Table 1.
Approach | Model | Accuracy | F1 score | Precision | Recall | AUC |
---|---|---|---|---|---|---|
ViT-TL |
ViTB-16 | 0.854 ± 0.01 | 0.844 ± 0.01 | 0.872 ± 0.01 | 0.826 ± 0.01 | 0.870 ± 0.01 |
ViTB-32 | 0.842 ± 0.02 | 0.830 ± 0.03 | 0.840 ± 0.03 | 0.822 ± 0.03 | 0.865 ± 0.02 | |
ViTL-32 |
0.810 ± 0.02 |
0.796 ± 0.02 |
0.814 ± 0.02 |
0.784 ± 0.02 |
0.845 ± 0.02 |
|
ViT-scratch |
ViTB-16 | 0.624 ± 0.02 | 0.604 ± 0.03 | 0.618 ± 0.03 | 0.600 ± 0.04 | 0.666 ± 0.01 |
ViTB-32 | 0.622 ± 0.02 | 0.596 ± 0.03 | 0.594 ± 0.03 | 0.584 ± 0.04 | 0.648 ± 0.01 | |
ViTL-32 |
0.600 ± 0.02 |
0.590 ± 0.03 |
0.584 ± 0.03 |
0.572 ± 0.04 |
0.644 ± 0.01 |
|
CNN-TL | ResNet50 | 0.772 ± 0.02 | 0.756 ± 0.02 | 0.804 ± 0.02 | 0.726 ± 0.03 | 0.785 ± 0.02 |
EfficientNetB2 | 0.680 ± 0.07 | 0.608 ± 0.12 | 0.674 ± 0.07 | 0.614 ± 0.10 | 0.744 ± 0.06 | |
InceptionV3 | 0.804 ± 0.02 | 0.766 ± 0.02 | 0.848 ± 0.02 | 0.722 ± 0.03 | 0.823 ± 0.01 |