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Acute flaccid paralysis (AFP) case surveillance is pivotal for the early detection of potential
poliovirus, particularly in endemic countries such as Ethiopia. The community-based
surveillance system implemented in Ethiopia has significantly improved AFP surveil-
lance. However, challenges like delayed detection and disorganized communication
persist. This work proposes a simple deep learning model for AFP surveillance, leveraging
transfer learning on images collected from Ethiopia's community key informants through
mobile phones. The transfer learning approach is implemented using a vision transformer
model pretrained on the ImageNet dataset. The proposed model outperformed convolu-
tional neural network-based deep learning models and vision transformer models trained
from scratch, achieving superior accuracy, F1-score, precision, recall, and area under the
receiver operating characteristic curve (AUC). It emerged as the optimal model, demon-
strating the highest average AUC of 0.870 ± 0.01. Statistical analysis confirmed the sig-
nificant superiority of the proposed model over alternative approaches (P < 0.001). By
bridging community reporting with health system response, this study offers a scalable
solution for enhancing AFP surveillance in low-resource settings. The study is limited in
terms of the quality of image data collected, necessitating future work on improving data
quality. The establishment of a dedicated platform that facilitates data storage, analysis,
and future learning can strengthen data quality. Nonetheless, this work represents a sig-
nificant step toward leveraging artificial intelligence for community-based AFP
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surveillance from images, with substantial implications for addressing global health
challenges and disease eradication strategies.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Acute flaccid paralysis (AFP) surveillance involvesmonitoring and reporting cases of acute flaccid paralysis, which could be
indicative of poliovirus infection (Masa-Calles et al., 2018). In Ethiopia, as in other polio endemic countries, AFP surveillance is
crucial for early detection of potential polio cases and for implementing rapid response measures to prevent the spread of the
virus (Tegegne et al., 2017). The surveillance system typically involves health workers and surveillance officers at various
levels of the healthcare system, including hospitals, health centers, and communities (Tegegne et al., 2018). They are trained
to recognize and report cases of AFP promptly. Ethiopia has been actively involved in polio eradication efforts and has made
significant progress in reducing polio transmission (Deressa et al., 2020). AFP case surveillance plays a vital role in ensuring
that any cases of acute flaccid paralysis are promptly investigated, and appropriate measures are taken to prevent the spread
of the disease (Ali et al., 2023). Most importantly, AFP surveillance is a critical tool in the eradication of polio, it also con-
tributes to the overall strengthening of the country's disease surveillance and response systems, which can help in detecting
and controlling other infectious diseases as well (Ayana et al., 2023; Mohammed et al., 2021).

Surveillance of AFP in hard-to-reach parts of the world is hindered by inadequate healthcare infrastructure, limited access
to services, poor transportation and communication, high populationmobility, security issues, cultural and language barriers,
and low community awareness, leading to underreporting and delayed detection (Bessing et al., 2023; Datta et al., 2016).
Efforts to overcome these challenges involve improving healthcare infrastructure, increasing community awareness, and
utilizing mobile clinics and community health workers to enhance disease surveillance and control in these remote areas
(Ahmed et al., 2022; Gwinji et al., 2022; Worsley-Tonks et al., 2022). However, there is limited work performed in bridging
community and health facility/system for disease surveillance (Ibrahim et al., 2023; Jamison et al., 2006). Ethiopia imple-
mented community-based disease surveillance in hard-to-reach parts of the country through the CORE Group Partners
Project (CGPP) Ethiopia (https://coregroup.org/cgpp-ethiopia/) for two decades and resulted in improving surveillance
sensitivity by 30% in its implementation sites (reporting one-third of total surveillance cases that could have been missed by
health system) (Asegedew et al., 2019). CGPP trained and dispatched more than 10,000 community volunteers (CV) by
providing them the necessary trainings to be able to immediately report AFP cases in their communities (Stamidis et al.,
2019). These CVs report suspected AFP cases immediately to the nearest health facilities under their assigned health
extension worker (HEW) (Biru et al., 2024). Based on the CVs information and HEWs confirmation, the CGPP field officers
along with government health workers and World Health Organization (WHO) surveillance workers, investigate the sus-
pected AFP case reported and take the necessary action (Lewis et al., 2020). The CGPP field officers fill the case information
and use different platforms to submit it through their smartphone in the form of text, image, audio and video to the CGPP
central server.

Two stool specimens must be collected from every AFP suspected case within 14 days of onset of paralysis. In case sample
cannot be collected within 14 days the specimen should be collected up to 60 days from onset of paralysis, which takes days if
not weeks (Asegedew et al., 2019). Such delay may result in a huge public health issue in case the child is infected by
poliovirus, as the child interacts with the population (Quarleri, 2023). Moreover, the community workers and the stake-
holders communicate on different platforms. For instance, text messages are sent via direct SMS, audio calls are made via
direct calls, images and videos are sent via social media apps like Telegram, WhatsApp, and Messenger. This results in a
surveillance system that is not well organized and important information not being stored on a dedicated platform bringing
about a loss of precious data that could be used for future learning and also pandemic preparedness (Donelle et al., 2023).

To overcome these challenges, a unified platform that is powered by artificial intelligence (AI) can be built and utilized
where all the data types (text, audio, image, and video) can be stored and a model trained on these data are used to promptly
perform AFP surveillance. To this end, a fully automated system powered by AI that's used by government, communities, and
non-governmental organizations (NGOs) has been developed in Ethiopia. When a registered user suspects AFP case, the user
opens the Polio antenna mobile app (a dedicated app developed for polio surveillance in Ethiopia), enter information
requested on the app about the child, take a picture, record a short video, and upload it. The app analyzes the data entered and
instantly report it to all the stakeholders, including vicinity health officer, designated surveillance worker, Ethiopian Public
Health Institute (EPHI) officer, Ministry of Health (MoH) officer, NGOs, and WHO officer, see Fig. 1. At the same time, the app
recommends the user what to do to contain and monitor the case. Moreover, the app tracks stool sample taken using QR
technology that holds all the information about the suspected case, automating stool transportation and tracking. The sur-
veillance data is visualized on the dashboard of the repository developed for this system (https://polioantenna.org/). The
repository is unique in its nature capturing AFP surveillance data, not only in text form but also in image and video formats
automating decision making and enabling AI models to be trained on it.
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Fig. 1. A unified automated platform for community-based AFP surveillance.
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Despite the relatively limited research in harnessing AI for AFP surveillance, a few pioneering efforts have emerged (Ayana,
Dese, Daba, et al., 2024; Dese et al., 2024). These endeavors, albeit scarce, signify a growing recognition of the potential of AI in
augmenting disease surveillance and prediction systems, particularly in the context of AFP surveillance. A hybrid machine
learning method for predicting incidences of Vaccine-derived Poliovirus (VDPV) outbreaks was developed in (Hemedan et al.,
2020). The study aimed to address the critical need for accurate VDPV surveillance, leveraging the unique combination of
Random Vector Functional Link Networks (RVFL) and the Whale Optimization Algorithm (WOA). The results revealed the
superior performance of the WOA-RVFL algorithm, surpassing traditional RVFL methods, and demonstrating its efficacy in
detecting VDPV outbreaks. On the other hand, in (Draz et al., 2020, pp. 224e229), a multi-step approach was designed to
identify specific Deoxyribonucleic acid (DNA) motifs associated with the presence of the poliovirus during its early stages of
infection. The researchers collected diverse data related to the poliovirus, including DNA and Ribonucleic acid (RNA) se-
quences, from various sources such as genomic databases and experimental studies. These sequences were then subjected to
rigorous computational analysis using bioinformatics tools specifically designed for motif discovery and analysis. By inte-
grating computational analysis with data visualization, the methodology provided a comprehensive framework for under-
standing the genetic signatures of poliovirus infection at an early stage. Furthermore, Khan et al. (Khan et al., 2020, pp.
223e227) employed an innovative AI method to predict the likelihood of polio outbreaks. The study used diverse datasets are
collected from sources like the National Institute of Health (NIH), medical store databases, and transport logs. Subsequently,
the K-means clustering algorithmwas applied to identify patterns within the data that may indicate potential polio outbreaks
based on factors such as medical sales records and passenger travel patterns.

However, none of these works utilized images for AFP surveillance as well as the community were not source of their data,
rather the studies used data from conventional health care system. The work reported in this paper developed the first deep
learning model for identifying AFP cases from images collected by community volunteers to improve the sensitivity of AFP
surveillance. Using suspected case images of AFP for polio surveillance offers a valuable advantage by enabling more precise
identification of polio's characteristic signs (Dese et al., 2024). Paralytic polio typically manifests as asymmetric muscle
weakness, which peaks within 3e5 days of onset and can progress for about a week (Gemechu et al., 2024). The paralysis
caused by polio is generally flaccid and more severe in the proximal muscles, meaning the arms are often more affected than
the legs, with absent or diminished deep tendon reflexes but preserved sensation (Daba et al., 2024; Demlew et al., 2024).
These visual cuesdsuch as asymmetry, floppiness, and the degree of muscle involvementdcan be captured effectively in
images, helping to distinguish polio from other conditions, like Guillain-Barr�e syndrome, that may present differently (e.g.,
more symmetrical paralysis or with sensory loss). Images offer the added benefit of allowing healthcare professionals,
especially in remote or under-resourced areas, to assess these clinical signs more easily. By visually documenting signs like
the asymmetry of weakness, the flaccid appearance of affected limbs, and the rate of progression, image-based surveillance
can enhance the accuracy of early detection efforts. This combination of visual assessments with traditional surveillance
methods helps expedite diagnosis and response, leading to quicker interventions such as vaccination drives or outbreak
containment, thus supporting broader global efforts to eradicate polio.
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2. Materials and methods

2.1. Dataset

The data for this study were collected from the CORE Group Partner Project Ethiopia implementation catchment area. The
CGPP Ethiopia was established in 1999 and started implementation in Ethiopia in November 2001. CGPP Ethiopia has sup-
ported and coordinated efforts of Private Voluntary Organizations (PVOs) and NGOs involved in polio eradication activities.
The CGPP Ethiopia Secretariat is hostedwithin the Consortium of Christian Relief and Development Associations (CCRDA) and
closely collaborates with five international and four local NGOs. Additionally, CGPP Ethiopia works closely with the Ministry
of Health, WHO, UNICEF, and Rotary International (Perry et al., 2019).

Currently, CGPP Ethiopia works in 82 rural pastoralists and hard-to-reach districts (calledWoredas) located in six regional
states; Benishangul-Gumuz, Gambella, Oromia, Somali, Southern Ethiopia, and Southwest Ethiopia. In the routine system,
children with sudden changes in the status of child movement are detected during a visit to a health facility. In contrast to
that, CVs carry out community-based surveillance by searching house to house for children with symptoms of AFP. CGPP
Ethiopia deployed more than 10,000 CVs in more than 1700 Kebeles (the grassroot administration body in Ethiopia). For this
study, an AFP surveillance dataset of 428 images, comprising 228 suspected AFP cases and 200 normal cases, was created
using images of Ethiopian children collected over the past five years through the CGPP Ethiopia's community-based sur-
veillance system. The images were anonymized by removing the parts above neck and no additional personal information
were used for this study purpose. Fig. 2 shows sample images from the AFP image dataset utilized in this study and Fig. 3
shows a map of the dataset collection points.
2.2. Proposed method

2.2.1. Rationale
AFP case images are rare images to find for many reasons. The first reason is that polio is eradicated from many countries

except a few endemic countries. As a result, it is difficult to collect images of positive AFP cases. The second reason is the
ethical issues related personal information usages. Thirdly, the cases are available in low-income countries where it is
expensive to collect and store AFP case images. Fourthly, long term investment is needed to have a surveillance system that
works in coordination to collect and store the images. Due to these and other reasons, it is hard to find large number of AFP
case images that can be used to train the data intensive deep learning models so that it can extract important features and
generalize well when subjected to new, previously unseen images to identify AFP cases. This is the main reasonwhy transfer
learning method is proposed in this work (Ayana, Dese, Abagaro, et al., 2024; Ayana et al., 2021).

2.2.2. Proposed model
This study utilized the pretrained vision transformer model for distinguishing between normal and suspected AFP images

(Dosovitskiy et al., 2020). Vision transformers (ViTs) offer several advantages over convolutional neural networks (CNNs) for
AFP surveillance image analysis. ViTs use a global attention mechanism, allowing them to capture long-range dependencies
across the entire image, which is crucial for identifying subtle patterns associated with AFP. They handle varying image sizes
more flexibly, reducing the risk of losing important details through resizing. ViTs also generalize well with limited data,
especially when pretrained on large datasets, making them suitable for medical imaging tasks where data is often scarce.
Additionally, their attention maps provide better interpretability, helping medical professionals understand which areas of
Fig. 2. Sample suspected AFP case images from the dataset.
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Fig. 3. Locations of the dataset collection points.
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the image are critical for diagnosis. With fewer inductive biases, ViTs are more adaptable to complex patterns in medical
images, making them a promising choice for AFP surveillance (Raghu et al., 2021).

Three vision transformer versions that have been pre-trained on ImageNet dataset are used in the proposed method to
perform the classification task. Depending on the architecture type, pretrained vision transformer models have different
parameters. The fine-tuning process removed the last layer of the pretrained model and replaced it with a flattening layer,
followed by two batch normalization and a fully connected layers, the final fully connected layer outputting the number of
classes required by the target dataset. This application of transfer learning enables the utilization of features learned on the
large ImageNet dataset by the pretrained model as shown in Fig. 4.

2.2.3. Problem formulation and model definition
Preparing image as a series of patches is a crucial step in the use of vision transformers for computer vision tasks. The input

image is transformed into patches or tokens to do this. The primary reason for selecting patches over individual pixels is to
adapt the transformer architecture, initially designed for NLP tasks, to handle images. Furthermore, since patches minimize
the quadratic complexity of transformers during the attention matrix computation, they are chosen over individual pixels. If
every pixel is utilized, the attentionmatrix must handle every pixel, which is very computationally demanding and requires a
lot of hardware.

Let the input image space is denoted by X. We are interested in discovering N image patches (Algorithm 1) given as
xP2XN�ðP�P�CÞ and N ¼ H�W

P2 , given an input picture, x2XH�W�C and a patch size of P. Patch embedding and positional
embedding are then carried out. First, the patches are flattened, and then they undergo a linear transformation that converts
the P � P � C sequence elements intoD dimensions of outputs in order to do patch embedding. Dosovitskiy et al. (Dosovitskiy
et al., 2020) used square patches in their paper to simplify the patch and positional encodings. Transformer sequences are not
time sequences; hence it is difficult to determine the patch order. Positional encoding is used as a result to make up for this
problem. In order to accomplish this, a randomly generated embedding matrix is placed on top of the concatenated matrix
that has the patch imbedding and learnable class. Lastly, the transformer encoder receives the patch and positional encoding
matrix.

The goal is to acquire knowledge of a mapping ∅ : xP2XN�ðP�P�CÞ / t2T where xP represent D dimension patches and T
represents the output class space. Thus, we are interested in establishing a mapping from sequence of input image patches to
their matching output class probabilities. The transformer encoder unit and the multilayer perceptron (MLP) head are
responsible for achieving thismapping. The encoder and decoder thatmake up the transformer encoder unit work together to
357



Fig. 4. The proposed vision transformer-based transfer learning model architecture. MLP, multi-layer perceptron; F, flatten; BN, batch normalization; D, dense
layer.
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convert an input patch sequence into an output. The primary components of the encoder and decoder modules are feed
forward layers and multi-head attention. Equation (1) provides the mechanism of attention. One patch in the input sequence
is represented by vector Q in equation (1), all of the patches in the sequence are represented by vector K as keys, and all of the
patches are represented by vector V as values. Thus, u is the attention weight based on which the numbers in the series are
multiplied and added together.

u¼ soft max

 
QKTffiffiffiffiffi
dk

p
!

(1)
The values between 0 and 1 are produced by the SoftMax function. In the multi-head attention process, this attention
mechanism is executed many times concurrently, as shown in Algorithm 2, by multiplying the Q , K , and V with learnt weight
matrices during the learning phase.

The feedforward algorithm proceeds after the multi-head attention processes in the encoder and decoder. Using the feed-
forward layers, a distinct linear transformation is carried out for every element in the sequence. After that, the MLP receives
the transformer encoder outputs and uses them to convert the features into an output classification function. Although the
transformer encoder has several outputs, the MLP only chooses one that closely matches the class under consideration,
disregarding the other outputs. A probability distribution of the matching classes that the image is assigned to is produced by
the MLP.

Transfer learning: Transfer learning aims to improve the learning of a target function, ftð:Þ, in a target domain, Dt , using the
knowledge gained from a source domain, Ds, and learning task, Ts. The typical definition of transfer learning involves a single-
step transfer learning algorithm. Transfer learning in this study uses an ImageNet pre-trained model (natural images) for the
task of classify AFP case images. The pre-trained model's weights, Wo, are used to produce W1 by minimizing the cross-
entropy objective function in (2), which uses the SoftMax unit's output probability, Cyij

��xij;W0;W1; bD, and bias b. Given m
training samples within ImageNet dataset, fCx1;y1D;…;Cxi;yiD;…;Cxm;ymDg, where, xi is the ith input and yi is the corresponding
label, the objective function is given by (2).

JðCW1; bjW0DÞ¼
�1
mn

Xm
i¼1

Xm
j¼1

yij log
�
PCyij

���xij;W0;W1; bD
�

(2)
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2.3. Implementation

We used three variants of vision transformer architecture. Themodels were trained for 50 epochs using Adam optimizer at
initial learning rate of 0.0001with a batch size of 16. Prior to the training the images were resized to 224� 224 pixels. In order
to enrich the data set, we performed augmentation. This effort included random rotation, shift, and flip to the training set.

The CNN models were subjected to an identical protocol as ViT architectures, with the exception that CNN architectures
employ ReLu as an activation function, whereas ViT architectures use GELU. Based on a pilot research employing popular pre-
trained modelsdwhich are commonly used for medical image classificationdthree CNN modelsdResNet50, EfficientNetB2,
and InceptionV3dwere selected. For transfer learning on AFP images, each model was utilized as a pre-trained CNN after
being pre-trained on ImageNet. The way the pre-trained model training is implemented is that Keras is used to load the pre-
trained weights on ImageNet. Only the final layer of the pre-trainedmodel was removedwhen transferring learning from the
ImageNet pre-trained model to AFP images. Instead, a flattening layer was added, followed by two batch normalization and
fully connected layers. The final fully connected layer, like in the ViT architecture shown in Fig. 4, outputs the number of
classes needed by the target dataset. Starting at 0.0001 learning rate, all of the weights from the ImageNet pre-trained model
were adjusted using an exponentially decaying learning rate, with the exception of the final layer. Through random rotation,
shift, and flip, augmentation has been used to expand the number of AFP image training datasets. All other parameters were
identical to those found in the ViT models.

2.4. Evaluation metrics

Because stratified cross validation offers the benefit of rearranging data to ensure that each fold is a good sample of the
whole data, assessments were conducted using stratified five-fold cross validation (Tougui et al., 2021). Metrics like accuracy,
F1-score, recall, precision, and area under the receiver operating curve (ROC) (AUC) have been used to assess our model's
performance. An average over five-fold cross-validation was used to assess the performances. A 95% confidence interval is
used to determine each and every outcome. We have also performed Student's t-test P-value to evaluate the significance of
the proposed model against vison transformer base models trained from scratch and CNN-based transfer learning models.

2.5. Experimental settings

Three experiments have been carried out to evaluate the performance of the proposed model. The first one is measuring
the performance of the proposed model using different vision transformer architectures to evaluate the performance of the
proposed method on different architectures. For this purpose, we used three vision transformer variants including, ViTB-16,
ViTB-32, and ViTL-32. ViTB-16, ViTB-32, and ViTL-32 are differ in their patch size andmodel size. ViTB-16 uses a smaller patch
size (16x16 pixels), providing more detailed image representation, with 87 million parameters. ViTB-32 increases the patch
size to 32x32 pixels, capturing less granular details but with almost similar model size of 88 million parameters. ViTL-32 also
uses a 32x32 patch size but is much larger, with 304million parameters, making it a more powerful model for tasks requiring
greater capacity. In the second experiment, we performed comparison of the proposed model against vision transformer
models trained from scratch on the images. Thirdly, direct comparison of the proposed vision transformer models with the
state-of-the-art convolutional neural networks, which are ResNet50, EfficientNetB2, and InceptionV3 based models. The key
differences between ResNet50, EfficientNetB2, and InceptionV3 lie in their architectural design and model efficiency.
ResNet50 employs a deep residual learning architecture with skip connections to facilitate training in deeper networks,
featuring around 26million parameters. EfficientNetB2 focuses onmodel efficiency through a compound scaling method that
optimally balances depth, width, and resolution, making it highly efficient with about 21 million parameters. In contrast,
InceptionV3 utilizes Inceptionmodules that perform convolutions at multiple scales in parallel, allowing it to capture features
at various levels of detail with approximately 24 million parameters. In general, ResNet50 emphasizes depth and simplicity,
EfficientNetB2 prioritizes efficiency, and InceptionV3 is versatile in capturing diverse image features. In all the cases transfer
learning was done by removing the last layer of each model and replacing it with the same output layers.

3. Results

Performance of the proposed vision transformer-based transfer learning method: The proposed method has observed a
slightly varying results for different vision transformer architectures. ViTB-16 has shown the best performance compared to
ViTB-32 and ViTL-32 with AUC of 0.870 ± 0.01, 0.865 ± 0.02, and 0.845 ± 0.02 for ViTB-16, ViTB-32, and ViTL-32, respectively.
The detailed results for the different vision transformer-based architectures using different performance metrics is presented
in Table 1.

Comparison against vision transformers trained from scratch on AFP dataset: The AFP image dataset has been used to train
vision transformer models from scratch for the task of classification. Consequently, a high margin of performance drop has
been registered compared to the proposed method where transfer learning has been implemented. The vision transformer
models trained from scratch on AFP dataset provided AUC of 0.666 ± 0.01, 0.648 ± 0.01, and 0.644 ± 0.01 for ViTB-16, ViTB-32,
and ViTL-32, respectively, compared to the proposed method's AUC results of 0.870 ± 0.01, 0.865 ± 0.02, and 0.845 ± 0.02 for
ViTB-16, ViTB-32, and ViTL-32, respectively. Table 1 presents the detailed performance results of vision transformer models
359



Table 1
Performance results of vision transformer-based transfer learning models (ViT-TL), vision transformer models trained from scratch (ViT-scratch), and
convolutional neural network-based transfer learning models (CNN-TL) approaches.

Approach Model Accuracy F1 score Precision Recall AUC

ViT-TL ViTB-16 0.854 ± 0.01 0.844 ± 0.01 0.872 ± 0.01 0.826 ± 0.01 0.870 ± 0.01
ViTB-32 0.842 ± 0.02 0.830 ± 0.03 0.840 ± 0.03 0.822 ± 0.03 0.865 ± 0.02
ViTL-32 0.810 ± 0.02 0.796 ± 0.02 0.814 ± 0.02 0.784 ± 0.02 0.845 ± 0.02

ViT-scratch ViTB-16 0.624 ± 0.02 0.604 ± 0.03 0.618 ± 0.03 0.600 ± 0.04 0.666 ± 0.01
ViTB-32 0.622 ± 0.02 0.596 ± 0.03 0.594 ± 0.03 0.584 ± 0.04 0.648 ± 0.01
ViTL-32 0.600 ± 0.02 0.590 ± 0.03 0.584 ± 0.03 0.572 ± 0.04 0.644 ± 0.01

CNN-TL ResNet50 0.772 ± 0.02 0.756 ± 0.02 0.804 ± 0.02 0.726 ± 0.03 0.785 ± 0.02
EfficientNetB2 0.680 ± 0.07 0.608 ± 0.12 0.674 ± 0.07 0.614 ± 0.10 0.744 ± 0.06
InceptionV3 0.804 ± 0.02 0.766 ± 0.02 0.848 ± 0.02 0.722 ± 0.03 0.823 ± 0.01
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trained from scratch on AFP dataset. Fig. 5 summarizes the results comparison showing transfer learning-based ViTs' su-
periority over ViTs trained from scratch for AFP images.

Comparison against convolutional neural network-based transfer learning: To observe the effectiveness of the proposed
vision transformer-based transfer learning, a comparison against CNN-based transfer learning for AFP image classification has
been performed. As a result, CNN-based transfer learningmethod provided AUC of 0.785 ± 0.02, 0.744± 0.06, and 0.823 ± 0.01
for ResNet50, EfficientNetB2, and InceptionV3, respectively, compared to the proposed vision transformer-based transfer
learning method's AUC results of 0.870 ± 0.01, 0.865 ± 0.02, and 0.845 ± 0.02 for ViTB-16, ViTB-32, and ViTL-32, respectively.
Table 1 presents detailed performance results of the CNN-based transfer learning methods on AFP dataset and Fig. 6 sum-
marizes the results of ViT- and CNN-based transfer learning comparison visually. As it can be depicted, ViT-based TL is more
effective than CNN-based Tl for AFP images.

For practical application, it is essential to demonstrate the computational cost and inference time of the vision transformer
and CNN-based models. Therefore, evaluation of the different models used in this study in terms of inference time, training
time, and Giga Floating Point Operations Per Second (GFLOPS) has been conducted. Fig. 7 depicts the evaluation results. The
comparison results of CNN-based models (ResNet50, EfficientNetB2, InceptionV3) with ViTs (ViTB-16, ViTB-32, ViTL-32)
highlights differences in computational efficiency and practicality. ViTs, especially ViTB-32 with a fast inference time of 19ms,
show promise in real-time applications, but they generally require higher GFLOPS and have more parameters than CNNs. For
example, ViTL-32 has a massive, 304 million, parameters and 196 GFLOPS, making it computationally expensive, while ViTB-
16 (87 million parameters) also demands significant resources with 56 GFLOPS. In contrast, CNN models like EfficientNetB2
(30ms inference time, 10 GFLOPS) and InceptionV3 (36 million parameters, 36ms inference time, and 6 GFLOPS) offer a more
balanced trade-off between speed and computational cost, making them suitable for environments with limited hardware
resources. For practical deployment, the choice between these models depends on the specific application requirements. ViTs
might be better for tasks where high accuracy justifies the higher computational load, but CNNs are more efficient for tasks
requiring quick inference times with fewer resources. EfficientNetB2 stands out for its parameter efficiency (21M) and low
GFLOPS, making it a good fit for lightweight applications. On the other hand, ViTL-32's large parameter size and GFLOPS
suggest that it is better suited for performance-critical scenarios where accuracy is prioritized over computational efficiency.
Fig. 5. Performance of vision transformer models trained from scratch compared against transfer learning-based vision transformers on AFP dataset.
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Fig. 7. Computational cost analysis of the different models used in implementing the proposed approach.

Fig. 6. Performance of the transfer learning method using different convolutional neural network and vision transformer architectures.

Fig. 8. Comparison of the statistical significance of the proposed method in terms of area under the receiver operating curve (ROC) (AUC). *** represents sta-
tistical significance value of P < 0.001. TL-CNN, convolutional neural network-based transfer learning, TL-ViT, vision transformer-based transfer learning, Scratch-
ViT, vision transformer model trained from scratch. Error bars represent standard deviation of AUCs.
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4. Discussion

This work developed a simple transfer learning for the early detection of AFP suspected cases from images collected by
community volunteers using state of the art vision transformer architectures. This is the first of its kind in using image-based
deep learning analysis of AFP cases surveillance. The dataset used in the study is also a new dataset that was collected from
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the community using mobile phones that makes this work of a high value as it comes from the general public. Transfer
learning approach is proposed as such images collected from the community are rare to find and even the disease under
consideration is rare as it is close to eradication. The use of vision transformer as a main architecture for the transfer learning
approach was proposed because of the vision transformer's capability in recognizing global features from image better.

The results of the experimental study highlight the superior performance of a vision transformer-based transfer learning
method for AFP case image classification. The findings demonstrate that the choice of vision transformer architecture in-
fluences the classification performance, with ViTB-16 consistently outperforming ViTB-32 and ViTL-32 across various eval-
uation metrics. In terms of AUC, ViTB-16 achieved the highest average score of 0.870 ± 0.01, followed by ViTB-32 with
0.865 ± 0.02, and ViTL-32 with 0.845 ± 0.02 (Table 1). These results indicate that smaller transformer architectures may be
more effective for the task of AFP image classification. Moreover, our detailed analysis of performance metrics such as ac-
curacy, F1 score, precision, recall, and AUC further support the superior performance of ViTB-16 compared to other
architectures.

Furthermore, we compared the performance of our proposed vision transformer-based transfer learning approach with
vision transformers trained from scratch on the AFP image dataset used for this study and CNN-based transfer learning
methods. The comparison revealed a substantial performance drop when using vision transformers trained from scratch,
with AUC scores ranging from 0.644 to 0.666, compared to the proposed vision transformer-based transfer learning method's
AUC scores ranging from 0.845 to 0.870. This stark contrast underscores the effectiveness of transfer learning in leveraging
pre-trained vision transformermodels for AFP image classification tasks. Additionally, when compared to CNN-based transfer
learning methods using popular architectures such as ResNet50, EfficientNetB2, and InceptionV3, the proposed vision
transformer-based transfer learning approach consistently achieved superior AUC scores. This suggests that vision trans-
formers are better than the state-of-the-art CNN architectures for transfer learning in AFP image classification tasks. Fig. 8
summarizes the comparison of the proposed vision transformer-based transfer learning against vision transformer models
trained from scratch and the state-of-the-art CNN-based transfer learning models. The evaluation based on the statistical
significance using P-value of average AUC results indicate the outstanding performance of the proposed method over the
others. For this evaluation, AUC results of the three vision transformer-based transfer learning architectures used in this study
(ViTB-16, ViTB-32, and ViTL-32) were averaged and compared against the average of the three vision transformers models
trained from scratch (ViTB-16, ViTB-32, and ViTL-32) as well as the average of the three CNN architectures (ResNet50, Effi-
cientNetB2, and InceptionV3) to determine if the performance improvement brought about by the vision transformer based
transfer learning is statistically significant in terms of P-value. Consequently, the proposed method showed statistically
significant improvement with P-values less than 0.001 (P < 0.001).

This work not only addresses a critical gap in rare disease surveillance but also contributes to the broader goal of
strengthening healthcare systems in low-resource settings. By bridging the gap between community-based reporting and
health facility/system response, this study offers a scalable and sustainable solution for enhancing disease surveillance and
control. Moreover, the establishment of a dedicated platform for data storage and analysis ensures the preservation of
valuable information for future learning and preparedness, facilitating more effective responses to public health threats.
Overall, this work has the potential to significantly improve AFP surveillance and contribute to the broader efforts in global
health security and disease eradication.

This study has limitations in terms of the quality of image data collected. The images were collected by community
workers who do not have much knowledge of how to take a good picture that can be used for the purpose of machine
learning. Moreover, the quality of devices used to take the pictures were low compared to the devices used to collect publicly
available images for the general use of machine learning. Future works should revolve around improving the quality of image
data collected as the way images are captured should be improved in terms of how the community volunteers take pictures
and also the quality of the mobile devices used may have impact on performance.
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