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SUMMARY

Increased blood amino acid levels (hyperaminoacidemia) stimulate pancreas expansion by unclear mecha-
nisms. Here, by genetic and pharmacological disruption of glucagon receptor (GCGR) in mice and zebrafish,
we found that the ensuing hyperaminoacidemia promotes pancreatic acinar cell proliferation and cell hyper-
trophy, which can be mitigated by a low protein diet in mice. In addition to mammalian target of rapamycin
complex 1 (mTORC1) signaling, acinar cell proliferation required slc38a5, the most highly expressed amino
acid transporter gene in both species. Transcriptomics data revealed the activation signature of yes-associ-
ated protein (YAP) in acinar cells of mice with hyperaminoacidemia, consistent with the observed increase in
YAP-expressing acinar cells. Yap1 activation also occurred in acinar cells in gcgr�/� zebrafish, which was
reversed by rapamycin. Knocking down yap1 in gcgr�/� zebrafish decreased mTORC1 activity and acinar
cell proliferation and hypertrophy. Thus, the study discovered a previously unrecognized role of the YAP/
Taz pathway in hyperaminoacidemia-induced acinar cell hypertrophy and hyperplasia.

INTRODUCTION

Acinar cells are the most abundant cell type of the pancreas,

constituting 70% of the cell number and 85% of the pancreas

mass.1–3 They produce, store, and secrete large amounts of

digestive enzymes necessary for the digestion of proteins, carbo-

hydrates, and fats.4,5 Although pancreas mass is stable in adults,

it can be changed by diet protein levels by unclear mechanisms.

Pancreas mass changes according to the levels of protein

intake. Chronic protein deficiency causes pancreas atrophy

both in humans and animal models.6,7 Conversely, a high-protein

diet induces pancreas expansion in animal models.8,9 Both

acinar cell hypertrophy and hyperplasia contribute to pancreas

expansion.8 In mice, increased levels of blood amino acids (hy-

peraminoacidemia) and cholecystokinin (CCK) from ingestion

of a high protein diet induce acinar cell proliferation and hyper-

trophy through activation of the mammalian target of rapamycin

complex 1 (mTORC1).10,11 Whether other pathways are also

necessary for hyperaminoacidemia-induced pancreas growth

is unknown.

Interrupted glucagon signaling (IGS) also results in hyperami-

noacidemia12–16 and increased pancreas mass.14,17–19 Hypera-

minoacidemia results from decreased glucagon-stimulated

amino acid (aa) catabolism through ureagenesis and gluconeo-

genesis in the liver.15,16,20 Unlike diet-induced hyperaminoacide-

mia, IGS-induced hyperaminoacidemia persists during fasting

and is decoupled from enteroendocrine secretion. Nevertheless,

the total pancreas mass of Gcgr�/� mice and mice with liver-

specific GCGR deletion is 1.5–3.5 times larger than that of con-

trol littermates by 6 weeks of age.17–19 Patients with Mahvash

disease, an autosomal recessive condition of biallelic GCGR

loss of function, also have hyperaminoacidemia and an enlarged

pancreas.18,21–24 Although IGS causes profound alpha cell hy-

pertrophy, hyperplasia, and glucagonoma,16–20 the pancreas

expansion is unlikely the sole result of increased endocrine cells

since endocrine mass makes up less than 2% of total pancreas

mass. Expansion of the exocrine pancreas is likely the major

contributor.

To investigate the cellular and molecular mechanisms of hy-

peraminoacidemia-induced pancreas expansion, we usedmulti-

ple models of IGS in mice and zebrafish. We used a low protein

diet (LPD) to correct hyperaminoacidemia in an IGS mouse

model. We demonstrated that IGS induces acinar cell hyperpla-

sia and hypertrophy, which can be blunted by lowering blood aa
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levels with a LPD. Both acinar cell hyperplasia and hypertrophy

require mTORC1. Transcriptomic analysis of acinar cells re-

vealed Slc38a5 as the most highly expressed aa transporter

and provided evidence for activation of yes-associated protein

(YAP) signaling in IGS mice. Knockdown experiments in

gcgr�/� zebrafish demonstrated an essential role for slc38a5b

and yap1 in acinar cell hyperplasia and hypertrophy. These

results uncovered multiple mechanisms of hyperaminoacide-

mia-induced pancreas expansion and revealed a previously un-

appreciated role for SLC38A5 and the YAP/TAZ pathway in

mediating aa-induced acinar cell proliferation and hypertrophy.

RESULTS

IGS causes both hyperplasia and hypertrophy of acinar
cells
Pancreas expansion is a prominent phenotype in Gcgr�/� mice

and patients with biallelic inactivating mutations in GCGR. To

assess the mechanisms of pancreas expansion under IGS, we

characterized pancreas size in two additional mouse models

and one zebrafish model in which pancreas expansion has not

been previously investigated. The first mouse model is Gcg�/�
mice that lack the glucagon-encoding exonof the preproglucagon

gene on the immunodeficient NOD scid gamma (NSG) back-

ground (Figure S1A).25 Compared to control, Gcg�/� mice ex-

hibited lower blood glucose levels (Figure S1B), more than

2-fold increase of total serum amino acids (Figure S1C), and no

change in body weight (Figure S1D). They also had increased ab-

solute and relative pancreas weight (Figures S1E and S1F). The

second mouse model is GCGR-Ab treated C57BL/6J mice (Fig-

ure S2A). Compared to IgG treatment, GCGR-Ab treatment for

8 weeks resulted in a more than 2-fold increase of serum amino

acids, as reported previously (Figure S2B).15,20 At 2, 4, and

8 weeks of treatment, GCGR-Ab-treated mice had significantly

decreased blood glucose levels (Figures S2C, S2G, and S2K),

normal body weight (Figures S2D, S2H, and S2L), and a progres-

sive increase absolute pancreas weight (Figures S2E, S2I, and

S2M) and relative pancreas weight (Figures S2F, S2J, and S2N).

We also compared individual serum amino acids in mice treated

for 8 weeks. Except for tryptophan, phenylalanine, and cysteine,

all other amino acids were increased by GCGR-Ab treatment

(Figures S3A–S3C), confirming our previous results.20 To deter-

mine whether pancreas expansion is conserved across species,

we evaluated pancreas size in gcgr�/� fish carrying Tg(ela3-

l:EGFP) (Figure S4A), which has hyperaminoacidemia at both

larval and adult stages.26,27 Both the pancreas volume and

pancreas area were significantly greater at 18 dpf compared to

controls (Figures S4B–S4D). These data demonstrated that IGS

in all models induces pancreas expansion.

Pancreas expansion could result from increased acinar cell

size, cell proliferation, or both. Since acinar cells are the major

cell type of the pancreas,1,2 we reasoned that endocrine expan-

sion could not be responsible for the increased pancreas size.

We did not observe signs of ductal expansion and did not see

signs of pancreas edema on examination of the pancreas or in

pancreatic sections. So, we determined acinar cell proliferation,

size, and apoptosis. We found that Gcg�/� and GCGR-Ab

treated mice, and gcgr�/� zebrafish significantly increased

the percentage of proliferating acinar cells (Ki67+ in mice,

EdU+ in zebrafish) compared to their controls (Figures 1A–1F).

These data indicate that IGS stimulates acinar cell proliferation

in mice and zebrafish.

We next compared acinar cell size between IGS and control

animals. Compared to the control, the average acinar cell size

was larger in Gcg�/� mice (Figures 1G and 1H) and GCGR-Ab

treated mice (Figures 1I and 1J). As peri-islet acinar cells are

more hypertrophic and proliferative,28,29 we measured acinar

cell size in different regions and found increased acinar cell

size throughout the pancreas (Figure S5). Increased acinar cell

size was also observed in gcgr�/� zebrafish (Figure 1K). These

data indicate that IGS induces acinar cell hypertrophy in mice

and zebrafish. TUNEL assay did not find a change in acinar

cell apoptosis in GCGR-Ab treated mice (Figures S6A and

S6B). Taken together, these results demonstrated that IGS in-

duces adaptive proliferation and hypertrophy in acinar cells.

IGS-induced pancreas expansion is independent of
GLP-1 and pancreatitis, but requires
hyperaminoacidemia
Pharmacological activation of glucagon-like peptide-1 receptor

(GLP-1R) has been shown to promote acinar cell growth and pro-

liferation.30,31 As Gcgr�/� mice have increased a cell mass and

serumGLP-1 levels,17,25,32weevaluatedwhetherGCGR-Ab treat-

ment increases GLP-1/GLP-1R signaling in C57BL/J6 mice. We

found that an 8-week GCGR-Ab treatment did not increase

Glp1r mRNA in acinar cells compared to IgG treatment (Fig-

ure S7A). To determine whether GLP1R is necessary for IGS-

induced pancreas expansion, we treated Glp1r�/� mice with

GCGR-Abor IgG for 8weeks (Figure2A). The treatmentdecreased

bloodglucoseasexpected (FigureS7B), but still inducedpancreas

expansioncompared to IgG treatment (Figures2B,S7C, andS7D).

These results indicate that the GLP-1 pathway is unnecessary for

IGS-induced pancreas expansion.

Pancreatitis has been reported to induce acinar cell prolifera-

tion.33 We, therefore, examined the presence of immune cells in

the pancreas using CD45 immunofluorescence. There was no in-

crease of CD45+ immune cells in the exocrine tissue of GCGR-

Ab treated mice (Figures S7E and S7F). Furthermore, there

was no change in serum CCK levels or expression of either the

major CCK receptor Cckar or the minor CCK receptor Cckbr in

acinar cells in GCGR-Ab treated mice compared to IgG-treated

control (Figures S7G–S7I).

As hyperaminoacidemia from a protein-rich diet causes

pancreas expansion, we assessed the role of hyperaminoacide-

mia in IGS-induced pancreas expansion. We decreased blood

aa levels through diet in a fourth IGS model, hepatocyte-specific

deletion ofGcgr (Gcgrhep�/�mice), withGcgrfloxmice as control.19

As dietary protein is the major contributor to blood aa,34 we

changed the diet of 22-week-old Gcgrhep�/� and Gcgrflox mice

from a chow diet to a regular protein diet (RPD) or a LPD for

18 weeks (Figure 2D). Gcgrhep�/� and Gcgrflox mice did not have

a significant difference in body weight on the same diet, but

Gcgrflox mice on the RPD weighed more than both Gcgrhep�/�

and Gcgrflox mice on the LPD (Figure S8A). On the same diet,

Gcgrhep�/� mice had a larger relative pancreas weight

(Figures 2D and S8B) and more than 3-fold higher total plasma
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aa levels than Gcgrflox mice (Figure 2E). With the same genotype,

mice had higher total plasmaaa levels on theRPD thanon the LPD

(Figure 2E). However, the relative pancreas weight of Gcgrhep�/�

mice on the LPD was still higher than those in Gcgrflox mice on

the RPD (Figures 2D and S8B). Therefore, LPD only partially

reduced pancreas expansion in Gcgrhep�/� mice.

Some of the pancreas weight increase in Gcgrhep�/� mice may

have occurred before the diet switch. To test this, we started

feedingGcgrhep�/� andGcgrfloxmice theRPDor the LPDatwean-

ing for 14weeks (Figure 2F). Mice on LPD had a small reduction of

bodyweight andmarkedly smaller absolute pancreas weight than

those on the RPD (Figures S8C and S8D). As expected, on the

RPD the relative pancreas weight and total blood aa levels in

Figure 1. IGS increases acinar cell prolifera-

tion and cell size

(A and C) Representative images of acinar tissue

immunofluorescence of amylase (green) and Ki67

(red). DAPI (blue) was used to label the nuclei. The

pancreas sections were from Gcg+/+ or Gcg�/�
mice (A) or from C57BL/J6 mice treated with IgG or

GCGR-Ab (C).

(B and D) Quantification of Ki67 positive acinar cell

(n = 5–7). Arrows point to Ki67+ cells.

(E) Representative immunofluorescent images of

pancreas sections from 18 dpf zebrafish. Green

(GFP), red (EdU), and blue (Amylase). Arrows,

EdU+ acinar cells.

(F)QuantificationofEdU-positiveacinarcells (n=12).

(G and I) Representative images of acinar

tissue immunofluorescence of Amylase (Green),

E-cadherin, and Collagen (Red). DAPI (blue) was

used to label the nuclei. The pancreas sectionswere

fromGcg+/+ orGcg�/�mice (G) or from C57BL/J6

mice treated with IgG or GCGR-Ab (I).

(HandJ)Measurements ofacinarcell size (byarea) in

the two mouse models.

(K) Average acinar cell size of control and gcgr�/�
zebrafish. Each data point is the average of more

than 50 cells from one fish. Scale bar, 15 mm in (E).

Scale bar, 50 mm in others. Data are represented as

mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

Student’s t test.

Gcgrhep�/� mice were higher than those

ofGcgrfloxmice (Figures 2G and 2H). Strik-

ingly, there was no difference in relative

pancreas weight or total blood aa levels

between Gcgrhep�/� and Gcgrflox mice on

the LPD, both were similar to Gcgrflox

mice on the RPD (Figures 2G and 2H).

Therefore, we conclude that hyperaminoa-

cidemia is essential for IGS-induced

pancreas expansion.

SLC38A5 mediates
hyperaminoacidemia-induced
acinar cell hyperplasia and
pancreas expansion
Extracellular amino acids are transported

intracellularly by aa transporters (aaTs) to

exert their functions. Consistent with the expression pattern in

human acinar cells,35 our acinar cell RNA-seq data indicated

that Slc38a5, encoding a neutral aa transporter, was the most

highly expressed aaT in mouse acinar cells (Figure 3A). Its

expressionwas not changed byGCGR-Ab treatment (Figure 3B).

To determine whether Slc38a5 is necessary for the observed

acinar cell growth and proliferation, we used CRISPR/Cas9 to

knock down the zebrafish ortholog slc38a5b, the second most

highly expressed aaT in acinar cells (Table S1).36,37 Knockdown

of slc38a5b with 2 efficient sgRNAs in zebrafish decreased the

proliferation and size of acinar cells in gcgr�/� zebrafish

(Figures 3C–3E) (Table S2), suggesting that Slc38a5b is crucial

for IGS-induced acinar hyperplasia and hypertrophy.
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Activation of mTORC1 and YAP/TAZ contributes to
hyperaminoacidemia-induced acinar cell hyperplasia
and pancreas expansion
AAs are effective activators of mTORC1 pathway, an important

signaling pathway for cell growth and proliferation.38,39 The

levels of serine 240/244 in S6 ribosomal protein (pS6), an indica-

tor of mTORC1 activity, were significantly increased in Gcg�/�
mice and GCGR-Ab treated mice (Figures 4A–4D), indicating

mTORC1 activation in acinar cells. Treatment with IgG in the

presence or absence of mTORC1 inhibitor sirolimus (rapamycin)

for 4 weeks significantly increased blood glucose levels as ex-

pected (Figures 4E and S9D),40,41 and did not impact body

weight (Figure S9E). Importantly, sirolimus treatment abolished

GCGR-Ab-induced increase in relative pancreas weight

(Figures 4F and S9F). Moreover, sirolimus treatment also

reduced the percentage of Ki67-positive acinar cells in GCGR-

Ab-treated mice (Figures 4G and 4H). These data indicate that

mTORC1 activity is required for IGS-induced pancreas expan-

sion and acinar cell proliferation.

To examine other pathways that are involved in hyperaminoaci-

demia-induced acinar cell proliferation, we analyzed RNA-seq

data from IgG- and GCGR-Ab-treated mice (Figures S10A–

Figure 2. Hyperaminoacidemia, but not

GLP-1, contributes to the increased

pancreas mass in the GCGR-Ab-treated

mice

(A) Schematic of experimental design in Glp1r�/�
and control mice.

(B) Pancreas mass in Glp1r�/� mice treated with

IgG or GCGR-Ab (n = 9–11/treatment). ***p < 0.001.

Student’s t test.

(C) Experimental outline depicting the treatment of

IGS-induced pancreas expansion by a low protein

diet.

(D) Relative pancreas weight in Gcgrhep�/� and

control mice on 20% or 6% protein diet.

(E) Total blood aa in Gcgrhep�/� and control mice

on 20% or 6% protein diet.

(F) Experimental outline to prevent IGS-induced

pancreas expansion.

(G) Relative pancreas weight in Gcgrhep�/� and

control mice on 20% or 6% protein diet.

(H) Total blood aa in Gcgrhep�/� and control mice

on 20%or 6%protein diet. Data are represented as

mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.

One-way ANOVA followed by Turkey’s multiple

comparisons tests.

S10E). Ingenuity and gene ontology (GO)

term analysis identified numerous upregu-

lated pathways involved in proliferation

and cell growth (Figures S10D and S10E).

Of note, common YAP/TAZ target genes

were upregulated in GCGR-Ab-treated

acinar cells (Figure 5A). YAP and TAZ are

two paralogs that regulate cell proliferation

and organ size in multiple tissues via acti-

vation of the TEA domain (TEAD) transcrip-

tion factors in the nucleus.38,42 They are

negatively regulated bymultiplemechanisms including phosphor-

ylation-mediated degradation.42,43 In mouse pancreas, YAP

expression is restricted in ductal cells as YAP suppression is

necessary for normal acinar cell and endocrine cell differentiation

and identity.44,45 Nevertheless, YAP has been shown to play a role

in injury-induced postnatal acinar cell proliferation.46 Of genes

whose expression is highly associated with YAP/TAZ activity,47

10 were upregulated by more than 1.5-fold in GCGR-Ab treated

acinar cells compared to IgG-treated controls (Figure 5A). Quan-

titative RT-PCR analysis confirmed that expression of YAP/TAZ

target genes Ctgf, Crim1, and Arhgef17, and Yap1 itself was

significantly increased in the acinar cells of GCGR-Ab treated

mice (Figure 5B). YAP immunofluorescence showed a 7- and

10-fold increase of YAP-high acinar cells in Gcg�/� mice and

GCGR-Ab-treated mice over control, respectively (Figures 5C–

5F). However, a substantial YAP signal remained cytoplasmic,

indicating weak activation. Unlike in mice, yap1 is expressed in

acinar cells in adult zebrafish.37 In contrast, taz expression is

restricted to the ductal cells and absent in acinar cells.37 Immuno-

fluorescence indicated that Yap1was present in most acinar cells

of control zebrafish at 18 dpf but rarely in the nucleus (<1%)

(Figures 5G and 5H). Nonetheless, Yap1 was primarily nuclear in
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42% of acinar cells in gcgr�/� fish, an effect that was blocked by

CRISPR/Cas9-mediated knockdown of slc38a5b and rapamycin

(Figures 5G, 5H, andS11). These results indicate that YAP1 is acti-

vated in acinar cells by IGS in bothmice and zebrafish and its acti-

vation requires SLC38A5 and mTORC1.

To determine if YAP/TAZ function is necessary for IGS-

induced pancreas expansion, we knocked down yap1 and taz

individually and in combination in gcgr�/� zebrafish using two

effective sgRNAs together for each gene (Table S2). Fish with

yap1 and taz double knockdown did not survive beyond 14

dpf, consistent with the essential role of these genes in zebrafish

development.48,49 Knockdown of yap1 in gcgr�/� fish

decreased acinar cell proliferation (Figure 6A) and acinar cell

size (Figure 6B). In contrast, the knockdown of taz in gcgr�/�
fish did not affect acinar cell size (Figure S11), consistent with

its lack of expression.37 As in mice, the levels of acinar cell

pS6 were significantly increased in gcgr�/� fish. Interestingly,

the knockdown of yap1 in gcgr�/� zebrafish reduced pS6 levels

to those in WT controls (Figures 6C–6E). Taken together, these

results indicate Yap signaling is necessary for mTORC1 activa-

tion and IGS-driven acinar cell hyperplasia and hypertrophy.

Figure 3. Slc38a5 mediates acinar cell

growth

(A) The top 11 amino acid transporters expressed in

mouse acinar cells (n = 5, data from RNA-seq).

(B) Slc38a5 expression in acinar cells of IgG and

GCGR-Ab treated mice. CPM, count per million.

Student’s t test.

(C) Representative images of zebrafish pancreas

from control, gcgr�/�, and gcgr�/�with slc38a5b

knockdown groups. Green, amylase; red, EdU;

blue, DAPI. Scale bar, 10 mm.

(D) Quantification of EdU+ acinar cells in control,

gcgr�/�, and gcgr�/� with slc38a5b knockdown

group (n = 16/genotype).

(E) Acinar cell size in control, gcgr�/�, and gcgr�/

� with slc38a5b knockdown groups. Each data

point is the average of more than 50 cells from the

same fish. Data are represented as mean ± SEM.

*p < 0.05, **p < 0.01, ***p < 0.001. One-way ANOVA

followed by Turkey’s Multiple Comparisons Test.

DISCUSSION

Pancreas mass varies several fold in hu-

mans due to genetic and nutritional differ-

ences and diseases. Dietary protein is an

important determinant of pancreas size

by affecting gastrointestinal hormones

and aminoacidemia. High dietary protein

induces proliferation and hypertrophy in

acinar cells,8 which is different from the

primarily hypertrophy-driven normal post-

natal pancreas growth in mice.29 As IGS

causes chronic hyperaminoacidemia and

pancreas expansion, we investigated the

underlying cellular and molecular mecha-

nisms. We found that both proliferation

and hypertrophy of acinar cells contribute to IGS-induced

pancreas expansion and require mTORC1 activation. In addi-

tion, SLC38A5 and YAP1 are essential for IGS-induced acinar

cell proliferation and hypertrophy (Figure 6F).

Hyperaminoacidemia is the driver of the exocrine pancreas

growth in the IGS models. This is supported by abolishment of

pancreas expansion in the Gcgrhep�/� mice by normalizing ami-

noacidemia using a LPD. It is further supported by the require-

ment of Slc38a5b for both hypertrophy and hyperplasia of zebra-

fish acinar cells. Slc38a5, the most abundant aaT in WT acinar

cells, encodes a low-affinity Na+/H+ exchange coupled trans-

porter for neutral aa, including themost abundant blood aa gluta-

mine (Km = 3.2 mM) and alanine (Km = 2.5 mM).50 Therefore, aa

uptake by SLC38A5 is low during normal aminoacidemia as the

concentration of these aa is more than 5-fold lower than the Km.

In IGS conditions, however, the consequent hyperaminoacide-

mia increases the influx of neutral aa, which in turn promotes

the intake of other aa via aa harmonizers.50 Increased intracel-

lular aa and their metabolism likely activate mTORC1 and

biosynthesis necessary for acinar cell hypertrophy and prolifera-

tion expansion.15,20
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Accumulating evidence indicates the presence of endocrine-

exocrine crosstalk in the pancreas.48 For example, individuals

with type 1 diabetes and their first-degree relatives with autoanti-

bodies have a smaller pancreas likely due to few acinar cells.49–51

This may result from reduced insulin secretion by beta cells, lead-

ing to reduced insulin action on acinar cells.52,53 Also, insulin

signaling in acinar cells protects them from Ca2+ overload during

Figure 4. IGS activates mTORC1 pathway in

acinar cells

(A and C) Representative images of pancreas

immunofluorescence from the 2 mouse models.

Green, amylase; red, phosphor-S6 (240/244); blue,

DAPI.

(B and D) Quantification of pS6 intensity inGcg�/�
mice (B) or antibody-treated mice (D) and their

controls (n = 5/group). The intensity was normal-

ized to control mice or the IgG treatment group.

*p < 0.05, **p < 0.01, Student’s t test.

(E) Schematic experimental design for treating

mice with sirolimus (rapamycin) treatment.

(F) Relative pancreas weight in the four groups (n =

5–6/group).

(G) Representative immunofluorescence images of

acinar tissues. Amylase, green; Ki67, red; DAPI,

blue. Arrows point to Ki67+ acinar cells.

(H) Quantification of Ki67+ acinar cells in the four

groups (n = 5/group). Scale bar, 100 mm (A and C),

50 mm (G). Data are represented as mean ± SEM.

*p < 0.05, **p < 0.01, ***p < 0.001. One-way ANOVA

followed by Turkey’s Multiple Comparisons Test.

acute pancreatitis.53 However, our results

exclude a direct role of glucagon signaling

in suppressing acinar cell hyperplasia and

hypertrophy since they persist in

Gcgrhep�/� mice. These mice should have

stronger glucagon signaling in acinar cells

due to hyperglucagonemia.19 The require-

ment of Slc38a5 and mTORC1 for

acinar cell hyperplasia and hypertrophy

supports a role for glucagon signaling in

determining acinar cell mass by regulating

blood aa levels. However, as Slc38a5 and

mTORC1 are also necessary for alpha

cell hyperplasia, future studies are needed

to determine whether acinar cell prolifera-

tion and hypertrophy depend on a cell

hyperplasia.

We show that YAP1 is necessary for

IGS-induced growth of the exocrine

pancreas. Suppression of YAP activity is

essential for proper acinar cell differentia-

tion.44,45 Yet, YAP activation is necessary

for postnatal regeneration and homeosta-

sis of acinar cells.46,51 For example, in

adult mouse pancreas YAP is active in a

rare population of Tert+ acinar cells that

are capable of clonal expansion during

homeostasis and after pancreatic in-

juries.46,51 YAP is necessary for the injury-induced proliferation

of these Tert+ acinar cells.46 Since multiple pathways can acti-

vate YAP and only a small fraction of acinar cells have YAP1 acti-

vation in IGSmice, future single-cell studies are necessary to un-

derstand its activation mechanism in conditions such as

hyperaminoacidemia. In zebrafish, Yap activation in acinar cells

requires Slc38a5b and mTORC1. mTORC1 can regulate YAP
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Figure 5. IGS activates the YAP/Taz pathway

(A) Upregulation of YAP target genes in acinar cells from GCGR-Ab treated mice. Data are from RNA-seq.

(B) RT-qPCR analysis of selected YAP target genes in mRNA from the pancreas of IgG and GCGR-Ab treated mice (n = 4–5/group, compared IgG vs. GCGR-Ab

each gene).

(legend continued on next page)
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stability through autophagy.52 Intriguingly, we found that Yap1 is

necessary for mTORC1 activation in acinar cells. YAP/TAZ can

stimulate mTORC1 activity via multiple mechanisms.21,53–56

We propose that the IGS-induced pancreas expansion results

from the synergism between mTORC1 and YAP/TAZ signaling

pathways (Figure 6F).

YAP1 activation has been reported to cause pancreatitis in

mice,57,58 which was not seen in IGS mice. This may be due to

the difference in the extent and intensity of YAP1 activation in

these models. While previous results were derived from mice

with pan-acinar cell YAP1 activation by deleting its upstream

suppressors, YAP1 is only weakly activated in a small fraction

of acinar cells in our models.

We show both hyperplasia and cell hypertrophy contribute to

the IGS-induced expansion of the exocrine pancreas. This is

similar to protein-rich diet-induced adaptive pancreas growth

in rodents.8,10 However, there are several differences. First, the

protein-rich diet exerts a faster response, plateauing within 7–

14 days,9,10 while GCGR-Ab caused continuous growth of the

exocrine pancreas for the entire 8-week treatment. Second,

increased CCK is responsible for high protein diet-induced

acinar cell proliferation,8 while blood CCK levels were not

changed in mice with IGS. Lastly, mTORC1 is only necessary

for acinar cell hypertrophy in diet-induced pancreas expansion.

In contrast, mTORC1 is required for both proliferation and hyper-

trophy of acinar cells in IGS models. These differences are likely

due, at least in part, to the difference in duration and composition

of elevated blood aa in these models. While the high protein diet

increases blood aa levels more than 2-fold initially, the levels

gradually return to normal within 2 weeks, except for branched

chain aa.59 In contrast, hyperaminoacidemia is maintained as

long as glucagon signaling is disrupted and may result in higher

and more persistent mTORC1 activation.

Mechanistic understanding of exocrine pancreas expansion

has the potential to improve the treatment of exocrine pancreas

insufficiency (EPI). Whether caused by chronic pancreatitis,

cystic fibrosis, or other congenital defects, EPI requires lifelong

pancreatic enzyme replacement therapy (PERT) dosed with

everymeal, a therapy that is both expensive and difficult tomain-

tain. In situ expansion of acinar cells could reduce patient depen-

dence on PERT.60 While pathways that stimulate acinar cell

expansion could also increase the risk of pancreatic adenocarci-

noma, an increased incidence of acinar cell cancers has not

been reported in GCGR-deficient patients and animal

models.17,18 Further research is needed to determine if hypera-

minoacidemia-induced pancreas expansion is a viable method

to improve exocrine function in EPI.

In summary, the IGS-induced pancreas expansion results

from hyperaminoacidemia-induced acinar cell hyperplasia and

hypertrophy. In addition to mTORC1, we identified two new

components, Slc38a5 and Yap1, that are necessary for

pancreas expansion in zebrafish. Although YAP/TAZ is well-

known for its role in organ size control,38 its role in postnatal

acinar cell growth in response to hyperaminoacidemia has not

been described previously. Identification of these signaling path-

ways in IGS-induced pancreas expansion provides targets for

therapeutic control of acinar cell proliferation and hypertrophy.

Limitations of the study
Our studies have several limitations. Although both mouse and

zebrafish IGS models showed acinar cell hyperplasia and hy-

pertrophy, diet manipulation was only done in a mouse model,

and genetic manipulation of slc38a5 and yap1 was only per-

formed in zebrafish. In addition, the knockdown of slc38a5

and yap1 was global, precluding the distinction between a

cell-autonomous role and a non-cell autonomous role for these

genes. Given the observed difference in Yap1 expression in ze-

brafish and mouse acinar cells and the stage difference be-

tween zebrafish and mice used in the study, the cross-species

extrapolation, particularly to humans, should be considered

preliminary and needs validation. Additional studies are also

required to further clarify the mechanism of mTORC1 and

YAP mutual activation in zebrafish acinar cells and whether

such mutual regulation is conserved.
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anti-Chicken IgY (H+L) - Alexa Fluor� 488 Invitrogen Cat# A-11039; RRID: AB_2534096

anti-GFP Aves Cat# GFP-1010; RRID: AB_2307313

anti-mCherry Novus Biologiclas Cat# NBP2-25157; RRID: AB_2753204

anti-MHC DSHB Cat# MF20

anti-mouse IgG1 - Alexa Fluor� 488 Invitrogen Cat# A-21121; RRID: AB_2535764

anti-mouse IgG2b - Alexa Fluor� 568 Invitrogen Cat# A-21144; RRID: AB_2535780

anti-rabbit (H+L) SuperclonalTM - Alexa
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Invitrogen Cat# A-27040; RRID: AB_2536101

Bacterial and virus strains

DH5-alpha competent E.coli New England Biolabs Cat# C2987I

Chemicals, peptides, and recombinant proteins

1-phenyl-2-thiourea (PTU) Sigma-Aldrich Cat# P7629-10

16% Paraformaldehyde aqueous solution Electron Microscopy Sciences Cat# 15710

2,3-Butanedione monoxime Sigma-Aldrich Cat# B0753

4-hydroxytamoxifen Sigma-Aldrich Cat# H7904

4’,6-Diamidino-2-phenylindole (DAPI) Sigma-Aldrich Cat# D9542

Acetone Sigma-Aldrich Cat# 320110

BODIPYTM FL C5-Ceramide Invitrogen Cat# D3521

BSA Sigma-Aldrich Cat# A7906

Chloroquine diphosphate salt Sigma-Aldrich Cat# C6628

Chromium Nuclei Isolation Kit with RNase

Inhibitor

10x Genomics Cat# PN-1000494

CRISPR-Cas9 tracrRNA IDT Cat# 1072534

Dimethyl sulfoxide Sigma-Aldrich Cat# D4540

DNA Clean & Concentrator Zymo Research Cat# D4014

Epon Sigma-Aldrich Cat# 45359

Ethanol Grogg Chemie Cat# G003

Fast Digerst HindIII Thermofisher Scientific Cat# FD0504

Fast Digest BamHI Thermofisher Scientific Cat# FD0054

Fast Digest ScaI Thermofisher Scientific Cat# FD0434

foetal bovine serum Sigma-Aldrich Cat# F7524

Fragment Analyzer NGS Fragment Kit Agilent Cat# DNF-473

Gateway LR Clonase II Enzyme mix Invitrogen Cat# 11791020

Glutaraldehyde Agar Scientific Cat# AGR1009

Goat serum Dominique Dutscher Cat# S2000

HiFi Cas9 Nuclease V3 IDT Cat# 1081060

illumina NovaSeq 6000 S1 Reagent Kit v1.5 Illumina Cat# 20028319

iScript Reverse Transcription SuperMix Bio-Rad Cat# 1708841

KCl Sigma-Aldrich Cat# P9333

Leibovitz’s L-15 Medium Thermo Fisher Scientific Cat# 11415064

LysoTrackerTM Deep Red Invitrogen Cat# L12492

Maxima First Strand cDNA synthesis kit Thermo Fisher Scientific Cat# K1671

OsO4 Electron Microscopy Sciences Cat# 19100
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pENTR/D-TOPO vector Invitrogen Cat# K240020

Phosphate buffered saline NZYtech Cat# MB18201

PowerUp SYBR Green Master Mix Thermo Fisher Scientific Cat# A25742

Prep User Guide 10X Genomics Cat# CG000505

Proteinase K Roche Cat#

03 115 801 001

Q5� High-Fidelity DNA Polymerase New England Biolabs Cat# M0491

Qubit dsDNA HS Assay Kit Thermo Fisher Scientific Cat# Q32851

Sodium cacodylate trihydrate Sigma-Aldrich Cat# C0250

T7 Endonuclease I New England Biolabs Cat# M0302

Triton X-100 Sigma-Aldrich Cat# T9284

TRIzol Reagent Invitrogen Cat# 10296010

Deposited data

snRNASeq Data NCBI GEO GEO: GSE246850

Raw data Zenodo Zenodo: https://doi.org/10.5281/zenodo.

13982794

Experimental models: Transgenic zebrafish models used in the study

Tg(actb2:mRFP-GFP-map1lc3b)udc2Tg Allende lab ZDB-ALT-210122-18

TgKI(mRFP-map1lc3b)brn7 This study, Mercader lab ZDB-ALT-230926-15

Tg(CMV:EGFP-map1lc3b)zf155 Kishi lab ZDB-ALT-091029-2

TgBAC(lamp2:RFP)pd1117 Affolter lab ZDB-ALT-150520-1

Tg(fli1a:GFP)y1 ZIRC ZDB-ALT-011017-8

Tg(fli1a:DsRedex)um13 Lawson lab ZDB-ALT-100525-3

Tg(kdrl:GFP)la116 Stainier lab ZDB-ALT-070529-1

Tg(fli1a:Gal4FF)ubs3 Affolter Lab ZDB-ALT-120113-6

Tg(kdrl:EGFP-CAAX)ubs47 Affolter lab100

Tg(myl7:GFP)f1 Djonov lab ZDB-ALT-060719-2

Tg(myl7:mCherry)ko08 Kawahara lab ZDB-ALT-090423-3

Tg(EPV.Tp1-Mmu.Hbb:CreERT2,cryaa:mCherry)s959 Singh lab ZDB-ALT-131001-3

Tg(–3.5ubi:loxP-EGFP-loxP-mCherry)cy1701 Zon lab ZDB-ALT-110124-1

nrs (spns1hi891Tg/hi891Tg) Kishi lab ZDB-FISH-150901-8505

Tg(UAS:spns1)brn8 This study, Mercader lab ZDB-ALT-230926-16

Tg(UAS:myc-Notch1-intra)kca3Tg ZIRC ZDB-ALT-020918-8

Oligonucleotides

See Table S7.

Plasmids

pKHR4 Addgene Cat# 74592; RRID: Addgene_74592

pDestTol2pA2CrymCherry Addgene Cat# 64023; RRID: Addgene_64023

Software and algorithms

Code and analyses This study https://github.com/MercaderLabAnatomy/

PUB_Chavez_et_al_2023

Fiji https://fiji.sc/ https://doi.org/10.1038/nmeth.2019

Matlab https://ch.mathworks.com/products/

matlab.html

R2024a Update 3

Napari https://napari.org https://doi.org/10.5281/zenodo.3555620

R v4.0 https://www.r-project.org/ R version 4.0.0

Seurat v4.0 CRAN v4.0 https://doi.org/10.1016/j.cell.2021.04.048

T-MIDAS https://github.com/MercaderLabAnatomy/

T-MIDAS

https://doi.org/10.5281/zenodo.10728503
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
Mice were housed under a 12-h light/12-h dark cycle in individually ventilated cages with automatic water and ad libitum access to

standard rodent chow (with 24.1% protein) at Vanderbilt animal facilities. The cages had bedding with paper rolls for nesting. Some

cages had refuges (huts). All experiments were conducted according to protocols and guidelines approved by the Vanderbilt Univer-

sity Institutional Animal Care and Use Committee. C57BL/J6 male mice andGcg�/� (GKO) mice inNOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ

(NSG) background were obtained from The Jackson Laboratory and bred at Vanderbilt.25,61Glp1r�/�mice in C57BL/J6 background

were provided by Dr. Julio E Ayala (Vanderbilt University).62 Gcgrflox and Gcgrhep�/� mice in C57BL/J6 background have been char-

acterized previously (Figure S1).19 They were provided by Dr. Daniel Drucker initially was were bred at Vanderbilt. To pharmacolog-

ically interrupt glucagon signaling, C57BL/J6 mice were intraperitoneally injected with 10 mg/kg of GCGR neutralizing monoclonal

antibody (GCGR-Ab) or IgG from Eli Lilly once a week for 2, 4, or 8 weeks. To be consistent with our prior study, only male mice

were treated.63 Sirolimus (SIR, rapamycin, NDC 0008-1030-06, Pfizer) or PBS was given by intraperitoneal (i.p.) injection every

72 h at 1.5 mg/kg64 To correct hyperaminoacidemia, Gcgrflox and Gcgrhep�/� male and female mice (3–40 weeks old) along with

age-matched control littermates were fed with isocaloric normal (20%) and low (6%) protein diets (Harlan Teklad #TD.91352 and

#TD.90016, respectively). For AA measurement, serum samples were collected during the daytime from GKO and control mice at

14- to 20-week-old, from IgG or GCGR-Ab treated C57BL/J6 and Glp1r�/� mice after 8 weeks of treatment, or from Gcgrflox and

Gcgrhep�/� mice at the end of experiments (Table S3).

Zebrafish
Zebrafish were raised at 27�C in an Aquatic-Habitats system and embryos were raised at 28.5�C in an incubator on a 14/10-h light/

dark cycle. The age of zebrafishwas expressed as days postfertilization (dpf). As larval zebrafish cannot be distinguished by sex, both

males and females were used. The gcgr�/� zebrafish (gcgra�/�;gcgrb�/�) were described previously (Table S3).26 Drugs were

administered in the medium.

METHOD DETAILS

Mice
Serum measurements

Mice were fasted for 6 h with free access to water, and blood was collected from the retro-orbital sinus. Aprotinin protease inhibitor

(PentaPharm) was pre-added to collection tubes to yield a final concentration in whole blood of 1000KIU. The serum was collected

and stored at �80oC until analysis. CCK and GLP-1 measurements were performed using CCK Enzyme Immunoassay kit (RayBio,

#EIA-CCK) and Total GLP-1 NL-ELISA kit (Mercodia, 10-1278-01). Total serum amino acid levels were measured using an L-Amino

Acid Quantification kit (Sigma MAK002). Individual amino acid levels were quantified by HPLC as described previously.20

Immunofluorescence and imaging

Pancreata were fixed, sectioned, and stained as previously described.65–67 Primary antibodies used in this project are listed in the key

resources table. Apoptosis was assessed by TUNEL (Millipore, S7165) following themanufacturer’s instructions. Nuclei were stained

with Hoechst 33342 (0.5 mg/mL, Thermo Fisher Scientific) or DAPI (300 nM, Thermo Fisher Scientific). Images were acquired with a

fluorescence ScanScope (Aperio) scanner or a confocal laser-scanning microscope (LSM880, Carl Zeiss, Jena, Germany). Positive

Ki67 acinar cells were quantified, and cell size was measured using HALO image analysis (Indica Labs). pS6 intensity was quantified

using ImageJ.

Acinar cells RNA isolation, cDNA synthesis, quantitative RT-PCR, and RNA-seq

To purify acinar cells, the mouse pancreas was digested by collagenase and acini were picked by hand.68 Total RNA was extracted

from acinar cells using an RNAqueous RNA isolation kit (Ambion, Austin, TX). RNA quality control and quantity assessment (QC/QA)

was performed using a Bioanalyzer instrument. The average RNA integrated Number (RIN) was 7.8 + 0.09 (IgG, 7.5–8.1) and 8.0 +

0.14 (GCGR-Ab, 7.4–8.4). cDNA was synthesized using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,

4368814) according to the manufacturer’s instructions. Quantitative PCR (qPCR) was performed using TaqMan assays (key re-

sources table) with reagents from Applied Biosystems (Foster City, CA) as previously described.66,69,70 Actb was used for normal-

ization. Relative changes in mRNA expression were calculated by the comparative DCt method.

RNA-seqwas performed byMEDGENOME (Foster City, CA). About 72–137million uniquelymapped readswere acquired per sam-

ple. Alignment was performed using STAR (v2.7.3a) aligner to the reference mouse genome (genome-build GRCm38.p6).71 The raw

read counts were estimated using HTSeq (v0.11.2). Further quality control and downstream analysis were performed in the Strand

NGS analysis platform v3.4 (Strand life Sciences) where read counts were normalized using TMM (Trimmed Mean of M values).72

Genes with less than 20 counts across samples were removed.

Relative pancreas weight measurement

To determine relative pancreas weight, mice were anesthetized, weighed, and the pancreas was carefully dissected and placed into

a 10 cmPetri dish containing ice-cold PBS. After removing fat tissue, the pancreaswas blotted with filter paper andweighed to deter-

mine the absolute pancreas weight. The weight was normalized to body weight and described as relative pancreas weight.
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Zebrafish
Mutagenesis

The knockdown of slc38a5b, taz, and yap was performed according to Yin et al.73 The mutagenesis was initially determined by the

heteroduplex motility assay. PCR products of the targeted region from pools of control andmutagenized embryos were subjected to

Sanger sequencing and Synthego ICE or TIDE74 analysis to determine the mutagenesis rate (Table S2).

Pancreas area, volume, and acinar cell proliferation analysis

Because zebrafish pancreas is difficult to remove and weigh accurately, the pancreas size was quantified as pancreas area or

pancreas volume by confocal imaging of fixed Tg(ela3l:EGFP) zebrafish.27 Proliferation by 24-h EdU labeling was done as previously

described.14,26 Some fish were treated with rapamycin (200 nM) for 24 h before euthanasia. Fish were euthanized by MS-222 and

fixed in 4% paraformaldehyde (PFA), equilibrated in 20% sucrose and embedded into Optimal Cutting Temperature (OCT) media

to generate pancreas-containing cryosections (12 mm). EdU was detected using the Click-iT EdU Alexa Fluor 594 Imaging Kit

(C10339; Invitrogen).

Acinar cells were labeled using an amylase antibody (Rabbit, Sigma, A8273). Acinar cell size was measured in Tg(ela3l:EGFP)-car-

rying zebrafish by dividing the GFP+ area with the number of DAPI stained nuclei. All images were collected using Zeiss LSM880 (Carl

Zeiss, Jena, Germany) and analyzed by Imaris (Oxford Instruments).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistically significant differences were determined by two-tailed t-tests (2 groups) or one-way ANOVA (analysis of variance) fol-

lowed by Tukey’s Multiple Comparisons Tests (>2 groups). A p value < 0.05 was considered statistically significant. Values reported

represent mean ± SEM. In RNA-seq analysis, p-values were estimated using Z-test (Strand NGS) for differential expression. False

discovery rate adjusted for multiple hypothesis testing with Benjamini-Hochberg (BH) procedure, where p-value <0.05 and fold

change R1.5 were used to define differentially expressed genes. Differentially expressed genes were further analyzed through In-

genuity Pathway Analysis (IPA, Qiagen) and Gene Ontology (GO) analysis using DAVID v6.8.75
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