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SUMMARY
Applying artificial intelligence (AI) to image-basedmorphological profiling cells offers significant potential for
identifying disease states and drug responses in high-content imaging (HCI) screens. When differences be-
tween populations (e.g., healthy vs. diseased) are unknown or imperceptible to the human eye, large-scale
HCI screens are essential, providing numerous replicates to build reliable models and accounting for con-
founding factors like donor and intra-experimental variations. As screen sizes grow, so does the challenge
of analyzing high-dimensional datasets in an efficient way while preserving interpretable features and predic-
tive power. Here, we introduce ScaleFEx℠, a memory-efficient, open-source Python pipeline that extracts
biologically meaningful features from HCI datasets using minimal computational resources or scalable cloud
infrastructure. ScaleFEx can be used together with AI models to successfully identify phenotypic shifts in
drug-treated cells and rank interpretable features, and is applicable to public datasets, highlighting its poten-
tial to accelerate the discovery of disease-associated phenotypes and new therapeutics.
INTRODUCTION

High-content imaging (HCI) is a popular method for generating

large, information-rich imaging datasets of cell phenotypes.1

HCI can identify phenotypic differences between groups, such

as healthy and diseased states, as well as the effects of pharma-

cological interventions or genetic manipulations.2 However, un-

biased analysis of HCI data requires large datasets and sufficient

replication to account for confounding factors such as donor

identity and experimental parameters.3,4 As datasets grow in

size, greater computational resources and more advanced

analytical approaches are required.5–7

One approach to detect phenotypic differences is to reduce

images to a set of features derived from the latent space of con-

volutional neural networks5–8 or autoencoders.9 Such embed-

dings retain the predictive power of each image while ignoring

noise. However, it has proven challenging to interpret these

‘‘black box’’ deep learning models.10 One of the first approaches

to morphological characterization was to compare the distribu-

tion of measured features that could define populations of cells

based on preformed hypotheses.11–13 While this approach has

been demonstrated to work well, it is inherently biased to spe-

cific features of interest and thus unable to capture phenotypes

not specifically quantified. One approach to overcoming this is to

use Fixed Feature Extraction (FFE),14 in which quantifiable fea-
iScience 27, 111434, Decem
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tures, not linked to prior knowledge, are computed across the

entire dataset, resulting in a very large set of features defining

the dataset beyond preconceived hypotheses. With the increase

in the number of measured features, it also becomes much

harder to compute a comprehensive set in a timely manner.

The most popular FFE pipeline is CellProfiler,12 an open-source

tool designed for high-throughput image analysis, allowing the

extraction of quantitative information from microscopy images

of cells, tissue, and other biological samples. As the first, large,

open source tool of its kind, it features an intuitive graphical

user interface (GUI) that enables the creation of custom pipelines

with cascaded calculations performed on a set of multichannel

images, empowering those without programming expertise

and significantly broadening the field. The creators have pro-

vided the community with pre-made pipelines, such as the

widely used Cell Painting assay,15–17 within a highly customiz-

able tool. Using a set of dyes to label specific cellular compo-

nents (nucleus (DNA), nucleoli and cytoplasmic RNA, endo-

plasmic reticulum, actin cytoskeleton, Golgi and plasma

membrane, and mitochondria), Cell Painting allows scientists

to image parts of the cell across 5 fluorescence channels. Unfor-

tunately, scaling this tool to datasets hundreds of thousands of

images (or larger) in size poses computational and cost chal-

lenges. The creators of CellProfiler have addressed some of

those issues by providing a containerized cloud implementation
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Overview of ScaleFEx’s pipeline on a Cell Painting assay

For each experiment, ScaleFEx queries the plate’s images and starts a serialized computation (parallelized over multiple machines per plate in the AWS version).

Next, the wells are distributed and computed in parallel according to the number of workers specified by the user. Within each worker, after locating the centroids

of the nuclei, each channel image is loaded into memory and cropped around the centroid. For each image a segmentation mask is computed, and starting from

there all of the subsequent channel based features. Once the full feature vector is computed (containing measurements related to shape, texture, Zernike

moments, granularity, intensity, concentric rings, colocalization, mitochondria and RNA), the vector is appended to the experiment’s csv file, to avoid needing to

store the entire dataset into the random-access memory (RAM). See also Figure S1.
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that performs distributed parallel computing over multiple virtual

machines and optimizes the processes with respect to cost or

time.18 While this approach offers significant flexibility, it also

has some drawbacks and can be costly. For instance, running

distributed CellProfiler requires users to edit more than 5

different configuration files, each requiring extensive knowledge

of the functioning of the modules, as well as experience with im-

age analysis and cloud services. Furthermore, the authors

acknowledge that performance decreases when processing

more than 10,000 fields of view,19 posing significant limitations

on scaling to larger screens and potentially increasing the

already considerable costs.20

Beyond the technical issues, the resulting output (feature vec-

tor) contains thousands of features (over 3,000 for a Cell Painting

assay), many of which are redundant and highly correlated. For

example, in Tegtmeier et al.3 it was shown that 93% of the traits

had a Pearson coefficient >0.9. This can lead to computational

limitations, feature ranking difficulties, and the risk of overfitting,

especially when dealing with datasets containing hundreds of

thousands of cells.

To address the challenges of feature extraction in large HCI

datasets, we developed ScaleFEx℠, an efficient Python pipeline

for extracting various FFE cell features at the single-cell level.

ScaleFEx is a user-friendly, scalable tool requiring minimal

computational and coding expertise, and supports cloud

deployment. It calculates features, such as cell shape, cell

size, pixel intensity, texture, granularity, Zernikemoments, corre-

lations between fluorescence channels. Additionally, ScaleFEx

can measure features that are specifically relevant to mitochon-

dria and RNA by adjusting a coded flag. These features are

crucial for studying cellular dysfunctions linked to a variety of

diseases. ScaleFEx produces interpretable, lightweight repre-

sentations of single-cell images, aiding in the separation and
2 iScience 27, 111434, December 20, 2024
characterization of cell populations using AI. We demonstrate

ScaleFEx’s utility by identifying phenotypic shifts in drug-treated

cells and validating these shifts through feature analysis and im-

age correlation. Additionally, we showcase its generalizability by

analyzing a public dataset (RxRx2)21 to compare morphological

effects of small molecules. ScaleFEx offers a computation-

friendly approach to extracting interpretable features from HCI

datasets, aiding scientists in understanding biological changes

related to disease and drug treatment.

RESULTS

The primary goal of ScaleFEx is to efficiently compute interpret-

able features from images of single cells stained for multiple

cellular structures to characterize their morphology in large scale

experiments (Figure 1), while also being easy to use and adapt-

able to different immunohistochemistry panels. We developed

the pipeline with the Cell Painting assay in mind, but it can be

used on any staining panel, as long as a nuclear stain is provided.

The selection of features was guided by the need of interpret-

ability and reduced output size. Our aim is to capture a compre-

hensive set of features that preserves essential morphological

information while mitigating the challenges posed by high-

dimensional data (a full description of all the features is in

Table S1). Unlike traditional pipelines, which often suffer from

excessive redundancy, ScaleFEx emphasizes efficiency by

computing features on a per-channel basis. For example, the

CellProfiler Cell Painting pipeline first divides the cell into three

main compartments—nuclei, cytoplasm, and cell— based on

the Hoechst, RNA, and Hoechst + RNA channels, respectively.

It then loops over each channel to compute the same features

for each compartment. In contrast, our approach computes

each feature based on the channel itself, which results in



Table 1. Comparative analysis of feature extraction tools

ScaleFEx CellProfiler Embeddings

Computation

time

for 1 plate (AWS)

350 1h 500 NA

Computation

cost

for 1 plate (AWS)

�3$ �40$ NA

AWS machine

infrastructure for

1 plate

6*C5.12xlarge

(288 VCPU)

200*C5.xlarge

(800 VCPU)

NA

Output size 16 GB CSV/

8GB Parquet

�100 GB CSV 2.6 GB

CSV/1.6GB

Parquet

Aggregation step None 5h None

File download

cost

$0.8 � $10 NA

Total number of

features

1861 3578 320

Uncorrelated

features

325 413 320

Number of 0

variance features

0 36 0

Total used

features

325 377 320

Average AUC

for binary drug

classification

0.91 0.88 0.92

Comparison between ScaleFEx, CellProfiler, and an embeddings

approach across various metrics, including computation time and cost

on AWS, number of features, and data correlation characteristics for a

single plate. It details the performance of these tools in binary drug clas-

sification as measured by the average area under the curve (AUC).
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approximately half the total number of features. This targeted

feature computation not only reduces computational overhead

but also enhances processing speed and minimizes data redun-

dancy, making our pipeline significantly more efficient and

scalable.

ScaleFEx℠’s architecture was designed with computational

power limitations in mind, ensuring stability and resource optimi-

zation. The pipeline, written in Python, loops over plates, wells,

fields, single cells, and channels in a hierarchical way (Figures 1

and S1A), while keeping the memory requirements low.

Leveraging parallel processing across a flexible number of

CPUs, this method enables the independent and simultaneous

computation of multiple wells, increasing performance and opti-

mizing it for any type of resource available. By leveraging cloud

services we are able to demonstrate a beginner-friendly and

cost-effective way to compute the ScaleFEx pipeline on virtual

machines. This implementation offers the option to scale to a

virtually infinite number of plates by provisioning multiple ma-

chines to compute plates or subsets of plates in parallel. The par-

allelization process is set up to automatically connect our soft-

ware with cloud-based resources, minimizing user intervention

and AWS specific knowledge requirements. ScaleFEx maxi-

mizes the available resources by allowing the user to adjust the
number of workers used for simultaneous computation, which

reduces overhead and maximizes resource usage, making this

approach also cheaper when deployed on AWS (Table 1). (See

Methods section, code-repository and associated wiki for the

documentation and implementation strategy of the pipeline to

deploy ScaleFEx on a cloud-based platform for users that might

have extremely large datasets or insufficient computational

power).

The ScaleFEx code outputs a comma separated values (CSV)

file (of �2.5 GB per plate for a typical experiment), where each

row contains measurements from each cell (one row per cell).

The cell measurement vectors are appended to the CSV file at

each iteration, to avoid the need to retain the entire table inmem-

ory, allowing us to release it incrementally and enhance compu-

tational efficiency.

With very limited hardware requirements, ScaleFEx can be de-

ployed on any computer. Even though performance increases

with the use of multiple CPUs, ScaleFEx’s well-parallelization

and lightweight implementation significantly reduces the run

time compared to tools such as CellProfiler when run on similar

devices.

ScaleFEx does not incorporate a GUI. This decision minimizes

overhead and reduces the consumption of background re-

sources, ensuring that our tool remains lightweight and fast.

Instead of a GUI, users interact with the tool through a YAML

configuration file. This approach is tailored to low to mid-level

Python users who have a grasp of basic programming concepts

but may not be experts in software development. The initial

setup requires the user to specify approximately ten run-specific

parameters in the YAML file, and a few that can be left as default.

The parameters are clearly defined and documented, making it

easy for users to understand what information is needed and

why it’s important. After the initial setup, for subsequent runs,

users typically only need to update the folder locations if

the experimental settings remain unchanged. This simplifies

repeated use and reduces the potential for errors, as most of

the configuration is already completed and verified. By using a

YAML file for configuration, we provide a user-friendly way to

input necessary parameters without navigating complex soft-

ware interfaces. YAML is chosen for its human-readable format

and its ability to clearly represent hierarchical and scalar data,

making it, particularly, suitable for configuring software settings.

We also incorporated some visualization options to help verify

that the parameters are correctly set before launching the tool

over a very large dataset.

The AWS implementation is also designed tominimize the user

interaction with the sometimes complex AWS infrastructure. The

initial steps involve setting user permissions and creating a

secure environment through AWS’s IAM and CloudFormation

services. Each run is easily managed by executing predefined

templates that automatically handle the setup and teardown of

necessary resources. This straightforward process ensures

that even users new to cloud computing can efficiently manage

and scale their computations without unnecessary complexity.

Benchmarking
To benchmark ScaleFEx, we used a dataset consisting of fibro-

blasts from 20 donors treated with three compounds at different
iScience 27, 111434, December 20, 2024 3
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concentrations, stained using theCell Painting panel and imaged

at high resolution, resulting in a dataset of 294,000 images (2.5

terabytes). Every step of the plating of the cells into the 5

384-well plates was conducted using automation as part of the

NYSCF Global Stem Cell Array,22 (as described in the Methods

section and Figure S1B). We extracted ScaleFEx and

CellProfiler features and calculated image embeddings (vectors

encoding abstract image features calculated using deep neural

networks as described in Schiff et al.7). Running feature extrac-

tions algorithms such as CellProfiler over a large number of im-

ages poses great challenges, especially since GPU computation

(typically used to accelerate image-related analyses) is mainly

convolution based and is not optimal for complex logic opera-

tions and measurements with sequential dependency between

the features extracted or accumulative computations.23–25 To

evaluate the performance of ScaleFEx and CellProfiler, we car-

ried out a series of benchmark tests (summarized in Table 1).

We first processed a subset of our data (8 wells, 1960 images)

on a desktop machine. CellProfiler completed the task in 4 h,

while ScaleFEx took only 1 h. The efficiency of ScaleFEx was

significantly enhanced by its ability to process multiple wells

concurrently and its reduced feature computation load, dramat-

ically cutting down overall computation time.

We next compared the cloud-based performance of

ScaleFEx, deploying it to AWS and comparing it to distributed

CellProfiler19,20 across the entire dataset. Distributed CellProfiler

is designed to parallelize AWS machines over images, hence

themachines recommended to be deployed are small and cheap.

With this approach, a large number of machines need to be de-

ployed, but it is easy to run into limits of availability. The authors

also recommend not to deploy more than 200 machines, and

caution that the process slows down with datasets comprising

over 10,000 fields.20 In addition, each machine requires initializa-

tion, package installation and processing of the first steps.

ScaleFEx’s AWS implementation leverages parallel processing

across both individual machines and their CPUs, optimizing con-

figurations with slightly larger machines than those used by

CellProfiler. This approach not only shortens deployment times

but also reduces costs significantly. Additional cost efficiency is

gained by utilizing Spot Instances, where users can bid on ma-

chine time at their desired price, thereby controlling expenses

and avoiding unexpected charges. When comparing the cost

and time of analyzing the entire dataset, we observed a large dif-

ference in performance with a 10-fold reduction of costs and 4

times faster computation when using our pipeline (Table 1).

CellProfiler’s output came in various different files per plate

that had to be merged based on the information of plate, field,

and cell ID, a step that can require a long time to process and

implement (�5 h for the dataset described in paragraph 2.2) (Ta-

ble 1). The final process leads to a vector of 3578 numbers per

cell, which, multiplied by the large number of cells in the entire

dataset, was challenging to load into memory, merge, and pro-

cess. For this reason, we averaged the features at well-level as

the authors of CellProfiler do on most of their analyses2 before

merging the files, as this operation was saturating available

memory. ScaleFEx, in contrast, creates a feature vector of

1861 total features for the same channels and cells. This dataset

can be loaded in under a minute, allowing one to perform multi-
4 iScience 27, 111434, December 20, 2024
ple operations on the cell-level features, since no merging is

required and the overall occupied memory was around half

that of CellProfiler.

To compare redundancy between CellProfiler and ScaleFEx,

we performed a correlation analysis on the same dataset and

counted the remaining features after removing all the features

that had a Pearsons’s correlation score above 0.9 (this threshold

was taken from the value chosen in Tegtmeyer et al. 20243).

CellProfiler had a slightly higher percentage of correlated fea-

tures compared to ScaleFEx (Table 1), and 36 of features that

had zero variance compared to 0 features in ScaleFEx. Both

methods had a high number of correlated features, which is ex-

pected in this type of measurement.

To further compare CellProfiler’s output to ScaleFEx’s, we

used a logistic regression (LR)model to assess the predictive po-

wer of each on the same task. We also compared the perfor-

mance of feature-extraction-based (both ScaleFEx and

CellProfiler) with deep learning-based dimensionality reduction

approaches by evaluating the deep embeddings in the same

manner. We built a binary classifier trained to predict if a well

was treated with a compound or not, for each compound and

condition of the dataset (for details see the Methods section).

First, we corrected for different known confounders on our

data, both individually and in combination. Then, we tested three

normalization methods on this adjusted data: applying a whit-

ening transformation26 to decorrelate and standardize variance,

z-scoring to achieve a zero mean and standard deviation 1, and

normalizing features between 0 and 1. The results showed that

the 3 models have very similar predictive power for the task in

all the combinations of normalization and confounder removal,

with ScaleFEx performing slightly better in most combinations

than CellProfiler and the deep embeddings being slightly better

overall (Table 1; Figure S2), demonstrating that even though

ScaleFEx has fewer features than CellProfiler to begin with, it still

provides similar performance. The best overall correction

method was the normalization between 1 and 0, combined

with the confounder removal of plates, rows and donor ID, so

subsequent analysis was performed using this method.

Validation of ScaleFEx on a newly generated compound-
treated fibroblast dataset
Following the deployment of ScaleFEx, we performed a detailed

validation of the method by analyzing its ability to extract and

highlight meaningful features from a dataset of skin fibroblasts

treated with three drugs (CP21R7, Pemigatinib, and Y-39983-

HCl) at two concentrations each (0.2 and 1.0 mM). The objective

was to validate ScaleFEx’s efficacy in detecting nuanced

changes in cellular morphology and function, thereby accurately

characterizing drug-induced phenotypic shifts. Following the

steps depicted in Figure 2A, we first evaluated the presence of

confounding factors that might have masked or influenced the

results as previously described.3,7,27 We iteratively removed

the contribution of each confounder both singularly and in com-

bination and evaluated the prediction score using the LR model

and Uniform Manifold Approximation and Projection (UMAP).28

We next evaluated the accuracy of an LR model built to identify

each drug compared to control (DMSO) for each of the known

confounders of the experiment (plates, wells, rows, columns,



Figure 2. Analysis and feature extraction overview

(A) After a step of removal of confounders by subtraction of the mean of the confounders (plate, donor and row effects) and consequent normalization of the

measurements to values between 0 and 1, the correlated features are removed at single cell level. The drug signal is evaluated by clustering the well averages of

the values using the UMAP algorithm. The minimum number of features necessary for optimal prediction accuracy are identified using an LR model, and, using

RFE, unimportant features are iteratively removed, leaving behind the most impactful features contributing to prediction scores. Finally, representative images of

the features of interest are extracted and compared to their ranking.

(B) Distribution of binary predictions of drug VS control using a linear regressionmodel and 5 CV folds, where in each fold the training is performed on all the plates

but one held out for testing. Themodel is trained to classify wells treatedwith each drug iteratively andDMSO controls. The valueswere corrected for plate, donor,

column and row effects, and normalized between 0 and 1. Boxes represent median, upper and lower quartiles, the whiskers represent the standard deviation.

(C) UMAP of the ScaleFEx vector color-coded by drug and concentration.

(D) Example of feature summarization, by channel and category for cells treated with Y-3998-HCl at 0.2 mM. In the heatmap, the darker the color, the higher the

number of features. The number states the actual number of features per class and channel. The half numbers are for those features with double class or double

channel.
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and donor), on well-level averages. The results show that the

model’s area under the curve (AUC) is the highest when correct-

ing for plates, columns, rows, and donors (Figure 2B). This is

confirmed also by the UMAP clustering (Figure 2C). The correc-

tion was performed by removing the mean of each confounder

from each feature column. This correction was very effective in

mitigating the confounding effects due to the cells being in

different plates, different rows, and from different donors, as

shown in the UMAP clustering of the wells without correction

(Figure S2). Although removing column or well confounders led

to lower predictions (Table S2), this was likely due to the layouts

being similar, resulting in the removal of part of the signal with the

confounder. As for the removal of the donor confounder, since

primary fibroblasts retain a very strong donor signature,7 we

preferred to mitigate the individual contribution at this time. We
decided to focus exclusively on the effects of the drugs to ensure

that the findings are robust and not skewed by the characteris-

tics of specific donors.

The final data we used for feature analysis was confounder-

corrected, normalized between 0 and 1 as previously described,

and averaged at well level to reduce noise and highlight the prev-

alent effects in most of the population of cells.7 We next used a

Recursive Feature Elimination algorithm to eliminate the least

important features for each drug based on an LR binary model

built to classify each drug vs. control. The most-correlated fea-

tures were removed to reduce redundancy and the most impor-

tant and distinct features contributing to the drug shift were high-

lighted, while avoiding over-emphasis on similar features. The

resulting features are summarized in heatmaps (Figures 2D,

S3, S4 and Table S3).
iScience 27, 111434, December 20, 2024 5



Figure 3. Value distribution and image visualization of the most important features to correctly classify Y-39983 HCl

(A and B) (A) Features highlighted at 1.0 mM and (B) 0.2 mM. The pictures depict the wells with the closest value to the mean of the feature. In interest of space, we

only visualize 9 out of the 49 total tiles that make a well. The feature distribution values are all normalized between 0 and 1. Scale bar: 100mm. The boxplots

components are: horizontal line, median; box, interquartile range; whiskers, 1.53 interquartile range. arb. units: arbitrary units. Two-sided Mann–Whitney U test:

ns: p > 0.05; *0.01 < p % 0.05; ****p % 0.0001.See also Figures S3 and S4.
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To explore the phenotypes further, we analyzed the highest

ranking features for each drug and examined their value distribu-

tions (Figure 3; Figures S3 and S4) to assess significant differ-

ences using a Mann-Whitney t-test. From UMAP plots and linear

regression prediction accuracy, it is clear that the set of mea-

surements is sufficient to easily separate and cluster cells

treated with different compounds at different concentrations.

As expected, the compounds that caused the largest shifts

required fewer features to correctly classify across most wells

(Figure 3A). In contrast, more subtle differences required more

features (Figures 3B and S4). This does not mean that the shift

affected only those features, but that the distribution of the fea-

tures is so different from the control that these features can

separate the two classes.

The drug Y-39983 significantly altered cell morphology,

reducing the size and altering the shape of the cell body, as

indicated by features like max radius ER and concentric radial

intensity in the AGP and ER channels (Figure 3A). At higher

concentrations (1.0 mM), fewer features were sufficient to

distinguish treated from control cells, highlighting changes

such as more compact and irregular cell shapes. These find-

ings were consistent with Y-39983’s known biological action

of disrupting actin filament organization, which impacts cell

motility and the cellular architecture.29 At a lower concentra-

tion (0.2 mM), morphological changes were still detected Fig-
6 iScience 27, 111434, December 20, 2024
ure 3B) and although more subtle, were still significant,

including decreased eccentricity of nuclei and altered granu-

larity around the cell periphery, indicating changes in actin fil-

aments and cellular texture.

Pemigatinib, a protein kinase inhibitor, caused a notable shift

toward rounder cell shapes, which, among other metrics,

caused a decrease in the form factor value in the membrane

channel (Figure S3 and Table S3). As a known inhibitor of fibro-

blast growth factor receptor 2 (FGFR2),30 Pemigatinib was also

found to alter the cytoskeletal structure, causing a rounder

appearance in treated cells. In addition, several mitochondrial

texture features were found to be altered, suggesting an in-

crease in mitochondrial fragmentation, typically associated

with impaired cell proliferation. Both tested concentrations

demonstrated similar effects, with UMAP analysis (Figure 2C)

showing overlapping clustering of features and consistent, sig-

nificant deviations from the control (Figure S3).

The GSK-3b inhibitor, CP21R7, is a GSK inhibitor, a type

of compound that has been shown to cause widespread disrup-

tion of cellular function including migration and cytoskeletal

changes.31 We identified changes in mitochondrial volume and

organization at both tested concentrations (Figure S4 and

Table S3), confirming earlier findings that CP21R7 can alter

cellular metabolism.32 In addition, we found an increase in the

overall size of cells stained with AGP dye, making them appear



Figure 4. Similarity analysis of ScaleFEx features from the RxRx2 Dataset

(A) Boxplots display themost significant ScaleFEx features from group 1, demonstrating their effectiveness in distinguishing each drug from the control condition.

These features are consistent across the three grouped drug conditions. Boxplot elements include: horizontal line (median), box (interquartile range), and

whiskers (1.53 interquartile range). a.u: arbitrary units. Statistical significance was determined by a two-sided Mann-Whitney U test, with significance levels

indicated as follows: ns, p > 0.05; *0.01 < p % 0.05; ****p % 0.0001.

(B) Representative images of drugs that were grouped together, chosen based on optimal separation from the control condition. Images were acquired at 203

magnification. See also Figure S5 for further details.
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larger than other internal compartments such as the ER or mito-

chondria when compared to controls (Figure S4).

Validation of ScaleFEx using a publicly available dataset
of cellular responses to immune perturbations (RxRx2)
To confirm the generalizability of ScaleFEx we applied the

computation pipeline on 6 plates of the Recursion dataset

RxRx2.21 This dataset encompasses 6-channel, Cell-Painted

images of human umbilical vein endothelial cells (HUVECs)

from a single cell line seeded in a 1536-well plate and treated

with various small molecules. The total number of cells is over

2 million, treated with 434 unique molecules at 3 different con-

centrations each. The analysis aims to identify drugs that induce

a morphological shift compared to untreated cells, and then

group these drugs by similar effects observed on the cells. We

first calculated the cosine similarity for each well to quantify

the similarity between cells’ multidimensional feature sets, help-

ing to establish a baseline of cellular similarity in control wells,

providing a reference point.

We next identified drugs of interest based on their lower

average cosine similarity compared to the control mean, as

this would be indicative of having caused changes in cell

morphology or structure. We ensured that the variability within

wells treated with the same drug mirrored that observed in the

control wells as this would indicate that the drug’s effects are

uniformly distributed across cells within a well, thus enhancing

the reliability of our findings and reducing false positives due to

random variation. In addition, we excluded conditions with fewer

than three repeats as our analysis only utilized a subset of the da-

taset (Table S4). This exclusion left us with a total of 1004 viable
drugs for analysis. The entire process resulted in approximately

15 different combinations of drugs and concentrations demon-

strating significant and consistent cellular changes compared

to the untreated state.

We focused on identifying drugs with similar effects on cell

morphology by assessing the cosine similarity values across all

remaining wells of each of the drugs. This analysis allowed us

to group the remaining drugs and concentrations into 6 distinct

clusters based on their similarity (Table S4). We next explored

the specific features that are more relevant for LR binary classi-

fiers, which were built to predict drug versus control outcomes

(Table S4), and assessed whether these features were consis-

tent across the groups. In Figure 4 we show representative im-

ages from one of the groups and some of the overlapping fea-

tures that scored high for the LR model. The consistent trends

observed in these features indicate that the small molecules

induce similar effects on the cells, albeit with varying intensities.

This observation is consistent with the known targets of TCdiffA

and TCdiffB, both toxins targeting similar cellular pathways. The

other groups also show similarities in the top-scoring features

and representative images. Group 1 (Figure S5) indicates a cyto-

toxic effect leading to cell death, while groups 2 and 3 show dif-

ferences in intensities and channel overlap. To further validate

these findings, we compared 2 drugs that had distinct effects

identified by the algorithm and plotted their top features (Fig-

ure S5, group 4). The standard deviation of ER intensity appears

to play a role in both drugs, but their effects, as indicated by the

distribution, are opposite. WGA intensity was impacted only for

the diphtheria toxin (DTx), whereas only nigericin induced a shift

toward a more elongated cell shape. Overall, this analysis was
iScience 27, 111434, December 20, 2024 7
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able to decipher specific features that differentiate drug effects

from controls and highlight meaningful associations between

the effects of different drugs on cells.

DISCUSSION

The development of ScaleFEx was driven by the need to address

scalability issues common in high-throughput, automated labo-

ratories that handle multiple cell types and assays. As the de-

mand for high-throughput analysis grows,33–36 laboratories

require tools that can be easily adapted and deployed across

diverse datasets without extensive manual configuration.

ScaleFEx meets this demand by offering a solution that is gener-

alizable across any cell type and imagingmethod, easy to deploy

both on local machines and on AWS cloud infrastructures, and

scalable to adapt to different resource types.

ScaleFEx’s design minimizes the number of manual inputs

required, allowing users to easily adjust critical parameters.

This flexibility, combined with its general applicability to any

cell type or imaging method, underscores its utility in a rapidly

evolving research landscape where adaptability and efficiency

are paramount. To our knowledge, ScaleFEx processing effi-

ciency and speed are unmatched compared to tools that quan-

tify a similar amount of measured features, making it suitable for

large-scale datasets where fast feature extraction is critical.

ScaleFEx is designed under the assumption that users have

basic to intermediate Python skills and does not include a GUI.

The absence of a GUI, while beneficial for reducing complexity

and improving performance, may limit its accessibility to re-

searchers less familiar with scripting and future development

of the tool may ultimately see the release of a GUI. However,

paramount to this will be ensuring that the performance levels

gained in ScaleFEx are not diminished.

ScaleFEx’s modular design allows for easy updates and inte-

gration of new features or algorithms, making it suitable for

advanced users seeking customization within a structured

framework. However, unlike CellProfiler, which allows users to

tweak almost every aspect of the feature extraction process,

ScaleFEx does not offer the same level of detailed customiza-

tion. This could be a limitation for researchers who need highly

specialized analysis protocols but prefer not to engage exten-

sively in code writing. As ScaleFEx is adaptable and prepared

for future enhancements due to its modular architecture, flexi-

bility can be increased with future updates.

Currently, the majority of HCI screens extract features either

using deep learning (embeddings or autoencoders)1,7,21,37 sacri-

ficing interpretability, or selecting a small number of features to

compute,38 as an extensive representation of measurements

would be extremely cumbersome or lengthy. Through this

work, we aim to enhance the interpretability of HCI-based phe-

notyping by providing a method that not only facilitates a deeper

biological understanding and explanation of subtle differences,

often requiring extensive experiments to elucidate, but also en-

sures that it can be deployed efficiently and effortlessly.

Future developments of our platform will be focused on incor-

porating advanced machine learning algorithms to improve cell

identification and channel segmentation. Currently, we have

intentionally simplified these tasks to avoid the complexities
8 iScience 27, 111434, December 20, 2024
and slowdowns associated with deep neural networks, which

can also hinder parallelization capabilities and increase costs

on cloud servers. Users who have already computed coordi-

nates with centroids can seamlessly integrate these into our al-

gorithm. This flexibility allows users to employ their preferred

cell segmentation tools by either modifying the nuclei segmenta-

tion module or by specifying the location of the file that contains

the coordinates.

In conclusion, in this study we demonstrate the utility of

ScaleFEx for distinguishing different drug-treated cell popula-

tions with high accuracy, and identifying salient, interpretable

features that contribute to this classification process. We suc-

cessfully confirmed the impact of the drugs on cells by visually

comparing selected wells with control wells that best exempli-

fied their respective medians. This approach facilitated identi-

fying the direct link between drugs and their effects, thereby

providing a transparent and reliable alternative tomany AI-based

dimensionality reduction tools that operate in a black-box style.

Overall, this study highlights the potential of ScaleFEx as a tool

for identifying and characterizing drug effects on cellular popula-

tions, paving the way for the discovery of new therapeutics and

disease treatments.

Limitations of the study
A main limitation of our work is that the segmentation masks are

currently computed using thresholding-based techniques. While

deep learning methods might be more accurate, we decided to

not offer that solution at this stage to prioritize efficiency and

cost. Another limitation is that, while the repository was made

in a modular way, it might be challenging for beginners to

customize their pipelines. Additionally, while we provide an

easy-to-use implementation of ScaleFEx in AWS, using a

different cloud server would need extensive adaptation.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

MitoTracker Invitrogen M22426

Hoechst 33342 trihydrochloride Invitrogen H3570

Molecular Probes Wheat Germ Agglutinin

Concanavalin A, Alexa Fluor� 488 Conjugate

Invitrogen C11252

SYTO� 14 Green Fluorescent Nucleic

Acid Stain

Invitrogen S7576

Alexa Fluor� 568 Phalloidin Invitrogen A12380

Alexa Fluor 555 Conjugate Invitrogen W32464

Chemicals, peptides, and recombinant proteins

Y-39983 HCl SelleckChem S7935

Pemigatinib (INCB054828) SelleckChem S0088

CP21R7 (CP21) SelleckChem S7954

Paraformaldehyde Electron Microscopy

Sciences

15710-S

HBSS Thermo Fisher Scientific 14025126

Triton X-100 Sigma-Aldrich T8787

DMSO Sigma D2650

Phosphate Buffered Saline (PBS) GibcoTM 10010072

Propidium Iodide ThermoFisher P3566

TrypLE Select ThermoFisher 12604013

Synthafreeze ThermoFisher A1254201

SNPTraceTM Assay Standard BioTools 100–6280

mycoplasma kit Lonza LT07-703

Experimental models: Cell lines

Cell Lines NYSCF Repository

Software and algorithms

ScaleFEx https://github.com/NYSCF/

ScaleFEx

https://doi.org/10.5281/

zenodo.13928509

CellProfiler https://cellprofiler.org/

Distributed CellProfiler https://github.com/

DistributedScience/

Distributed-CellProfiler

Other

ScaleFEx validation data: raw images https://nyscfopensource.

blob.core.windows.net/

nyscfopensource/scalefex/

ScaleFExDataset.zip

ScaleFEx features from the validation

data with associated metadata

https://nyscfopensource.

blob.core.windows.net/

nyscfopensource/scalefex/

scalefex_raw_features.parquet.

ScaleFEx features normalized, corrected,

uncorrelated and well-level averaged, with

associated metadata

https://github.com/NYSCF/

ScaleFEx/blob/main/demos/

ScaleFEx_corrected_averaged_

features.csv

RxRx2 dataset https://www.rxrx.ai/rxrx2
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell collection and expansion
Cell lines used in this study were obtained through the New York Stem Cell Foundation Repository. 20 unique donor lines were

selected, and their age and sex is reported in the Parquet files with the pre-computed ScaleFEx raw features, and in the pre-

computed CSV file with ScaleFEx normalized corrected and uncorrelated features. Both files accession numbers are listed in the

key resources table.

All fibroblast cell lines derived from biopsies had been previously collected under IRB approved protocols, as previously

described22. Cell lines were expanded and frozen into working aliquots using the NYSCF Global Stem Cell Array, a fully automated

cell culture platform, which consists of liquid handling systems (Hamilton STAR) that are integrated with (among other devices) auto-

mated incubators, Celigo cell imagers (PerkinElmer), VSpin centrifuges (Agilent), andMatrix tube decappers (Hamilton Storage Tech-

nologies)7,22. In brief, frozenmaster stock tubes were thawed in a 37�Cwater bath for 1 min. After pelleting and resuspension in FEM,

a manual count was taken, and cells were seeded into either one well of a 6 well plate, or one well of a 12 well plate in Fibroblast

Expansion Media (FEM). Cells plated into 6 well plates immediately entered automated expansion workflows, while those remaining

in 12 well plates were allowed to grow to 70–100% confluence before being passaged into 6 well plates and entering automated

expansion workflows. Cells were fed every 2–3 days using automated scheduling and were passaged every 7 days at targeted den-

sities across as many wells as the software calculated to be possible. Automated methods dissociated cells using TrypLE Select

(12604013, ThermoFisher) before being centrifuged into pellets. The pellets were suspended and pulled into a total of 2 mL media,

with two 25 mL aliquots from each sample used in automated cell counting. Based on the total live cell count, cells were frozen, using

the cryoprotectant Synthafreeze (A1254201, ThermoFisher), into cryovials at 50,000 cells per vial or replated into 6 well plates for

further expansion. DNA from each cell line was obtained during the process and used to confirm cell line identity using the

SNPTrace Assay (100–6280, Standard BioTools). Cells were additionally screened for their sterility and the absence of mycoplasma

during this process (LT07-703, Lonza).

METHOD DETAILS

Automated screening
Custom automated procedures were developed to run a drug screen leveraging the automated platform of the NYSCF Global Stem

Cell Array. 20 unique donor lines were selected, and a single vial of each line was automatically thawed into one well per line of a

12-well plate (Fisher Scientific, 07-200-91) for post-thaw recovery, using automated methods as previously described. Cells were

fed on Days 2 and 5, and by Day 7, when the cell lines had reached over 90% confluence, the plates were passaged. At this point,

the liquid handler aspirated the spent media from the seeded wells, washed them with Phosphate Buffered Saline (PBS) (Gibco,

10010072), and incubated themwith TrypLE. Cells were incubated for 25 min at 37�C, and then brought back to the deck for neutral-

ization with FEM. The cell suspensions were then pipetted into an intermediate block (Corning 3958) and centrifuged on the Agilent

VSpin. Post-centrifugation, the supernatant was aspirated, and the cell pellets were resuspended in FEM. A 10 mL aliquot of cell sus-

pension was incubated with Hoechst (H3570, ThermoFisher) and Propidium Iodide (P3566, ThermoFisher) in a PerkinElmer View-

Plate (502105844, ThermoFisher) before being counted on a Celigo automated imager. The counts were fed back into the automated

method, allowing the determination of the required volume of cell suspension needed to seed the wells of the destination plate; a

targeted density of 500 cells per well was used in this study with cells seeded in a total volume of 50 mL. The method was provided

with a pre-designed, simplified, layout, and the liquid handler was able to stamp the desired pattern, such that there were 12 sample

replicates per donor per plate. Positionally, each replicate had a different location within the plate layout to minimize biasing the

model with plate effects, and the outer two rows and columns on the plate were only seeded with media to avoid edge effects. In

total, the Hamilton system was able to create five replicate 384-well imaging plates (CellVis, P384-1.5H-N). Cells were stored in

an automated incubator (Cytomat, Thermofisher) before being treated with various compounds, stained, and imaged, as described

below.

Drug dispensation
Based on prior work and previously published data17, three drugs were determined to be of interest for the high-throughput screen

due to prior success in shifting the cellular morphology of diseased primary human fibroblasts: Y-39983 HCl (CAS: 173897-44-4),

Pemigatinib (INCB054828) (CAS: 1513857-77-6), and CP21R7 (CP21) (CAS: 125314-13-8). Stocks of the compounds of interest

(10mM) were thawed and diluted to intermediary stocks of 1 mM and 0.2 mM in DMSO (D2650, Sigma). An I.Dot 2.0 Dispenser (Cel-

link, SO20-7799) was used to dispense 50 nL of either 1 mM or 0.2 mM stock across all five plates (final concentrations of 1 mM or

0.2 mM respectively). The final drug layout across the plates was determined algorithmically to ensure an unbiased approach with an

equivalent number of replicates and well volume per experimental condition. The I.Dot additionally dispensed an equivalent volume

of DMSOon top of thewells that did not receive any compound to ensure that all wells (control or compound treated) contained a total

of 0.1% DMSO. Once the wells were treated with either compound or DMSO control, they were placed back into a Cytomat where

they were imaged overnight on the Opera Phenix High Content Screening System. The plates were allowed to incubate for 72 h,

before they were removed for fixation and staining, as described below.
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Experimental layout
The seeding system (described above) was designed to stamp a pattern 4 times from a 96 to a 384 well plate. Two columns and rows

were cut out from the outer rim edge to avoid edge effects leaving the plate with 12 well replicates per cell line. Each stampwas repli-

cated 4 times, leaving a layout with 4 adjacent wells with the same cell line. The drugs were then evenly distributed among the cell

lines, but for each of the 4 neighboring wells with the same cell line there was at least 1 DMSO, to balance local position effects. We

generated a total of 5 plates, with 300 wells seeded with DMSO and 150 wells per condition.

Staining and imaging
We were then able to harness high-content image-based assays for unbiased morphological profiling with multiplexed fluorescent

dyes. The original Cell Painting protocol15 was adapted to fluorescently label the cells using an automated liquid handling system, as

previously described7. The plates were placed onto the deck of the Hamilton STAR Liquid Handler. Spent media was aspirated and

replacedwith FEM containingMitoTracker (InvitrogenM22426). Plates were then incubated at 37�C for 30min, followed by fixation in

4% Paraformaldehyde (Electron Microscopy Sciences, 15710-S) before being washed with 1x HBSS (Thermo Fisher Scientific,

14025126). The plates were then permeabilized in 0.1% Triton X-100 (Sigma-Aldrich, T8787) diluted in 1x HBSS. Cells were stained

at room temperature with the Cell Painting staining cocktail for 30 min after two additional washes in 1x HBSS. The stain cocktail

included Hoechst 33342 trihydrochloride, trihydrate (Invitrogen H3570), Molecular Probes Wheat Germ Agglutinin, Concanavalin

A, Alexa Fluor 488 Conjugate (Invitrogen C11252), SYTO 14 Green Fluorescent Nucleic Acid Stain (Invitrogen S7576), Alexa Fluor

568 Phalloidin (Invitrogen A12380), Alexa Fluor 555 Conjugate (Invitrogen W32464). Plates were washed three times post-incubation

with 1x HBSS, sealed with 1x HBSS in the wells, and refrigerated until removal for imaging.

Plates were imaged using the Opera Phenix High Content Screening System. The inner 240 wells of each plate were imaged using

49 non-overlapping single plane fields in non-confocal mode with a 403 objective (Water, NA 1.1). To capture the entirety of the Cell

Painting panel, five channels were created with differing combinations of excitation and emission spectra for each. Specifically,

375 nm and 435–480 for Hoechst 33342, 488 nm and 500–550 for Concanavalin A488, 488 nm and 570–630 for SYTO14, 561 nm

and 570–630 for WGA and Phalloidin, and 640 nm and 650–760 for MitoTracker Deep Red.

Benchmarking preprocessing steps
Wedesigned a 5-fold cross-validation test-train split to avoid confounding factors and overfitting to converge tomisleading readouts.

The experiment was conducted using 3 different normalization methods and corrected for different confounders to select the best

model. For this step, we first removed all the features that were either binary or location specific (e.g., cell number, distance, etc.) to

preserve their raw values before zero-averaging all of the known confounders first individually, then in combination. We next applied

the three different normalization methods that we compared in the analysis (Figure S2): the whitening transformation26 - a technique

where the features become uncorrelated and equivariant with the same variance equal to 1-, z-scoring the features (reducing them to

0-mean and constant standard deviation), and normalizing the data between 0 and 1.

Overall computation pipeline description
Image file names and paths are read into memory where relevant metadata (e.g., well, field-of-view, channel, etc) is parsed from im-

age file paths using a generalizable, user-specified pattern. Using a specified number of random images, the background trend is

computed and used for flat field correction (one matrix of values per channel). Next, the images of the channels belonging to the

same tile are loaded, and if the acquisition was performed in multiple planes, the images for each channel are flattened into a

max projection. The images to be processed are loaded, flattened, flat-field corrected, normalized, and converted into 8-bit gray-

scale. After these pre-processing steps, the segmentation step is performed to locate the cells and start the single-cell analysis.

This step can be performed using multiple different approaches. For this paper, as the dataset we used consisted of fibroblasts,

which are very easy to separate, we used a Triangle threshold algorithm39 on the nuclei channel. For each of the detected cells, a

crop of a specified size (in this case 598x598) was segmented from the centroid of the nuclei, in order to minimize computational

time and ensure consistency in our measurements across cells. By doing so, we were able to maintain a uniform reference for all

the cells, resulting in more comparable and homogeneous measurements.

For each of the channels, there is first a further segmentation step to identify the mask of the tagged portion of the cell within the

crop, then channel-specific measurements are performed. In cases where multiple cells would be within the same crop, only the

mask overlapping with the nuclear mask was considered part of the cell, and for the DNA channel, we used the mask that included

the center pixel of the crop. The output of the pipeline is a csv file for each plate containing a row for each cell’s computed feature

vector. The number of files can be changed if the user specifies a maximum file size. More details about the code and the specific

usage can be found in the publicly available repository (https://github.com/NYSCF/ScaleFEx).

Features definition

For each channel, a set of different measurements is extracted starting from the initial segmentation (Figure 1; Figure S1A). The main

categories ofmeasurements are shape, texture, granularity, intensity, zernike, concentricmeasurements, overlap between channels,

optional measurements specific to the mitochondria and RNA, and global annotations. All of the measurements are summarized and

described in Table S1. The total number of features is 1861 for a cell painting panel (5 channels), but it can vary depending on the
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number of dyes used and if the extra features for Mitochondria or RNA are selected. The distribution of summed features by category

are shown in Figure 1 (Note that some features belong to more than 1 category, so they’re counted twice).

Shape

Shape measurements are the features related to the shape and size of the cell. They are computed based on the per-channel seg-

mentation mask, and measure features such as area, perimeter, radius and compactness. Shape measurements are important in

understanding the high-level differences between populations and are the easiest to validate by eye.

Texture

Texture is a measure of a cell’s definition, alongside the relative measure of dye taken up by any given cell. Texture is measured by

computing a gray level co-occurrence matrix (GLCM), represented as a histogram describing the spatial relationship between pixels

in an image and their gray levels. The GLCM is calculated by counting the number of times pairs of pixels with specific gray levels

occur in a defined spatial relationship (calculated over multiple angles and distances). The resulting matrix is used to extract features

that describe the texture, directionality, and other properties of the image. We computed texture for 5 distances and for 5 different

angles. To avoid background biases, we computed these measurements on the image multiplied by the mask (the background re-

sults in 0 values).

Granularity

Granularity in an image refers to the level of detail and resolution of its components. It is a measure of the size of the individual ele-

ments that make up an image, and howwell these elements are defined and separated. A high-granularity image has a fine resolution

with clearly defined elements, while a low-granularity image has a coarse resolution, and its elements appear blurred or blended. To

measure granularity, a deconvolution process can be performed using round kernels of varying sizes on the image, and the average

value can be calculated. Similar to the texture measurements, we assigned a 0 value to all the pixels outside the segmentation mask.

Intensity

Intensity measurements refer to the measurement of the brightness or darkness of individual pixels in an image. The intensity of a

pixel is represented by a numerical value that corresponds to the amount of light that the pixel reflects or absorbs. The intensity mea-

sures help to identify if some dyes are particularly reactive or condensed on some cells with respect to others.

Concentric measurements

Concentric measurements are intensity and granularity measurements computed in a radial fashion. Concentric areas are used to

define new masks to overlay to the image and compute over the reduced images the measurements described above. This set of

features help to identify differences in the radial distribution within the cells.

Zernike moments

Zernike moments utilize a set of complex polynomials that are orthogonal over the unit disk, providing a robust representation of im-

age features. The computation of these moments was facilitated by the mahotas library, which provides an efficient implementation

for their calculation.

Overlap between channels

This set of measurements calculates the relationships between different channels and how much they correlate to each other. They

help highlight differences in the cell’s compartments.

Mitochondria

This optional measurement is specific to the mitochondria channel. In computing this set of measurements, an additional segmen-

tation step is performed within the mask, followed by a skeletonization to highlight the fine net-structures of mitochondria. From this

second binary mask, volumetric information is extracted, and from its skeletonization (Figure S1A), we can calculate the total extent

of mitochondria, the number of branches and the number of endpoints.

RNA

Similar to the mitochondria measurements, the RNA measurements are also optional and calculate the number and size of the

nucleoli overlaid to the DNA mask. This measurement is performed through an extra step of segmentation (Figure S1A) and includes

counts of organelles and total volume.

Global

Global measurements include the information retrieved at tile level and are the same for all the channels. They log the density of the

site (number of cells), and distance from the 2 closest cells. Having knowledge about the spatial surroundings of the cells is very

important, as the cells can assume very different phenotypes depending on density and proximity to other cells.

Code description
The ScaleFEx algorithm and its associated modules are publicly available on the NYSCF GitHub repository (https://github.com/

NYSCF/ScaleFEx), which also includes comprehensive documentation in itsWiki section. This repository hosts the code and detailed

instructions for replicating the analyses.

The algorithm processes high-content imaging (HCI) screens to extract a vector of features. The system supports deployment both

on-premise and on AWS cloud infrastructure, catering to various computational needs.

Initialization and Configuration: A Python class named "Process_HighContentImaging_screen" (‘‘Process_HighContentImaging_

screen_on_AWS for the AWS version) initializes with parameters from a YAML configuration file specifying directories, experiment

details, and processing parameters. The class leverages multiprocessing for efficient data processing. Features are stored in a
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pandas dataframe for subsequent analysis. Tomake sure that the computation was successful, we record a file that for each well and

site logs the number if cells that were computed, and the ones that were not together with the reason (e.g., the cell was near the

border, or the segmentation failed). This file is also used to retrieve the computation from the last locations, instead of starting

from scratch again.

AWS Integration: To facilitate the deployment of ScaleFEx, two AWS CloudFormation stacks were created. The first stack sets up

essential security infrastructure, including a Virtual Private Cloud (VPC), subnets, and a security group, along with the necessary IAM

permissions. These components are referenced by the subsequent template, AWS_CloudFormation_Templates/ScaleFEx_init.yaml.

This second stack initializes a master EC2 machine (c5.12xlarge) and executes the AWS_scalefex_main.py python script. This ma-

chine orchestrates the workflow leveraging AWS’ SDK, boto3. It launches andmonitors multiple spot worker machines which run the

ScaleFEx_extraction.py script on different parts of the dataset in parallel. Throughout this process, images are processed and the

resulting data are securely stored and managed within an AWS S3 bucket.

Data Query and Preprocessing: The system queries image data, applies flat field corrections, and normalizes images. It is equip-

ped to handle images of specified sizes and adjusts thresholds for the maximum and minimum cell sizes. The data are queried using

multiple parameters that detail the image directory structure, specific sets of images to be analyzed (e.g., plates, measurements, etc.)

and how relevant metadata is encoded within the directory and file names. Specifically, we devised a pattern-based querying func-

tion which takes a string input detailing the order, character length, and names of metadata fields that is generalizable to virtually any

imaging dataset.

Feature Extraction: The ScaleFEx_from_crop module includes all the functions used for computing the features starting from a

crop image of a cell, including mask computation, shape feature extraction from segmented regions, texture analysis, granularity,

intensity measurements, zernike moments, concentric measurements and correlation across multiple channels.

Analysis details
In-house dataset analysis

A Jupyter notebook is provided in the GitHub repository together with themain code. The output of ScaleFEx is a csv file (or a parquet

file if the AWS version was used) for each plate containing 1 cell’s feature vector per row, along with location information (e.g., well,

field, coordinates). After using the pandas library to load the csv or parquet, for the final analysis we normalized all the values between

0 and 1 and averaged at well level. We next used an LR algorithm (sklearn.linear_model.LogisticRegression) to predict drug vs. con-

trol and evaluated the result for each confounder removed. The model was designed in 5 Cross Validation (CV) folds with a plate held

out for testing for each fold, on data normalized between 0 and 1. To remove the contribution of any given confounder, we removed

the mean of each one and re-normalized at the end of the process to keep the values between 1 and 0, as previously described7. We

visually assessed the data using a UMAP (from the umap library). Variance thresholding was performed (sklearn.feature_selection.-

VarianceThresholding) to remove any 0-variance features thatmight occur. To determine howmany featureswere necessary to score

the best performance, we used an LRmodel andmax iteration of 100000 adding 1 feature at a time for features sorted by importance

to select until the model reached its peak accuracy. Once the number of features was found for every drug, we used a Recursive

Feature Elimination model (sklearn.feature_selection.RFE) with an LR estimator to select the best necessary features. From an LR

algorithm, we ranked the features (model.coeff_), removed the highly correlated ones feeding them in the ranked order filtering by

Pearson’s correlation coefficient 0.9>, and checked how many times the same feature occurred within the cross validation folds.

The result is summarized in Table S2. Seaborn andmatplotlib libraries were used to visualize the heatmap and the data distributions.

We employed a two-sided Mann–Whitney U-test to assess the statistical differences between two classes. To account for multiple

comparisons, we applied a Bonferroni adjustment to the significance levels. This method was chosen for its nonparametric nature,

which does not assume a normal distribution of the data, making it suitable for our analysis where the distribution of data could not be

assumed to be normal. The images of cells were extracted by selecting the well with the feature of interest closest to its mean. A 3x3

tile portion of the well was visualized to maintain a decent resolution.

RxRx2 dataset analysis

The analysis was performed using a similarity matrix derived from the data loaded into a pandas dataframe, where each element

represents the similarity between each well vs. each other. The control samples (marked as ‘‘EMPTY’’) were used as baselines for

comparing the effects of each small molecule. Conditions showing significant deviations were identified by comparing their mean

similarity scores against the mean plus standard deviation of the control group’s similarity scores. Specifically, conditions were

flagged if their mean similarity was less than the mean of the control group minus one standard deviation of the control group. In

a similar way, the compounds were grouped based on the similarity between each other. The meaningful features were then ex-

tracted as described in the paragraph above.

QUANTIFICATION AND STATISTICAL ANALYSIS

The boxplots components in Figures 3 and 4, S3–S5 are: horizontal line, median; box, interquartile range; whiskers, 1.53 interquartile

range. arb. units: arbitrary units. Two-sided Mann–Whitney U test: ns: p > 0.05; *0.01 < p% 0.05; ****p% 0.0001. This information is

also reported in each figure’s caption.
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