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Stretching after spinal cord injury:
a call for evidence for this
common clinical practice
Todd E. Williams1, Louis A. DeMark2, Tinuade A. Olarewaju1,
Kelly A. Hawkins1 and Emily J. Fox1,2*
1Department of Physical Therapy, University of Florida, Gainesville, FL, United States, 2Brooks
Rehabilitation, Clinical Research and Motion Analysis Centers, Jacksonville, FL, United States
Stretching is a ubiquitous rehabilitation intervention for individuals with spinal
cord injury (SCI), intended to reduce spasticity, maintain or improve joint range
of motion, and prevent joint contractures. Although people with SCI report
that stretching is their preferred approach to reduce spasticity, limited
evidence supports the use of stretching for people with SCI, including
short-term (< one hour) effects on spasticity. Further, the long-term effects
and the effects of stretching on motor function have yet to be examined in
humans with SCI. Evidence from pre-clinical studies in rats with SCI
demonstrates that stretching impairs motor output, reduces spinal cord
excitability, and abolishes walking function. This perspective paper discusses
evidence of static stretching in humans and rats with SCI regarding the effects
on range of motion, joint contractures, and effects on voluntary and
involuntary (i.e., spasticity) motor output. Additionally, we aim to challenge
assumptions regarding the use of stretching and encourage research to
advance the understanding of this common rehabilitation approach. Research
is needed to investigate underlying mechanisms of stretch-induced effects
and to advance stretching protocols to optimize the potential beneficial
effects of stretching for people with SCI.
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1 Introduction

The purpose of this perspective paper is to discuss evidence regarding the effects of

stretching as a rehabilitation strategy for people with spinal cord injury (SCI). After

SCI, static stretching is applied to achieve muscle and soft tissue elongation by

maintaining a joint or body position for∼20–60 s (1). Stretching is assumed to have

clinical benefits and is utilized by nearly all (∼95%) patients with SCI (2–4) and is

completed regularly (i.e., 3–5 times per week) in all clinical settings, including in-home

exercise programs (4, 5). Despite the ubiquitous application of stretching in people with

SCI, the evidence to support its efficacy is lacking.

Stretching is commonly prescribed to maintain joint range of motion (ROM) and

prevent joint contractures. However, studies examining the effects of stretching in

people with SCI have concluded that stretching does not have clinically meaningful

effects on joint mobility (2). Stretching is also used to reduce spasticity, a complex

condition characterized by spasms and involuntary motor activity experienced by more

than 50% of individuals with SCI (6). However, to our knowledge, only a single study

has reported reductions in spasticity following a single episode of stretching (7).
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Additionally, accumulating evidence in SCI rodent models

indicates that stretching impairs motor output and diminishes

locomotor function (8, 9).

With the extensive use of stretching in standard SCI

rehabilitation, examining the evidence supporting this practice is

essential. Therefore, this perspective paper discusses evidence in

humans and rats with SCI concerning the effects of static

stretching on range of motion and contractures and the impact

on voluntary and involuntary motor output. Furthermore, it aims

to challenge assumptions regarding the use of stretching and to

encourage research and the development of guidelines for the use

of stretching.
1.1 The effects of stretching on joint
ROM and contractures

1.1.1 Stretching does not have a clinically
meaningful effect on ROM or reduce the
risk for contractures

Contractures are common in people with SCI, interfering

with function and negatively impacting quality of life (10, 11).

Following SCI, stretching is often applied to mitigate the risk

of contractures and maintain range of motion (10). Despite its

ubiquitous use and integration into rehabilitative care, little

evidence supports the use of stretching to affect joint ROM or

reduce the risk of contractures (4, 10).

A meta-analysis concluded that multiple forms of stretching

typically performed in the clinic do not have clinically meaningful

effects on joint mobility for people at risk for contractures,

including people with SCI (2). The review broadly evaluated the

application of stretching, including its use in those with

musculoskeletal conditions. It also analyzed a subgroup of studies

focused on people with neurologic conditions, including those

with SCI. Across all patient conditions and subgroup analyses,

stretching did not have a clinically meaningful effect on joint

mobility. Specifically, for those with SCI, stretching for five days

per week over a thirty-minute duration for four weeks resulted in

no improvements to ankle or knee range of motion (12, 13).

Limited research on the effects of stretching has been

conducted in experimental animals with SCI (14, 15). These

studies suggest that further research is needed to determine if

stretching can prevent and improve ROM. Moriyama and

colleagues developed a protocol for stretching where distraction

was used with variable amounts of torque to the hindlimbs of

rats with SCI (15). Using this protocol, they found that the

highest torque level applied improved joint ROM (15). However,

these high levels of torque and use of distraction are different

than static stretching applied in rehabilitation, making it unlikely

to translate to clinical protocols. Conversely, Caudle and

colleagues developed a stretching protocol modeled after

common rehabilitation strategies (i.e., comparable torques and

time of stretching bouts to what is provided in humans). They

found that stretching did not reduce the development of

contractures (14). The protocol, initiated four days post-injury

and applied five days per week, involved two sets of one-minute
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stretches applied to six muscles of each hindlimb (∼24–30 min of

stretching). Surprisingly, not only did stretching not prevent

contractures, but dramatic impairments in hindlimb and

locomotor function were evident (14). The results from these two

studies indicate that further research is needed to test the effects

of stretching and develop new stretching protocols that may be

clinically feasible and effective for improving ROM and reducing

contractures after SCI.
2 The effects of stretching on
involuntary motor output

2.1 stretching diminishes spinal excitability,
alters motor activation, and may reduce
spasticity

Approximately 65%–78% of individuals with chronic SCI

(greater than one year post-injury) experience spasticity,

characterized by involuntary muscle activity and over-responsive

reflexes leading to resistance to passive stretch (16). Spasticity

typically includes frequent spasms that negatively impacts self-

care, daily functioning, and walking (6, 17). Effective

interventions for spasticity are limited, with standard treatments,

like baclofen and other antispasmodic medications, lacking

sufficient supportive evidence and often causing unwanted side

effects (18–22).

Limited empirical evidence supports the use of stretching for

spasticity in people with SCI (23). Although individuals with SCI

report stretching as their preferred method of spasticity

management, their preferences regarding influential stretching

variables (type, duration, and location) have not been reported,

limiting understanding of how stretching is typically used by

those who report benefit (6). Estes et al. studied ten individuals

with chronic SCI. They found that a single session of stretching,

comprising three sets of five bilateral lower extremity static

stretches lasting one minute each (approximately thirty minutes

of stretching), led to short-term reductions in quadriceps muscle

spasticity, as assessed by the pendulum test—a standardized

measure of quadriceps spasticity (7). Notably, these reductions in

spasticity were no longer statistically significant forty-five

minutes after stretching (7). Further evidence is needed to

determine if stretching has a durable effect on spasticity and its

impacts on function and quality of life. Additionally, protocols

for stretching need further examination and optimization to

maximize the benefits for those seeking to reduce spasticity.

Stretching may reduce spasticity by inhibiting spinal reflexes

(24). In animal models with chronic SCI, ten weeks post-injury,

stretched rats demonstrated a reduction in magnetically evoked

tail reflex amplitudes (25). Tail reflexes, which are thought to be

similar to the Hoffman monosynaptic reflex, were recorded from

bilateral gastrocnemius muscles in stretched and un-stretched

rats. The stretch group’s reflexes were reduced and diminished

for weeks after stretching ceased, suggesting that stretching

induced a persistent decrease in motoneuron or spinal circuit

excitability (25). Changes in electromyography on the
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unstretched, contralateral limb of the rats, following the stretching

protocol, suggest that stretching affects central neural circuitry (vs.

peripheral or local/limb specific effects) (26). While limited

evidence supports the potential short-term benefits of stretching

on spasticity, altering the excitability of spinal circuits raises the

possibility of reduced motor output following stretching.
3 The effects of stretching on
voluntary motor output

3.1 stretching abolishes locomotion and
hindlimb function in rat models of SCI
contusion injuries

Voluntary motor output, such as during walking or voluntary

muscle contractions, is often diminished or absent following SCI.

Unfortunately, to our knowledge, no studies evaluate the effect of

stretching on voluntary motor output in humans with SCI.

However, several studies using rodent models of SCI evaluated

stretching-induced effects on locomotion and hindlimb

voluntary function.

In a series of studies conducted in chronic spinal cord

contusion injured rats, Caudle and colleagues demonstrated that

stretching abolished locomotion and hind limb function (8, 14).

Stretching was applied daily, five days per week, for eight weeks.

The assessments were performed three times a week, before and

after a single stretching session, on the first day of the week, and

then after the last stretching session on the last day of the week.

Study outcomes indicate that stretch-induced effects accumulate

across daily sessions, evidenced by the extreme locomotor

decrement on day five of the weekly sessions. After two days

without stretching (i.e., after the weekend), the effects

disappeared, and function returned to baseline (8, 14).

Subsequent studies reproduced initial findings in acutely

injured rats and compared them to rats with chronic contusion

injuries (ten weeks post-injury with stable locomotor function)

(8, 27). The chronically injured rats exhibited significantly greater

declines in locomotor function than the acutely injured rats (27).

After five daily stretches, these rats showed substantial functional

declines, characterized by reduced hindlimb joint movements and

dragging of the hindlimbs (27). Although their function

improved four weeks after discontinuing the stretching, the

results suggest that chronically injured animals are particularly

vulnerable to the negative impacts of daily stretching (27).

The presence of nociceptor afferents seems to be needed to

observe the stretch-induced effects on voluntary motor output

(9). This is evident from studies of rats with SCI that

demonstrate animals with intact nociceptors [transient receptor

potential cation channel subfamily V member 1 (TRPV1+)]

display motor impairments in response to stretching. In contrast,

animals who received capsaicin injections as neonates, and

therefore had depleted nociceptors, did not demonstrate such

impairments. Animals with motor impairments also had

increased dorsal horn calcitonin gene-related peptide (CGRP)

levels, a marker for nociceptive C fiber primary afferents (9).
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This suggests that stretching may encourage intra-spinal

sprouting of these fibers, which is linked to adverse SCI

conditions such as autonomic dysreflexia and neuropathic pain

(2, 28, 29). Importantly, stretching of these animals did not cause

discernible injury to the rodents’ hind limb muscles but appeared

to impact the spinal neural circuitry (9). Thus, this evidence

raises a crucial question—does stretching cause comparable

results in humans with SCI? Given the lack of evidence, future

research is needed to investigate the impacts of stretching on

humans with SCI.
4 Discussion

Limited evidence supports stretching as a useful strategy to

address spasticity, offering a low-cost, non-invasive option to

manage this common impairment. However, some studies

suggest that the effects of stretching on joint ROM and

contractures are not clinically meaningful, calling into question

its widespread application for these purposes. Furthermore,

stretching’s impact on voluntary motor output and functional

recovery is multifaceted and requires further investigation.

The experimental findings in rodent models of SCI subjected to

a stretch intervention revealed negative effects on voluntary motor

output. Stretching caused impairments in locomotor function,

potentially due to sensitization of nociceptor afferents. If this

effect translates to humans with SCI, then repeated stretching

could sensitize the spinal circuitry, and a relatively small dose

of stretching might inhibit voluntary motor output. Inhibition of

voluntary motor output can impact the achievement of

rehabilitation goals. The possibility of hard-earned gains being

reduced by stretching warrants further investigation into the

effect of stretching on motor output. Additionally, the role of

nociceptive afferents and the observed C-fiber sprouting in spinal

neural circuitry highlight the potential interplay between

stretching and neural adaptations post-SCI. This, too, warrants

further investigation.

Stretching is currently considered to be a desirable intervention

for nearly all patients with SCI. However, evaluating relevant

research raises questions about its effectiveness and potential for

adverse outcomes. In pursuing enhanced motor function and

overall well-being following SCI, assessing the use of stretching

in SCI rehabilitation paradigms is imperative. Future research

should investigate the mechanisms underlying stretch-induced

effects and the variables (stretch duration, intensity, variations in

approach) that may enhance the beneficial effects of stretching. A

comprehensive understanding of stretching, as well as guidelines

regarding its appropriate use, are needed to optimize

rehabilitation for people with SCI.
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