR irradiat* OR radiothera* 
OR radioimmuno*) AND TITLE-ABS-KEY (immun*) 
AND TITLE-ABS-KEY (Biological model OR Mathemati-
cal model OR Mathematical bioscience OR In silico) AND 
TITLE-ABS-KEY (cancer OR tumor OR neoplasm OR 
carcinoma))

fitted their models to published tumor data, such as the data 
obtained by Dewan et al., to obtain parameter values [20].

Mechanistic models such as those discussed in this 
review paper provide insight into treatment mechanisms 
and can be utilized to train machine learning (ML) models 
[6, 25]. Utilizing mechanistic models to train ML models 
reduces overfitting and allows ML models to suggest new 
treatment plans or the effect of a new treatment plan where 
there is no relevant past data [25]. Artificial intelligence 
(AI) and ML have demonstrated success in predicting the 
immunotherapy effects on lung cancer [24]. ML offers sev-
eral advantages, including it is non-invasive and the objec-
tivity PD-L1 level determinations, which are not subject to 
observer bias. The AI model is trained based on imaging 
radiomic features, pathological slice images, mRNAs, miR-
NAs, and Methylated CpG sites [24]. As data availability 
increases, ML models trained by mechanistic models will 
likely be utilized to predict treatment outcomes. In addition, 
AI can be utilized to approximate complex mechanistic 
models, particularly when rapid solution or a large number 
of simulations are required [40].

Conclusion

The development of immunotherapy as a potential cancer 
treatment has led to research investigating the effects of 
combining immunotherapy with established radiotherapy. 
Many of the models considered were tested against experi-
mental data, except for a few exploratory models.

Differential equations and sequential functions were 
used to model the interactions of the anti-PD-L1 check-
point and RT. A few common foundation models, such as 
the linear-quadratic model and logistic growth, were found 
across the models. Simplifications such as only consider-
ing time dependence and assuming a spherically symmetric 
tumor were made to streamline the solution. In addition, 
the parameter values were often considered to be fixed, as 
opposed to exhibiting stochasticity to account for fluctua-
tions between individuals.

The results of the simulations showed that the most effec-
tive treatment plans are when RT and IO are administered 
concurrently, due to the synergy between the treatments. 
There are some inconsistencies between the model results 
as the models focus on different cancer types. The fall-off in 
tumor response rate is more rapid when RT is started after 
IO [58]. On the other hand, another model found there was 
not a significant difference between administering RT first 
compared to IO [39]. Additionally, there were contrasting 
results between long fractionation schemes and short frac-
tionation schemes [3, 19, 57].
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Web of Science

Searches both American and British spellings automatically 
Uses{ } for the exact phrase, “” for the approximate phrase

FINAL: (72)

(TI=(radiat* OR irradiat* OR radiothera* OR radioim-
muno*) OR AB=(radiat* OR irradiat* OR radiothera* 
OR radioimmuno*) OR KP=(radiat* OR irradiat* OR 
radiothera* OR radioimmuno*)) AND (TI=(immun*) 
OR AB=(immun*) AND KP=(immun*)) AND 
(TI=(“Biological model” OR “Mathematical model” OR 
“Mathematical bioscience” OR “In silico”) OR AB = 
(“Biological model” OR “Mathematical model” OR “Math-
ematical bioscience” OR “In silico”) OR KP = (“Biological 
model” OR “Mathematical model” OR “Mathematical bio-
science” OR “In silico”)) AND (TI=(cancer OR tumor OR 
neoplasm OR carcinoma) OR AB=(cancer OR tumor OR 
neoplasm OR carcinoma) OR KP=(cancer OR tumor OR 
neoplasm OR carcinoma)).

FINAL: (68) exclude all items that are not 
articles

(TI=(radiat* OR irradiat* OR radiothera* OR radioim-
muno*) OR AB=(radiat* OR irradiat* OR radiothera* 
OR radioimmuno*) OR KP=(radiat* OR irradiat* OR 
radiothera* OR radioimmuno*)) AND (TI=(immun*) 
OR AB=(immun*) AND KP=(immun*)) AND 
(TI=(“Biological model” OR “Mathematical model” OR 
“Mathematical bioscience” OR “In silico”) OR AB = 
(“Biological model” OR “Mathematical model” OR “Math-
ematical bioscience” OR “In silico”) OR KP = (“Biological 
model” OR “Mathematical model” OR “Mathematical bio-
science” OR “In silico”)) AND (TI=(cancer OR tumor OR 
neoplasm OR carcinoma) OR AB=(cancer OR tumor OR 
neoplasm OR carcinoma) OR KP=(cancer OR tumor OR 
neoplasm OR carcinoma)).

EMBASE

Searches both American and British spellings automatically 
Uses{ } for the exact phrase, “” for the approximate phrase

FINAL: (1410) exclude all items that are not 
articles

(TITLE-ABS-KEY (radiat* OR irradiat* OR radiothera* 
OR radioimmuno*) AND TITLE-ABS-KEY (immun*) 
AND TITLE-ABS-KEY (Biological model OR Mathe-
matical model OR Mathematical bioscience OR In silico) 
AND TITLE-ABS-KEY (cancer OR tumor OR neoplasm 
OR carcinoma)) AND (EXCLUDE DOCTYPE, “re”) OR 
EXCLUDE (DOCTYPE, “cp”) OR EXCLUDE (DOC-
TYPE, “no”) OR EXCLUDE (DOCTYPE, “ed”) OR 
EXCLUDE (DOCTYPE, “sh”) OR EXCLUDE (DOC-
TYPE, “ch”) OR EXCLUDE (DOCTYPE, “le”).

PubMed

Searches both American and British spellings automatically 
Uses{ } for the exact phrase, “” for the approximate phrase

Test 1: (101) does not have Alfonso, Serre, or 
Byun

(((radiat*[Title/Abstract] OR irradiat*[Title/Abstract] 
OR radiothera*[Title/Abstract] OR radioimmuno*[Title/
Abstract]) AND (immun*[Title/Abstract])) AND (Biologi-
cal model[Title/Abstract] OR Mathematical model[Title/
Abstract] OR Mathematical bioscience[Title/Abstract] OR 
In silico[Title/Abstract])) AND (cancer[Title/Abstract] OR 
tumor[Title/Abstract] OR neoplasm[Title/Abstract] OR 
carcinoma[Title/Abstract])

FINAL: (315) does not have Alfonso or Serre 
(does have Byun)

(((radiat* OR irradiat* OR radiothera* OR radioimmuno*) 
AND (immun*)) AND (“Biological model” OR “Mathemat-
ical model” OR “Mathematical bioscience” OR “In silico”)) 
AND (cancer OR tumor OR neoplasm OR carcinoma).

FINAL: (311) included only full articles, could 
not exclude review articles etc. Looking 
at only title and abstract seemed too few 
results

(((radiat* OR irradiat* OR radiothera* OR radioimmuno*) 
AND (immun*)) AND (“Biological model” OR “Mathemat-
ical model” OR “Mathematical bioscience” OR “In silico”)) 
AND (cancer OR tumor OR neoplasm OR carcinoma).
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source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
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Test 1: (594)

((radiat* or irradiat* or radiothera* or radioimmuno*) and 
immun* and (“Biological model” or “Mathematical model” 
or “Mathematical bioscience” or “In silico”) and (cancer or 
tumor or neoplasm or carcinoma)).mp. [mp = title, abstract, 
heading word, drug trade name, original title, device manu-
facturer, drug manufacturer, device trade name, keyword 
heading word, floating subheading word, candidate term 
word]

Test 2: (211) Byun, Kosinsky, Serre included

((radiat* or irradiat* or radiothera* or radioimmuno*) and 
immun* and (“Biological model” or “Mathematical model” 
or “Mathematical bioscience” or “In silico”) and (cancer or 
tumor or neoplasm or carcinoma)).ab, kf, kw, ot, ti.

FINAL: (214), added in British spelling of 
‘tumour’

((radiat* or irradiat* or radiothera* or radioimmuno*) and 
immun* and (“Biological model” or “Mathematical model” 
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