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Abstract
Background  Low-grade glioma (LGG) is a slow-growing but invasive tumor that affects brain function. Histone deacety-
lases (HDACs) play a critical role in gene regulation and tumor progression. This study aims to develop a prognostic model 
based on HDAC-related genes to aid in risk stratification and predict therapeutic responses.
Methods  Expression data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) were ana-
lyzed to identify an optimal HDAC-related risk signature from 73 genes using 10 machine learning algorithms. Patients 
were stratified into high- and low-risk groups based on the median risk score. Prognostic accuracy was evaluated using 
Kaplan–Meier survival analysis and receiver operating characteristic (ROC) curves. Functional enrichment analyses, includ-
ing Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), 
were performed to explore pathways linked to the gene signature. Immune infiltration and tumor microenvironment 
characteristics were assessed using Single Sample Gene Set Enrichment Analysis (ssGSEA) and ESTIMATE algorithm. 
SubMap was applied to predict responsiveness to immune checkpoint inhibitors, and chemotherapeutic sensitivity was 
analyzed via the Genomics of Drug Sensitivity in Cancer (GDSC) database.
Results  A prognostic model consisting of four HDAC-related genes—SP140, BAZ1B, SP100, and SIRT1—was identified. 
This signature displayed strong prognostic accuracy, achieving a C-index of 0.945. Individuals with LGG were systemati-
cally divided into high-risk and low-risk cohorts based on the median risk value, enabling more precise risk stratification. 
The survival prognosis was significantly worse in the high-risk cohort compared to the low-risk group, highlighting dis-
tinct survival trajectories. Notably, the two cohorts exhibited marked shifts in immune checkpoint gene transcriptional 
profiles and immune cell infiltration maps, underscoring fundamental biological differences that contribute to these 
differing prognoses.
Conclusion  We developed an HDAC-related four-gene prognostic model that correlates with survival, immune land-
scape, and therapeutic response in LGG patients. This model may guide personalized treatment strategies and improve 
prognostic accuracy, warranting further validation in clinical settings.
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1  Introduction

LGG is a common primary brain tumor originating from glial cells in the central nervous system. It accounts for over 
one-third of all primary central nervous system malignancies and exhibits significant genetic and transcriptional 
heterogeneity [1, 2]. Due to this heterogeneity, approximately 70% of LGG patients progress to more aggressive 
glioma subtypes within 10 years [3]. Despite advancements in neurosurgical techniques and chemoradiotherapy in 
recent years, which have improved patient prognosis to some extent, the high surgical risk and postoperative recur-
rence rates remain major challenges [4, 5]. As research progresses, it has become evident that the prognosis of LGG is 
closely linked to its genetic and molecular characteristics [6]. Notably, the 2021 WHO classification update for central 
nervous system tumors redefined gliomas according to their molecular characteristics [7]. Therefore, discovering new 
prognostic indicators and therapeutic molecular targets for LGG is crucial.

HDACs are enzymes that regulate lysine acetylation and play a crucial function in chromatin structure modification 
and gene expression regulation [8, 9]. Their function contrasts with that of histone acetyltransferases (HATs). Under 
normal circumstances, HATs and HDACs work in concert to regulate the dynamic equilibrium of histone acetylation 
and deacetylation in the nucleus [10–12]. Disruption of this balance, however, can lead to cancer development. 
For instance, the overexpression of HDACs in certain cancer cells results in a more compact nucleosome structure, 
thereby inhibiting gene expression and promoting cancer cell proliferation and metastasis. Additionally, studies 
have suggested that HDACs may be involved in processes such as tumor angiogenesis and immune evasion [13, 14]. 
As a result, HDAC inhibitors have been widely studied and are being used to treat various cancers, including liver, 
gastric, and breast cancers [15, 16]. However, the precise role of HDAC-associated regulatory genes in LGG remains 
elusive and is yet to be fully elucidated. Therefore, investigating the prognostic value of these HDAC-related genes 
is essential for developing highly selective targeted therapies for LGG.

Leveraging a machine learning-based integration approach, we propose to develop a prognostic model using 
HDAC-related genes. This model is designed to evaluate prognosis, immune composition, genomic alterations, and 
treatment responses, with a particular focus on immune checkpoint inhibitors and chemotherapy. These findings 
could provide new insights into the role of HDAC-related genes in LGG and inform future therapeutic strategies.

2 � Methods

2.1 � Data acquisition

The RNA-seq data and corresponding clinical records pertaining to LGG patients were retrieved from the compre-
hensive TCGA database (accessible at https://​cance​rgeno​me.​nih.​gov/). To further validate the robustness of our 
results, we used an external dataset from the CGGA database (available at http://​www.​cgga.​org.​cn/) for independent 
verification of our findings. The mRNA data from TCGA were transformed into TPM (transcripts per million) format, 
and the data from CGGA were normalized. Patients with a survival time less than 30 days were excluded, leading to 
a final cohort of 481 LGG cases. This included 481 patients from TCGA and 420 from CGGA for further analysis. Addi-
tionally, 73 HDAC-associated genes were identified through the Molecular Signatures Database (MSigDB) for study.

2.2 � Calculation of HDAC scores and analysis of related gene expression

We calculated and ranked HDAC scores to reflect the expression levels of HDAC-related genes among samples. 
Furthermore, these gene expression levels were analyzed in relation to clinical characteristics, such as age, gender, 
IDH1 status, radiation therapy, and survival outcomes. This analysis sought to investigate the associations between 
gene expression and a range of clinical factors.

https://cancergenome.nih.gov/
http://www.cgga.org.cn/
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Fig. 1   Patient Profiles and HDAC-Related Gene Expression Profiles. A  Heatmap displaying clinicopathological characteristics and HDAC-
related gene scores for each patient. B Heatmap showing the expression levels of the 73 HDAC-related genes
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2.3 � Differential expression analysis of HDAC‑related genes

We transformed the expression data of 73 HDAC-related genes using log2(TPM + 1) and visualized the differences 
between normal and tumor tissues with box plots.

2.4 � Establishment of HDAC‑related prognostic model

To identify the most effective HDAC-related prognostic model, we utilized a machine learning integration strategy that 
incorporates 101 predictive models. This approach combined 10 machine learning algorithms: Ridge, Elastic Net (Enet), 
Gradient Boosting Machine (GBM), Lasso, Partial Least Squares Regression for Cox (plsRcox), StepCox, CoxBoost, Super-
vised Principal Components (SuperPC), Random Survival Forest (RSF), and survival-Support Vector Machine (survival-
SVM), under a tenfold cross-validation framework. Patients were divided into two risk groups according to the risk model. 
We assessed differences in overall survival (OS) between two groups utilizing data from TCGA dataset, and these findings 
were validated with ROC curve analysis from the CGGA dataset. Additionally, we analyzed progression-free survival (PFS) 
and disease-free survival (DFS) to assess the signature’s prognostic power. Moreover, the OS was analyzed based on the 
expression levels of the hub genes.

2.5 � Clinical feature analysis and functional enrichment analysis

To gain profound insights into the clinical implications of our risk stratification, we delved into a comprehensive analysis 
and comparison of various clinical characteristics between two risk cohorts. Our focus encompassed pivotal factors like 
survival status, age, tumor grade, gender, IDH1 mutational status, and the administration of radiation therapy. Addition-
ally, pathway enrichment analyses were conducted using gene sets from GO, KEGG, and Hallmark databases.

Fig. 2   Comparative Analysis of HDAC-Related Gene Expression in LGG Tumors and Normal Tissues. A-F Boxplots comparing the expression 
levels of 73 HDAC-related genes between LGG tumors and normal tissues
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2.6 � Analysis of tumor mutation burden

To assess TMB levels for each individual patient, we extracted pertinent data from the comprehensive TCGA repository. 
TMB levels were then analyzed and compared across high- and low-risk groups. Additionally, survival rates were evalu-
ated based on varying TMB levels in combination with the respective risk groups.

2.7 � Analysis of copy number variations (CNVs) and calculation of stemness index

The somatic mutation data of LGG patients were obtained from the TCGA database, enabling us to conduct an in-depth 
analysis of the genetic amplification and deletion patterns in two cohorts. The CNV landscape was analysed through the 
Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm. Subsequently, CNV burden was compared 
between the two risk groups at both the focal and arm levels. Furthermore, we utilized the One Class Linear Regression 
(OCLR) algorithm as a tool to quantify the stemness potential of LGG tumors, deriving both the mRNA stemness index 
(mRNAsi) and the DNA methylation-based stemness index (mDNAsi). These indices were subsequently analyzed in rela-
tion to clinical characteristics. Additionally, comparisons of mRNAsi and mDNAsi values were made between two groups.

2.8 � Immune infiltration analysis

The ESTIMATE algorithm was used to quantify immune cell infiltration (ImmuneScore) and stromal content (StromalS-
core) in each sample. Subsequently, ESTIMATE scores were calculated to estimate tumor purity. Leveraging the ssGSEA 
algorithm, we quantified the scores of 21 distinct immune cell subsets and 21 immune functions within the tumor micro-
environment, enabling a comparative analysis between two groups. Butterfly plots were utilized to visually represent 
the relationship between risk scores and immune function pathways.

2.9 � Predicting immunotherapy and chemotherapy responses for personalized treatment

To gain further insights, we delved into the expression dynamics of 50 immune checkpoint genes, comparing their 
levels between the high- and low-risk groups. Given the clinical significance of anti-PD-1, anti-PD-L1, anti-PD-L2, and 
anti-CTLA4 antibodies, we further explored the relationship between risk scores and these specific immune checkpoints. 
Additionally, the SubMap algorithm was utilized to predict how LGG patients might respond to anti-PD1 and anti-CTLA4 
therapies. Beyond immunotherapy, the GDSC database was employed to forecast chemotherapy drug sensitivity in 
patients. Utilizing the R package “pRRophetic,” we performed predictions of drug sensitivity.

2.10 � Statistical analysis

All statistical analyses were conducted using R software. Continuous variables were assessed using either the t-test or 
the Wilcoxon test, depending on the data distribution, while categorical variables were evaluated using the Chi-square 
test. The significance level was set at P < 0.05.

3 � Results

3.1 � Expression profile of HDAC‑related genes

We used the ssGSEA algorithm to quantify the expression levels of HDAC molecules in each patient, and based on the 
expression levels of these genes, patients were clustered and classified into high and low HDAC score groups. We ranked 
patients by their HDAC scores and examined the relationship between these scores and clinical features (Fig. 1A). Subse-
quently, we visualized the expression patterns of HDAC-related genes in a heatmap, incorporating factors such as age, 
gender, IDH1 status, radiation therapy, and survival status for each patient (Fig. 1B). Furthermore, the expression levels 
of the 73 HDAC-related genes were analyzed and compared between normal and cancerous tissues (Fig. 2A–F).
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3.2 � Development of HDAC‑related prognostic model

To create a prognostic model, we employed 10 diverse predictive models—RSF, StepCox, Enet, plsRcox, CoxBoost, Lasso, 
GBM, Ridge, survival-SVM and SuperPC, —using a tenfold validation method. This rigorous strategy aimed to pinpoint 
the strongest signature that achieved the highest C-index. The identified signature was developed using the TCGA LGG 
training data and the CGGA LGG external data. The final, top-performing signature was determined by integrating Step-
Cox (backward) and RSF algorithms, leading to the identification of four key genes (SP140, BAZ1B, SP100, and SIRT1), 
achieving the highest C-index (Fig. 3A). The corresponding risk score was calculated using the following formula: Risk 
score = EXPSP100*0.12221867 + EXPSIRT1*(−0.03025300) + EXPSP140*(−0.21727173) + EXPBAZ1B*0.01519232. Based on the 
median score derived from our model, patients were categorized into two distinct groups: high-risk and low-risk. The 
Kaplan–Meier survival analysis consistently demonstrated that patients in the low-risk category had notably superior 
survival outcomes compared to those in the high-risk group, across both the TCGA and CGGA datasets (Fig. 3B, C). To 
enhance the validation of the signature’s prognostic accuracy, ROC curve analysis was utilized. The area under the curve 
(AUC) values for the signature in the TCGA cohort indicated robust predictive accuracy, with readings of 0.872, 0.804, 
and 0.740 at 1, 3, and 5 years, respectively (Fig. 3D). In comparison, the AUC figures in the CGGA cohort were modestly 
lower, standing at 0.596, 0.647, and 0.663 at the same time intervals (Fig. 3E). Furthermore, PFS and DFS were significantly 
better in the low-risk group (Fig. 3F, G). Further confirmation underscores the prognostic significance of the four hub 
genes, SP140, BAZ1B, and SP100, where elevated expression levels correlate with poorer patient outcomes compared to 
those with lower expressions, whereas increased SIRT1 expression was associated with more favorable survival (Fig. 3H).

3.3 � Clinical characteristics and pathway enrichment analysis

The violin plot illustrated the distribution of risk scores across various clinical characteristics. Patients who were deceased, 
had grade 3 tumors, possessed wild-type IDH1 genes, or underwent radiotherapy exhibited higher risk scores (Fig. 4A). 
To identify the functional and molecular mechanisms that differentiate high-risk from low-risk groups, we carried out 
GO, KEGG, and GSVA pathway enrichment analyses on the differentially expressed genes between the two groups. GO 
analysis revealed that the differentially expressed genes were predominantly involved in leukocyte-mediated immunity, 
myeloid leukocyte activation, the external side of the plasma membrane, gated channel activity, collagen-containing 
extracellular matrix, and channel activity (Fig. 4B). KEGG pathway analysis demonstrated that the differentially expressed 
genes were notably concentrated in pathways related to inflammatory processes, including neuroactive ligand-receptor 
interaction, cytokine-cytokine receptor interaction, viral protein interaction with cytokine and cytokine receptor, and 
complement and coagulation cascades (Fig. 4C). Finally, GSEA was carried out on the full cohort to evaluate the biologi-
cal implications of the signature. The results showed enrichment in pathways such as inflammatory response, TNF-alpha 
signaling via NF-kB, interferon-gamma response, allograft rejection, and epithelial-mesenchymal transition (Fig. 4D).

3.4 � Variations in tumor mutation burden

The gene mutation waterfall plot presented TMB across all samples in both high- and low-risk groups, emphasizing 
the 15 genes with the highest mutation rates in each category (Fig. 5A, B). Notably, most of these top genes exhib-
ited elevated mutation rates in the high-risk group, with TP53 and ATRX as key examples. Patients classified under 
the high-risk group displayed elevated TMB levels compared to the low-risk group (Fig. 5C). Kaplan–Meier survival 
analysis showed that patients exhibiting lower TMB levels had significantly more favorable prognoses than those 
with higher TMB levels (Fig. 5D). Additionally, our study, which integrated TMB and risk signature scores for glioma 
prognosis, showed that individuals with both low TMB and low-risk scores had the most favorable outcomes, in 
contrast to those with high TMB and high-risk scores, who faced the poorest outcomes (Fig. 5E).

Fig. 3   Construction of the HDAC-Related Risk Signature in LGG Patients. A Testing of 101 combinations of machine learning algorithms for 
HDAC-related signatures using a tenfold cross-validation framework. B, C Kaplan–Meier survival analysis of OS in LGG patients, stratified by 
the two identified risk groups. D, E ROC analysis showing the AUC for predicting OS at 1, 3, and 5 years in both the TCGA and CGGA datasets. 
F, G Kaplan–Meier analysis of PFS and DFS in LGG, stratified by the two risk groups in the TCGA dataset. H Kaplan–Meier survival analysis of 
OS in LGG, stratified by the expression levels of the four hub genes

▸
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Fig. 4   Association analysis of 
Clinical Characteristics, Func-
tional Enrichment Analysis, 
and Risk Scores. A Analysis of 
risk score differences across 
subgroups categorized by 
clinicopathological charac-
teristics. B–D GO, KEGG, and 
GSEA enrichment analyses
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3.5 � Analysis of CNVs, mDNAsi, and mRNAsi

To identify potential cancer-driving genes, we utilized GISTIC scores to assess CNV data from patients, identifying 
genomic regions with notable amplification or deletion. Initially, we reported GISTIC scores for each chromosome 
across all LGG patients (Fig. 6A). Subsequently, when contrasting the frequencies of genetic amplification and deletion 
between the high- and low-risk cohorts, we uncovered a significant trend: patients in the high-risk group exhibited 
a higher frequency of localized genomic amplification, suggesting potential biological mechanisms (Fig. 6B). At the 
focal level, high-risk patients exhibited a greater burden of both copy number gains and losses relative to low-risk 
patients. At the chromosomal arm level, high-risk patients displayed more significant copy number gains and fewer 
losses compared to their low-risk counterparts (Fig. 6C). mRNAsi and mDNAsi are indices used to evaluate stem cell 
characteristics in tumor samples, and these indices are derived from mRNA expression and DNA methylation patterns, 
respectively. Higher stemness indices are typically associated with increased malignancy, invasiveness, and resist-
ance to treatment in tumors. We explored the relationship between mRNAsi and mDNAsi and the clinicopathological 

Fig. 5   Gene Mutation Analysis. A, B Waterfall plots showing TMB in high- and low-risk groups, highlighting the 15 most frequently mutated 
genes. C Violin plot illustrating TMB levels in high- and low-risk groups. D Survival analysis of patients with high and low TMB levels. E Sur-
vival analysis of patients based on combined TMB levels and risk scores
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features of LGG patients, further revealing the potential value of these two indices in tumor biology (Fig. 6D, E). Our 
analysis identified notable differences in mRNAsi and mDNAsi between high- and low-risk groups. Specifically, high-
risk patients showed lower mRNAsi and higher mDNAsi (Fig. 6F). The observation that high-risk patients possess lower 
mRNAsi and higher mDNAsi points to distinct regulation of biological pathways at various levels. Further investiga-
tion is required to clarify these mechanisms and their impact on tumor progression and refractoriness to treatment.

3.6 � Analysis of the tumor microenvironment

Our study delved into a comprehensive analysis of the tumor microenvironment in LGG patients, with a focus on its constituent 
elements and their intricate interplay with tumor cells. Our findings revealed that in the high-risk group, StromalScore, Immune-
Score, and ESTIMATEScore were elevated, indicating a more immune-rich and stromal-dense tumor microenvironment, while 
TumorPurity was decreased, suggesting a lower proportion of malignant tumor cells relative to the overall tissue composition 
(Fig. 7A). Concerning immune cell infiltration, high-risk patients demonstrated increased presence of immunosuppressive 
cells, including neutrophils, macrophages, T helper cells, and regulatory T cells (Tregs) (Fig. 7B). Regarding immune function 
analysis, high-risk patients had higher scores for inhibitory immune responses compared to low-risk patients, especially in APC 
co-inhibition, PD1-PDL1 interaction, and T cell co-inhibition (Fig. 7C). Molecular and signaling pathways in the TME exhibited 
significant correlations with risk scores. Specifically, positive correlations were found between risk scores and pathways like 
HYPOXIA, DNA REPAIR, GLYCOLYSIS, P53 pathway, and Mismatch repair, in contrast to negative correlations with PROTEIN 
SECRETION and HEDGEHOG SIGNALING pathways (Fig. 7D).

Fig. 6   Genomic Alteration Analysis. A Profiles of overall copy number GISTIC scores in LGG patients. B Comparison of amplification and 
deletion frequency differences between high- and low-risk groups. C Comparison of the burden of copy number gains and losses between 
high- and low-risk groups at both focal and arm levels. D, E Display of clinicopathological characteristics alongside mRNAsi and mDNAsi for 
each patient. F Comparison of mRNAsi and mDNAsi levels between high- and low-risk groups
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3.7 � Analysis of immunotherapy and chemotherapy drug responses

Immune checkpoint detection is a crucial aspect of immunotherapy. To elucidate the significance of HDAC-related risk 
signature in immunotherapy, we performed an analysis to investigate the linkage between immune checkpoint expres-
sion profiles and patient risk categorization. Our analysis found higher expression levels of CD274, CD40, PDCD1, VEGFA, 
and CTLA4 in high-risk compared to low-risk patients (Fig. 8A). To deepen our understanding, we delved into the associa-
tions between the risk scores and the expression levels of pivotal immune checkpoints, including PD-1, PD-L1, PD-L2, 
and CTLA4, aiming to uncover potential links. The results revealed a positive correlation, indicating that higher risk scores 
may be linked to elevated expression of these immune checkpoints (Fig. 8B). To predict immunotherapy response, we 

Fig. 7   Immune Infiltration and Variations in Biological Pathways. A Comparison of StromalScore, ImmuneScore, ESTIMATEScore, and Tumor-
Purity between the two risk groups. B, C Analysis of infiltrated immune cell levels and immune function differences between the two risk 
groups. D Correlation study between risk scores and biological pathways
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utilized SubMap, a powerful tool for identifying similar subgroups across gene expression datasets. By comparing gene 
expression patterns, SubMap analysis suggested that patients classified as high-risk might exhibit a favorable therapeutic 
response to anti-PD-1 treatment, hinting at potential benefits from this targeted therapy (Fig. 8C). Given that high-risk 
patients had poorer prognoses in previous analyses, we identified chemotherapy drugs that could offer effectiveness for 
this group. The predicted sensitive drugs for high-risk patients included Navitoclax_1011, Alisertib_1051, Sorafenib_1085, 
JAK_8517_1739, AZD4547_1786, Sabutoclax_1849, ABT737_1910, and WEHI-539_1997 (Fig. 8D).

4 � Discussion

LGG represents a significant subtype of primary brain tumors, characterized by slower progression compared to more 
aggressive gliomas [17]. However, the clinical management of LGG is complicated by a complex interplay of genetic and 
epigenetic factors that contribute to tumor growth and therapeutic resistance [18]. HDACs are key regulators of gene 
expression and chromatin architecture, impacting critical processes like cell cycle regulation, apoptosis, and cellular 
differentiation [19]. Recent studies highlight HDACs’ role in LGG development and progression, with abnormal HDAC 
activity being linked to poorer prognoses and more aggressive tumor phenotypes [20]. Despite these findings, the specific 

Fig. 8   The Relationship Between Risk Scores and Responses to Immunotherapy and Chemotherapy. A Comparison of immune checkpoint 
expression levels between the two risk groups. B Correlation analysis of PD-1, PD-L1, PD-L2, and CTLA4 expression levels with risk scores. 
C Prediction of immunotherapy responses to anti-PD-1 and anti-CTLA-4 in high- and low-risk patient groups based on SubMap analysis. D 
Comparison of antitumor drug sensitivity between high- and low-risk groups



Vol.:(0123456789)

Discover Oncology          (2024) 15:824  | https://doi.org/10.1007/s12672-024-01713-7 
	 Analysis

mechanisms by which HDACs influence LGG pathophysiology, particularly their impact on the tumor microenvironment 
and immune modulation, remain elusive in understanding. This study seeks to clarify the significance of HDACs in LGG 
through comprehensive bioinformatics analyses, with the goal of identifying new therapeutic targets to improve treat-
ment outcomes for patients with this complex disease.

To explore the clinical relevance of HDAC-related genes in LGG, we utilized 101 combinations of machine learning 
algorithms and identified four key genes—SP140, BAZ1B, SP100, and SIRT1—from 481 patients in the training cohort 
and 420 patients in the validation cohort. Using these genes, we constructed an HDAC-related risk score system to 
serve as a prognostic indicator for LGG. Consistent validation across both datasets revealed that individuals catego-
rized as high-risk generally faced more dire prognoses, whereas those belonging to the low-risk group tended to 
experience more favorable clinical outcomes. Among the key genes, SP140, BAZ1B, and SP100 were identified as risk 
factors, whereas SIRT1 was found to be a protective factor. SP140, a transcriptional suppressor highly expressed in 
head and neck squamous cell carcinoma, correlates with increased tumor mutation load and a positive response to 
immunotherapy [21]. It is worth noting that the SP140 inhibitor GSK761 significantly inhibited the proliferation of 
U87 and U251 glioma cell lines in experiments [22]. BAZ1B, overexpressed in colorectal cancer (CRC), enhances CRC 
cell proliferation and colony formation [23]. In contrast, SIRT1 overexpression in colon cancer has been associated 
with reduced proliferation and tumor suppression [24, 25]. ROC curve analysis confirmed that the HDAC-related risk 
signature is an accurate quantitative tool for predicting OS at 1, 3, and 5 years in patients with LGG.

GO enrichment analysis revealed significant functional differences between two risk groups, emphasizing immune 
pathways, such as cell activation in immune response, leukocyte-mediated immunity, and immune receptor activity. 
These immune-related responses were enriched in upregulated genes among the differentially expressed genes, 
suggesting that the HDAC-related risk signature may be linked to immune responses and immunotherapy outcomes. 
Additionally, pathway analysis identified a positive correlation between risk scores and DNA repair, P53 pathway, 
and mismatch repair. Compared to normal tissues, tumor tissues exhibited higher levels of cellular proliferation, sig-
nificantly increased DNA damage, and inactivation of the apoptotic gene P53. Mismatch repair, which is responsible 
for correcting base insertions, deletions, and mismatches during DNA replication, is crucial for maintaining genetic 
stability [26, 27]. Mutations or functional defects in mismatch repair genes result in the failure to correct these errors, 
triggering the accumulation of genetic mutations, which in turn accelerates tumor development [28]. Key genes in 
our risk model, including BAZ1B, SP100, SIRT1, and SP140, influence DNA repair, genomic stability, the P53 pathway, 
and immune cell activation, thereby impacting tumor progression and treatment response [22, 29–31].

The high-risk group showed significantly elevated expression of PD-1, PD-L1, and CTLA4 compared to the low-risk 
group. These immune checkpoint genes are crucial for tumor immune evasion, and their elevated expression typically 
indicates a greater tumor capacity to weaken the immune system, leading to poorer patient outcomes [32]. However, 
this high expression also implies that high-risk patients may exhibit greater responsiveness to immune checkpoint 
inhibitors, including PD-1, PD-L1 and CTLA4 inhibitors, potentially making immunotherapy more beneficial for them 
[33]. Moreover, high-risk group exhibited increased infiltration of Tregs, Th2 cells, and macrophages, which has sig-
nificant implications for prognosis and immunotherapy. Tregs, known for their immunosuppressive effects within the 
tumor microenvironment, help tumors evade immune surveillance and are generally associated with worse outcomes 
[34]. M2-type macrophages also promote tumor growth and metastasis through their immunosuppressive properties 
[35]. Th2 cells can either facilitate or hinder tumor progression, depending on their subtype [36]. SubMap analysis 
further supported the notion that high-risk patients might respond favorably to PD-1 antibody treatment, aligning 
with the immune infiltration findings. In summary, the changes in gene expression and immune cell infiltration not 
only indicate a poorer prognosis for high-risk patients but also suggest they may be more responsive to specific 
immunotherapies. Therefore, personalized treatment strategies targeting these immune markers could be crucial in 
enhancing therapeutic outcomes and improving prognosis for high-risk patients.

Several limitations must be acknowledged in this research. Initially, the data were acquired from publicly acces-
sible databases, without the inclusion of self-generated sequencing data, potentially affecting the uniqueness and 
reliability of the findings. To mitigate this limitation, future studies should integrate self-generated data to improve 
the accuracy and robustness of the results. Second, while the findings are primarily based on bioinformatic analyses, 
further experimental validation—such as in vitro studies or in vivo models—is essential to confirm the biological 
relevance and clinical applicability of the identified gene signature. Future studies should incorporate these experi-
mental approaches to validate our results and explore their therapeutic implications.
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5 � Conclusion

In summary, this study emphasizes the substantial clinical significance of HDAC-related genes in predicting LGG 
outcomes. By applying 101 machine learning models, we identified four key genes—SP140, BAZ1B, SP100, and 
SIRT1—which were crucial in constructing a prognostic risk score system. This system accurately distinguishes high-
risk from low-risk patients, with the former showing poorer prognoses. Additionally, the study underscores the 
complex relationship between these HDAC-related genes and immune responses, particularly within the context 
of immunotherapy. High-risk patients exhibited elevated immune checkpoint gene expression levels and increased 
immune cell infiltration, indicating that they may benefit more from targeted immunotherapies. These findings 
emphasize the potential for personalized treatment strategies that leverage genetic and immunological insights, 
ultimately aiming to improve therapeutic outcomes and patient prognosis in LGG.
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