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Summary
Background Sudden Infant Death Syndrome (SIDS) is a leading cause of postneonatal mortality. The absence of
specific biomarkers of SIDS diagnosis and risk leaves a significant gap in understanding SIDS pathophysiology.
Metabolomics offers an avenue to better understand SIDS biology and identifying potential biomarkers.

Methods Using Metabolon Inc., global discovery panel, we analysed 828 metabolites from post-mortem serum
samples of infants from the Chicago Infant Mortality Study (CIMS) and the NIH NeuroBioBank (NBB). In total,
300 infants (195 SIDS; 105 non-SIDS) across multiple race/ethnicities (70% Black, 13% White, and 16%
Hispanic) were included. Metabolite associations with SIDS were performed using Welch’s t-tests, linear and
logistic regression, and network-cluster analyses.

Findings We identified thirty-five significant metabolite predictors of SIDS after adjustment for age, sex, race and
ethnicity, and post-mortem interval, including ornithine (OR 21.98; p-value 6.44e-7), 5-hydroxylysine (OR 19.48; p-
value 6.78e-7), 1-stearoyl-2-linoleoyl-GPC (18:0/18:2) (OR 16.80; p-value 3.4e-7), ribitol (OR 8.19; p-value 4.2e-8),
and arabitol/xylitol. Using Weighted Gene Co-expression Network Analysis (WGCNA), ten metabolite clusters
were identified. Four exhibited significant associations with SIDS. The two most correlated clusters were enriched
for metabolites in the tyrosine metabolism pathway and lipid (sphingomyelins) pathways.

Interpretation We identified metabolite biomarkers within key biological pathways and processes (e.g., nitrogen
metabolism, lipid and fatty acid metabolism, stress response, nerve cell communication, hormone regulation,
oxidative stress) with potential implications in SIDS pathology. Further research is needed to validate these bio-
markers in additional SIDS cohorts.
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Copyright © 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Metabolomics; Biomarkers; Sudden infant death syndrome
Introduction
Sudden Infant Death Syndrome (SIDS), the unex-
plained demise of an apparently healthy infant during
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sleep, remains a leading cause of postneonatal infant
mortality worldwide.1 SIDS is characterized as a sudden,
unexpected infant death (SUID) that remains
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Research in context

Evidence before this study
Sudden Infant Death Syndrome (SIDS) is a significant cause of
infant mortality, with its pathophysiology poorly understood
despite the existence of the Triple Risk Model. Previous
research has suggested metabolic disruptions in SIDS cases,
but specific biomarkers remained unidentified. We searched
PubMed for studies on metabolomics and SIDS, finding that
while several studies proposed potential metabolic pathways
associated with SIDS, conclusive biomarkers for prediction and
diagnosis were lacking.

Added value of this study
This research significantly contributes to our understanding of
SIDS by employing a comprehensive metabolomic analysis,
leveraging advanced liquid chromatography-mass
spectrometry to analyse post-mortem serum samples from
infants diagnosed with SIDS and other causes of sudden death

(non-SIDS). This study identifies potential metabolite
biomarkers and clarifies their roles within critical biological
pathways, such as lipid and fatty acid metabolism, stress
response, and oxidative stress, directly associated with SIDS.
This study applies a comprehensive metabolic framework to
SIDS, offering new avenues for diagnosis and prevention.

Implications of all the available evidence
The findings from this study, combined with existing
research, underscore the potential of metabolomics as a
powerful tool in unravelling the complex aetiology of SIDS. By
identifying specific metabolites and pathways, this research
provides foundational knowledge to develop predictive
biomarkers and preventive strategies. This paves the way for
increased use of metabolomic screening in the clinical
investigation of SIDS, highlighting the need for further
validation studies and the potential for clinical application.
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unexplained after the autopsy, investigation of the death
scene, and review of the medical history. Despite
extensive research, SIDS continues to be an enigmatic
condition, largely due to its multifactorial nature and the
absence of clear, identifiable precursors.2 The Triple
Risk Model,3 proposing an intersection of a vulnerable
infant, a critical developmental period, and external
stressors, provides a theoretical framework for under-
standing SIDS.4 However, this model lacks specific
biomarkers to assist with SIDS diagnosis and risk,
leaving a significant gap in understanding SIDS
pathophysiology.5

The advent of metabolomics, with its capacity to
systematically characterize small-molecule metabolites
in biological systems, presents a promising avenue for
advancing our understanding of SIDS.6 Global, unbi-
ased metabolomics association studies have emerged as
powerful tools in elucidating complex disease aetiol-
ogies, offering insights into underlying metabolic dis-
ruptions and potential diagnostic markers.7 In SIDS
research, metabolomics can potentially identify unique
metabolic signatures that differentiate infants at risk
from healthy controls, providing a window into the
physiological state preceding the tragic event.8 There is
prior work using metabolomic data from brain9,10 and
colon11 tissues attempting to discovery metabolic pre-
dictors of SIDS diagnosis. These studies suffer from
small sample sizes of SIDS cases (n = 16) and controls
(n = 7 to 13). They used machine learning approaches,
like LASSO regression, to discovery metabolic pre-
dictors, but have not validated their findings in inde-
pendent cohorts.

This study aims to leverage the sensitivity and
comprehensiveness of metabolomics to explore metab-
olomic profiles in SIDS cases compared to non-SIDS
controls in a much larger data set using samples from
the Chicago Infant Mortality Study (CIMS) and the NIH
NeuroBioBank (NBB). By conducting a metabolomics
association study, we intend to uncover metabolic
pathways and biomarkers that are distinct in SIDS,
thereby contributing to the discovery of potential diag-
nostic biomarkers for SIDS.
Methods
Study design
This study is a retrospective, metabolomic-wide associ-
ation study of infants who died with a SIDS diagnosis
versus non-SIDS diagnosis. Clinical data and serum
samples from two independent cohorts were included to
assess the metabolite-by-metabolite associations with
SIDS diagnosis.

Cohorts
Chicago Infant mortality study (CIMS)
The Chicago Infant Mortality Study (CIMS) was con-
ducted between November 1993 and April 1996, and
aimed to understand risk factors for SIDS, particularly
among a high-risk, urban African American population.
CIMS infants were all residents of Chicago and their
autopsies were handled by the Office of the Medical
Examiner of Cook County. Infants included were from
birth to 1 year old for those who died from SIDS and 1
month to 1 year for infants who died from other causes.
Infants for study inclusion were identified via a thor-
ough case investigation encompassing a complete au-
topsy, examination of the death scene, and review of the
clinical history. Tissue samples and other relevant data
were collected through standardized protocols for au-
topsy, medical record review, and a detailed death scene
investigation, which included an extensive question-
naire about the infant’s and family’s medical history,
www.thelancet.com Vol 111 January, 2025
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sleep environment, and circumstances leading to the
infant’s death; prior works provide more details of the
methodology.12–15

To achieve consensus on SIDS diagnosis, the cause
of death for each infant was determined by the
responsible medical examiner with input from the
others. Additionally, one in four cases were reviewed by
a blinded external review team, which included a
forensic pathologist and paediatric pathologist with
expertise in sudden infant death. Any difference in
diagnosis between the medical examiner and the
external review team was further discussed by a multi-
disciplinary committee to establish SIDS diagnosis by
consensus.

For biospecimen collection, study technicians were
present during the autopsies to handle the specimens;
including blood, vitreous humour, urine swabs, liver,
and heart. Specimens were frozen and sent in batches
with dry ice to the University of Maryland Brain and
Tissue Bank for Developmental Disorders within 48 h of
time of death. All tissues, including serum, were stored
at −80 ◦C, and there was no report of power failure or
other compromise to the tissues.

NIH NeuroBioBank
The NIH NeuroBioBank (NBB) was established in
September 2013 as a national resource for investigators
utilizing human post-mortem brain tissue and related
biospecimens for research to understand conditions of
the nervous system (http://www.neurobiobank.nih.gov).
The NBB receives donations from individuals who reg-
ister before death and from next-of-kin who authorize a
post-mortem donation. Brain and other tissues are
eligible for post-mortem donation based on an assess-
ment from a trained Brain and Tissue Repositories
(BTR) staff member. All BTR sites had their policies and
procedures reviewed and approved by their respective
Institutional Review Boards. All donated biospecimens
are collected within 24 h of death and prepared to have
the widest use for research. Donated/extracted serum
samples were flash frozen at −150 ◦C and stored at −80
Celsius. Serum samples were stored in glass tubes.

The cause of death determination for the NBB
samples and the definition of SIDS is unknown because
these cases were sent to the NBB from various medical
examiners who used different definitions and criteria
for death determination. To achieve consistency be-
tween NBB and CIMS, we requested serum from NBB
infants who had a diagnosis of SIDS under age 1 and
other causes of death ages 1 month to 1 year to match
our study age criteria. Dr. Hauck and study coordinators
reviewed all NBB infant deaths, including assigned
cause of death and available notes, and adjudicated each
cause of death using the SIDS definition: the sudden
and unexpected death of an infant less than twelve
months of age that remained unexplained after a review
of the clinical history, a complete autopsy, and a death
www.thelancet.com Vol 111 January, 2025
scene investigation.16 For infants with a diagnosis of
possible SIDS or SUID, those infants were assigned
SIDS as the cause of death, while infants with a diag-
nosis as possible or probable asphyxia were assigned
asphyxia as the cause of death.

Due to small numbers, causes of death other than
SIDS are summarized by combining CIMS and NBB
and grouping into ten broader categories (genetic dis-
orders, cardiac disorders, dehydration/malnutrition,
accident/injury, infection, respiratory (including hypox-
ia), asphyxia/suffocation, prematurity/developmental,
neurological (including seizures), and undetermined).
Nearly one-quarter of the non-SIDS causes of death
were due to infection (including pneumonia, sepsis, and
other infections), while ∼19% were due to asphyxia/
suffocation, ∼14% due to accident/injury, ∼12% unde-
termined, and ∼10% due to cardiac disorders (including
congenital heart disease, hypertrophy, and myocarditis).
Respiratory conditions accounted for ∼7% of causes of
death, with the remaining causes (genetic, dehydration/
malnutrition, prematurity/developmental, and neuro-
logical) accounting for less than 5% of deaths,
respectively.

Ethics
The Chicago Infant Mortality Study (CIMS) was
approved by a steering committee consisting of 14 rep-
resentatives from participating institutions and other
experts on infant mortality and urban minority health,
with additional approval by the Chicago Department of
Public Health and Office of the Cook County Medical
Examiner. Protocols conducted through the Medical
Examiner’s Office (autopsy, death scene investigation,
and medical record review) were routine parts of the
investigation of sudden infant death and did not require
informed consent. Informed consent was obtained from
deceased infant family participants for follow-up in-
terviews.12 The CIMS protocol was approved by the
institutional review boards of the Loyola University
Medical Center and University of Virginia.

The NIH-funded NeuroBioBank (NBB) was estab-
lished as a national resource for investigators utilizing
human post-mortem brain tissue and related bio-
specimens for their research to understand conditions
of the nervous system. All NBB samples were procured,
stored, and distributed according to applicable state and
federal guidelines and regulations involving consent,
protection of human subjects and donor anonymity.

Metabolites
Sample storage, preparation and data extraction
Post-mortem serum samples from CIMS and NBB were
stored at −80 ◦C, and 200 uL aliquots were shipped to
Metabolon, Inc. on dry ice. Global, untargeted metabo-
lite profiles were generated via liquid chromatography-
mass spectrometry using the DiscoveryHD4 platform
at Metabolon, Inc., for 1237 metabolites, as previously
3
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described.17 In-house quality control protocols were
utilized by Metabolon to account for instrument and
sample variability.

Compound identification and curation
Raw data were extracted, peak-identified, and QC pro-
cessed using Metabolon’s hardware and software.
Compounds were identified by comparison to library
entries of purified standards or recurrent unknown en-
tities. Metabolon maintains a library based on authen-
ticated standards that contain the retention time/index
(RI), the mass-to-charge ratio (m/z), and chromato-
graphic data (including MS/MS spectral data) on all
molecules present in the library. Furthermore,
biochemical identifications are based on three criteria:
retention index within a narrow RI window of the pro-
posed identification, accurate mass match to the
library ± 10 ppm, and the MS/MS forward and reverse
scores between the experimental data and authentic
standards.

Curation procedures were also performed internally
by Metabolon using proprietary visualization and
interpretation software. This included checks of con-
sistency of peak identification in the samples and
compound library matches. Peaks were quantified using
area-under-the-curve. Batch normalized metabolite data
were used for subsequent analyses. For each metabolite,
the raw values in the experimental samples were divided
by the median of those samples in each instrument
batch, giving each batch and metabolite a median of
one. The Batch-normalized data reflect median-scaled
raw data.

Statistical analysis
Pre-analysis QC
We examined the missing data pattern of the metabo-
lites prior to imputation between SIDS cases and non-
SIDS controls. Across serum samples, we found no
significant relationship between the amount of missing
metabolite values and the pathways in which they
belong. Additionally, there was no difference (p = 0.2) in
the proportion of missing metabolites within samples in
SIDS cases median (IQR) 0.21 (0.19, 0.24) and non-
SIDS controls 0.22 (0.19, 0.25). Because there is no
relationship of missing due to metabolic pathway or
SIDS diagnosis, we concluded that the left censoring of
metabolite values due to the limits of detection are non-
biasing. A common approach to address left-censoring
is to impute missing values with a value less than the
minimal observed value for that specific metabolite. We
utilized half of the minimum observed value. We
excluded any metabolite with greater than twenty
percent missing values from all analyses. We chose this
threshold to minimize the impact of data missingness
on metabolite-wide associations in our primary and
downstream analyses.
We conducted additional quality control to investi-
gate batch effects and cohort differences between CIMS
and NBB samples. We pruned highly correlated me-
tabolites (r > 0.5) and then calculated the principal
components of the remaining metabolites. We investi-
gated evidence of clustering between cohort, age quar-
tiles, sex, and quality control sample duplicates.

Primary metabolite-wide association analysis
Differences in metabolite levels between SIDS cases and non-
SIDS controls. To identify metabolites with differences
in normalized values between SIDS cases and non-SIDS
controls, we used Welch’s t-test of unequal variances to
estimate the degree of difference and its significance.
We then conducted a linear regression adjusting for age
in days, sex, race and ethnicity, post mortem interval
(PMI) in hours, and (CIMS or NBB) cohort. To inves-
tigate heterogeneity between cohorts, we performed
stratified analyses by cohort for both the Welch’s t-test
and linear regression approaches. Significant associa-
tions were defined at the Bonferroni adjusted p-value
(0.05/828 = 6e-5). We also performed stratified analyses
using the CIMS only and NBB only data for both
Welch’s t-tests and linear regression.

Metabolite predictors of SIDS cases. In order to find
potential metabolite predictors of SIDS, we utilized lo-
gistic regression adjusting for important SIDS con-
founding variables. We estimated the odds of SIDS
diagnosis by each metabolite independently adjusting
for age in days, sex, race, ethnicity, PMI in hours, and
cohort. Significant associations were defined at the
Bonferroni adjusted p-value (0.05/828 = 6e-5).

Metabolite co-expression network analysis
To address metabolite correlation, we adapted the
Weighted Gene Co-expression Network Analysis
(WGCNA) R package18,19 to cluster metabolites together
based on their correlations with each other. WGCNA
uses an unbiased approach to cluster data based on
similarity of expression patterns. We visualized several
power thresholds for proper network algorithm opti-
mization, which resulted in a power value of six. We set
the minimum module size to 20 and selected signed
Topological Overlap Matrix and Pearson correlation
parameters. After clustering metabolites into modules
(i.e., groups) and generating their representative eigen
vectors, we investigated their Module Trait Relation-
ships among SIDS diagnosis, sex, race and ethnicity,
age in days, birth weight in grams, bed sharing, PMI in
hours, and gestational age in weeks, separately.

Metabolite SIDS subgroup sensitivity analysis
In addition to SIDS case–control analyses, we explored
differences in metabolite levels in SIDS cases with and
without known SIDS risk factors: bed sharing,
www.thelancet.com Vol 111 January, 2025
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maternal smoking, and maternal drug or smoking,
from the CIMS cohort using Welch’s t-tests. Analyses
were performed for metabolites associated with SIDS
diagnosis from the logistic regression analysis with a p-
value less than 6e-5. The purpose was to determine if
metabolites levels differed in SIDS cases by exposure
level.

Role of funders
The Funders of this study had no role in study design,
data collection, interpretation, or writing of this report.
Results
Demographics
A total of 300 unique individuals were included in
downstream analyses composed of 266 infants from
CIMS and 34 infants from NBB; see Table 1. We
observed a mean difference in age of −37.4 days (95%
CI −54.6 to −20.2; p < 0.001) between SIDS cases and
non-SIDS controls (Median IQR 81 [54–125] days and
112 [74–181] days, respectively; p < 0.001). As expected,
there were more males than females in both SIDS cases,
and non-SIDS controls, and bed sharing had a greater
prevalence in SIDS cases (Table 1). Race and ethnicity,
PMI, maternal smoking, soft surface, and found on a
pillow were balanced between SIDS cases and non-SIDS
controls. PMI, specifically, had a median (IQR) of 25 h
(Q1 20, Q3 28).
Characteristic CIMS

SIDS Case
N = 170

Non-SIDS
Control N = 96

Overall
N = 266

Cohort n (%) 170 (64%) 96 (36%) 266

Age in days, Median (Q1,Q3) 78 (50, 118) 110 (73, 181) 86 (58, 14

Sex, n (%)

Male 100 (59%) 53 (55%) 153 (58%)

Female 70 (41%) 43 (45%) 113 (42%)

Unknown

Race/Ethnicity, n (%)

Black 125 (74%) 71 (74%) 196 (74%

Hispanic 29 (17%) 19 (20%) 48 (18%)

White 15 (8.8%) 6 (6.3%) 21 (7.9%)

Other 1 (0.6%) – 1 (0.4%)

PMI, Median (Q1,Q3) 25 (21, 28) 24 (19, 28) 25 (20, 28

Unknown 13 10 23

Maternal Smoking, n (%) 60 (35%) 27 (28%) 87 (33%)

Unknown – 1 1

Bed Sharing, n (%) 79 (48%) 25 (32%) 104 (43%

Unknown 4 18 22

Soft Surface, n (%) 78 (47%) 33 (49%) 111 (48%)

Unknown 5 28 33

Found on a pillow, n (%) 46 (28%) 22 (30%) 68 (28%)

Unknown 4 23 27

Table 1: Demographics by cohort.

www.thelancet.com Vol 111 January, 2025
Metabolite-wide associations with SIDS diagnosis
We excluded metabolites with greater than 20% missing
values, resulting in 828 metabolites subject to imputa-
tion and included in subsequent data analyses.

Primary results
Differential metabolite levels by SIDS diagnosis
Forty-three of the 828 metabolites had significant differ-
ences between SIDS cases and non-SIDS controls after
Bonferroni adjustment (0.05/828 = 6e-5), based on
Welch’s t-test; Fig. 1. Supplemental Table S1 lists these
significant metabolites, their statistics, and biological an-
notations. Twenty-nine of which were also significant after
adjustment for age in days, sex, race and ethnicity, PMI,
and cohort via linear regression analysis (Supplemental
Table S2). Fig. 2 shows the metabolite–metabolite corre-
lation and clustering of these twenty-nine metabolites.

Metabolites as a biomarker of SIDS diagnosis
Subsequent logistic regression analyses, testing for
metabolite predictors of SIDS diagnosis, identified
thirty-five significantly associated metabolites after
Bonferroni correction; see Supplemental Table S3 and
Fig. 3. Of the thirty-five significantly associated metab-
olites, the five most significant associations were
observed for ornithine (OR 21.98; p-value 6.4e-7), 5-
hydroxylysine (OR 19.48; p-value 6.8e-7), 1-stearoyl-2-
linoleoyl-GPC (18:0/18:2) (OR 16.80; p-value 3.4e-7),
NBB Combined

SIDS Case
N = 25

Non-SIDS
Control N = 9

Overall
N = 34

Overall
N = 300

25 (74%) 9 (26%) 34 300

2) 106 (88, 142) 121 (99, 201) 114 (88, 142) 90 (61, 142)

15 (63%) 6 (67%) 21 (64%) 174 (58%)

9 (38%) 3 (33%) 12 (36%) 125 (42%)

1 – 1 1

) 10 (40%) 4 (44%) 14 (41%) 210 (70%)

– – – 48 (16%)

12 (48%) 5 (56%) 17 (50%) 38 (13%)

3 (12%) – 3 (8.8%) 4 (1.3%)

) 25 (21, 29) 21 (15, 27) 25 (18, 29) 25 (20, 28)

23

– – – 87 (33%)

25 9 34 35

) – – – 104 (43%)

25 9 34 56

– – – 111 (48%)

25 9 34 67

– – – 68 (28%)

25 9 34 61

5
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Fig. 1: CIMS and NBB combined Metabolite-wide associations between SIDS cases and non-SIDS controls from the Welch’s t-test. Legend: The
red line represents the Bonferroni Correction p-value threshold for significance (0.05/828 = 6.04e-5) on the −log10 scale, which should be
interpreted as any dot above the red line has a significant association with SIDS diagnosis.
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ribitol (OR 8.19; p-value 4.2e-8), and arabitol/xylitol (OR
7.70; p-value 9.6e-6). Twenty-six metabolites displayed
consistent significant associations with metabolites
identified from the combined Welch’s t-test analysis.

Metabolite co-expression network analysis
WGCNA cluster analyses resulted in ten different clus-
tered groups (modules); Fig. 4. Each cluster is deter-
mined based on pairwise correlation of all metabolite
values, with similarly expressed patterns grouped into
modules. Correlation coefficients (r) between modules
and phenotype data can be calculated to identify mod-
ules highly correlated with specific phenotypes. Fig. 4
shows the correlation coefficients and corresponding
p-values for the 10 clusters/modules and SIDS diag-
nosis and other relevant SIDS phenotypes. Four clusters
had significant correlations with SIDS diagnosis:
MEgreen (51 metabolites, r = −0.27, p = 9e-6), MEblue
(89 metabolites, r = 0.18, p = 0.003), MEbrown (88
metabolites, r = −0.16, p = 0.01), and MEturquoise (98
metabolites, r = 0.16, p = 0.009) (Supplemental
Table S4). For those module correlations, positive r
values indicate that SIDS diagnosis likelihood increases,
while negative r values indicate that the likelihood of
SIDS diagnosis decreases. MEgreen consisted of fifty-
one metabolites where 43.1% were in the amino acid
super pathway and 25.5% had an unknown associated
super pathway. Furthermore, 15.75% of metabolites in
the MEgreen cluster were related to Tyrosine meta-
bolism. In relation to other SIDS risk factors, the
MEgreen cluster had the same direction of association
with race, birth weight in grams, bed sharing, and
gestational age. In contrast, this cluster had an associa-
tion with post-mortem interval in the opposite direction.
Eighty-nine metabolites comprised the MEblue cluster,
which 84.3% were lipids. Of the lipid metabolites,
37.3% were Sphingomyelins. Unlike the MEgreen
cluster, the MEblue cluster appears to be uniquely
associated with SIDS and not with other known risk
factors. Similar to the MEblue cluster, the MEbrown
cluster had a large proportion (55.7%, n = 49) of me-
tabolites in the lipid super pathway, with the majority of
those metabolites (n = 36) within the fatty acid meta-
bolism/Acyl Carnitine sub pathway. The MEbrown
metabolites were negatively associated with SIDS, but
positively associated with age in days, while the
www.thelancet.com Vol 111 January, 2025
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Fig. 2: Metabolite-by-Metabolite correlations of significantly associated candidate biomarkers. Legend: The figure is a correlation matrix of the
twenty-nine significant metabolites from the Welch’s t-test that were also significant in linear regression analyses adjusting for confounders.
The size of the circles and shade of colour represent the strength of the correlation and the gradient from red to blue shows the direction of the
association from −1 to +1 as seen in the legend on the left side of the correlation matrix.
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MEturquiose cluster (n = 98 metabolites) had a positive
association with post-mortem interval and bed sharing
as well as SIDS, and had a large proportion of metabo-
lites within the amino acid super pathway (52%).

Metabolite SIDS subgroup sensitivity analysis
For exploration, we investigated if metabolites differed
within SIDS cases from the CIMS cohort. We used the
significant metabolites identified from the logistic
regression models, then compared differences between
those with and without known SIDS environmental risk
factors: 1) bed sharing, 2) maternal smoking exposure,
and 3) any maternal drug or smoking exposure. For bed
www.thelancet.com Vol 111 January, 2025
sharing, four metabolites had mean differences with
95% confidence intervals that did not encompass zero.
They were cortisol [0.24 95% CI 0.05, 0.44], glutamate
[−0.13, 95% CI −0.24, −0.03], 1-(1-enyl-palmitoyl)-2-
linoleoyl-GPE (P-16:0/18:2) [−0.16, 95%
CI −0.31, −0.02], and 1-(1-enyl-stearoyl)-2-linoleoyl-GPE
(P-18:0/18:2) [−0.15 95% CI −0.27, −0.02]. Maternal
smoking exposure was associated with one unknown
metabolite (X-25790) [0.23 95% CI 0.01, 0.46], while no
metabolites were associated with any maternal drug or
smoking exposure. Fig. 5 shows the thirty-five metab-
olome-wide significant metabolites from the case versus
control logistic regression analysis and their mean
7
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Fig. 3:Metabolite-wide associations as predictors of SIDS diagnosis via logistic regression models. Legend: The red line represents the Bonferroni
Correction p-value threshold for significance on the −log10 scale, which should be interpreted as any dot above the red line has a significant
association with SIDS diagnosis. The logistic regression adjusted for age in days, sex, race and ethnicity, post-mortem interval (time from death
to autopsy), maternal smoking exposure, and cohort.
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differences among each SIDS risk factor exposure,
while Supplemental Table S5 shows the estimates for all
metabolites.
Discussion
SIDS remains a leading cause of postneonatal infant
mortality worldwide.1 There is a significant need to have
diagnostic biomarkers for SIDS to assist with accurate
diagnosis as well as to provide insights into myriad
causal candidates from the Triple Risk Model.3 Thus, we
performed a large-scale metabolomics analysis of 828
metabolites to investigate unique metabolite signatures
of a SIDS diagnosis and known SIDS risk factors. The
study populations reflect the age and sex distributions of
prior SIDS literature.20–22 However, the individuals
include mostly infants identified as Black (70%).

Twenty-nine metabolites had significant differential
levels in serum between SIDS cases and non-SIDS
controls even after adjustment for confounding
(Supplemental Table S2). We also observed thirty-five
metabolites as significant predictors of SIDS diag-
nosis, after adjustment for confounders (Supplemental
Table S3). The top five most predictive metabolites of
SIDS diagnosis that overlap Supplemental Tables S2
and S3 are: 1) ornithine, 2) 5-hydroxylysine, 3) 1-
stearoyl-2-linoleoyl-GPC (18:0/18:2), 4) ribitol, and 5)
arabitol/xylitol.

Related to the urea cycle, ornithine (OR 21.98; 95%
CI 6.51–74.23) is strongly associated with SIDS diag-
nosis. Ornithine plays a critical role in the disposal of
ammonia. Ammonia (nitrogen) metabolism has been
previously linked to SIDS risk,23,24 with implications of a
hepatic metabolic profile in SIDS.25 Ornithine activates
urea synthesis via the Ornithine Transcarbamylase
(OTC) enzyme, which turns ammonia into urea within
the kidneys prior to excretion.26 Interestingly, the OTC
gene is located on the X-chromosome (Xp21.1) and its
deficiency results in high levels of ornithine and
ammonia,26 which is consistent with the direction of
association for ornithine in this study. Although no
consensus has been reached regarding the correlations
or causality between OTC polymorphisms and SIDS,
multiple case studies report the cooccurrence of OTC
mutations and SIDS diagnoses.27–29 Furthermore, high
levels of ornithine also occur when there is excessive
www.thelancet.com Vol 111 January, 2025
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Fig. 4: Correlations of SIDS diagnosis and risk factors among Metabolite Clusters. Legend: This module-trait heatmap represents the correlations
of the module eigengenes (ME) with various SIDS risk factors (sex, race and ethnicity, age in days, weight at birth in grams, post mortem
interval (in hours), bed sharing, maternal smoking exposure, maternal drug exposure, and gestational age in weeks. Each module (cluster group)
is depicted as a colour name (green, blue, brown, etc.) on the Y axis, with corresponding correlation coefficient and p-value for each trait (X axis)
per cell. Colour intensities indicate significance (darker shade (intensity) indicating a more significant p-value; stronger correlation) with red
indicating a positive correlation, white indicating no correlation, and blue indicating a negative correlation.
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lysine. The metabolite 5-hydroxylysine (OR 19.49; 95%
CI 6.04–62.93), an amino acid derivative of lysine,30 is
moderately correlated with ornithine (Fig. 2) and has a
similar SIDS predictive strength as ornithine. However,
it is not directly involved in urea metabolism, but
collagen formation. Levels of 5-hydroxylysine can in-
crease with the degradation of collagen post-mortem.31

Reassuringly, the PMI time did not differ between
SIDS cases and non-SIDS controls with a mean differ-
ence of −0.27 min (95% CI −2.93 to 2.38). On the other
hand, this does not rule out the potential confounding of
the time death occurred to the discovery of the infant.
www.thelancet.com Vol 111 January, 2025
The third candidate metabolite biomarker is 1-
stearoyl-2-linoleoyl-GPC (18:0/18:2) (OR 16.8; 95% CI
5.69–49.69). This metabolite contains linoleic acid (“2-
linoleoyl”); an essential fatty acid obtained only through
diet. Additionally, this metabolite is a phosphatidylcho-
line, which is integral for cerebral cortex lipid structure
and neuronal membrane stability during development.32

This metabolite, also known as phosphatidylcholine
diacyl C36:2, is a potential biomarker of foetal congenital
heart defects during the first trimester.33

The last of the top five candidate metabolite bio-
markers, ribitol and arabitol/xylitol, are positively
9

http://www.thelancet.com


Fig. 5: Metabolite differences by SIDS risk factor exposures among SIDS Cases from the CIMS Cohort. Legend: Estimated metabolite mean group
differences are depicted for each of the thirty-five significantly associated metabolites from the logistic regression analysis (left column) for
three known SIDS environmental exposure risk factors: Bed Sharing (Yes/No, Green), Maternal Smoking Exposure (Yes/No, Orange), and Any
Maternal Drug or Smoking Exposure (Yes/No, Purple) within CIMS SIDS cases only. Points greater than zero indicate mean metabolite values
that are higher in SIDS cases, and mean metabolite values less than zero indicate lower levels in SIDS cases for the corresponding risk factor.
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correlated with each other (Fig. 2) and are both part of
the same pentose interconversion and phosphate path-
ways (KEGG pathway C00379). In this study, we
observed the same direction of SIDS prediction with
each unit increase in ribitol levels having an increase of
the odds ratio by 8.19 times (95% CI 3.86–17.37; p-value
4.2e-8). Ribitol is a normal by-product in urine.34 How-
ever, elevated levels of ribitol and D-arabitol (derivative
of xylitol) in serum or urine can be indicative of trans-
aldolase deficiency, which affects the pentose phosphate
pathway leading to liver cirrhosis in children.35 The
pentose phosphate pathway is an important metabolic
pathway that functions as an alternate pathway to
glycolysis36,37 and plays a critical role in minimizing
oxidative stress through the production of NADPH. It is
widely acknowledged that impaired energy metabolism
is implicated in SIDS,38 and recent animal studies sug-
gest that ribitol therapy reduces skeletal muscle pathol-
ogy, cardiac fibrosis, and improved respiratory function
in a muscular dystrophy model.39

In addition to individual metabolite associations,
WGCNA analyses identified several metabolite clusters
associated with SIDS and related phenotypes, with the
two most correlated clusters enriched for metabolites in
the tyrosine metabolism (MEgreen) and lipid (sphingo-
myelins) pathways (MEblue). For the MEgreen cluster
associated with SIDS diagnosis (r = −0.27, p = 9e-6),
eight of the 51 metabolites (15.75%) in this cluster were
related to tyrosine metabolism (homovanillate, vanillyl-
mandelate, N-acetyltyrosine, phenol sulphate, homo-
vanillate sulphate, 3-methoxytyramine sulphate,
vanillactate, and dopamine 3-O-sulfate). Tyrosine, a
nonessential amino acid, is a precursor for hormones
and neurotransmitters such as catecholamines (e.g.,
dopamine, norepinephrine, and epinephrine) that are
important for stress response,40 nerve cell communica-
tion,41 and hormone regulation. Tyrosine has also been
shown to reduce physiological arousal,42 while defects in
arousal have long been suspected to contribute to
SIDS.43,44 Furthermore, polymorphisms in genes within
the tyrosine metabolism pathway, in particular the
tyrosine hydroxylase gene, have shown previous associ-
ations with SIDS.45,46 Our WGCNA findings further
support a role for tyrosine metabolism in SIDS.

The MEblue cluster was solely associated with SIDS
diagnosis and no other known SIDS risk factors and was
enriched for lipid metabolites. Sphingomyelins repre-
sent a specific type of sphingolipid that has many
important functions and roles that are relevant to SIDS.
Sphingolipids are critical for brain development and
sphingomyelin, specifically, is a major component of the
myelin sheath that surrounds nerve axons. While cau-
sality has not been established, the role of myelination
in SIDS has long been postulated.47 In addition to brain
development and function, sphingomyelins are impor-
tant for lung function, as a component of surfactant.
Surfactant itself has ongoing interest as a biomarker of
www.thelancet.com Vol 111 January, 2025
SIDS.48–52 However, our sphingomyelins of interest play
a large role in cell signalling via lipid rafts,53 which
initiate neural signalling and are highly relevant to the
development and function of neural circuits. Even
though phosphatidylcholines have distinct functions
from sphingomyelins, they were highly correlated with
sphingomyelins and clustered together by WGCNA.
Similar to sphingomyelins, phosphatidylcholines have
links to surfactant abnormalities in SIDS,48,49,53 as well as
a known component of cerebral cortex neuronal mem-
brane phospholipids.32 Although not found in the
MEblue cluster, 1-oleoyl-2-linoleoyl-GPE (18:1/18:2) was
associated with SIDS (OR 2.105 95% CI 1.39–3.19),
which is a lipid part of the phosphatidylethanolamine
sub pathway. In an animal study,54 a choline-deficient
diet was associated with decreased linoleic acids in
liver phosphatidylethanolamine, which plays a role in
pulmonary surfactants. The authors showed that
inositol supplements altered the composition of the
surfactant phospholipids and reduced the need for ox-
ygen therapy.

Another metabolite in MEblue, succinate has high
biological relevance, because it is a component of the
tricarboxylic acid (TCA, or citric acid) cycle. The TCA
cycle has previously been implicated in SIDS pathology
over twenty years ago.55 A more recent study demon-
strated succinate as a potential biomarker of SIDS
versus death from other causes in an age- and sex-
matched cohort using brain tissue from the NBB.8 In
our current study, we found succinate to have a mod-
erate to large odds ratio of 6.73 (95% CI 2.20–16.90; p-
value 5.20e-4) for SIDS diagnosis, but it did not reach
our Bonferroni corrected threshold of 6e-5. One reason
for the lack of replication of succinate as a biomarker of
SIDS may be the difference in tissue types. The
metabolomics data from the current study were gener-
ated from serum instead of brain tissue. This is an
important distinction since succinate levels are affected
by asphyxiation.56 It is possible that succinate levels in
the brain tissue are more sensitive due to asphyxiation
than those measured from serum.

Similar to prior work, we observed many amino acids
and short chain fatty acids having associations with
SIDS57–59 even after adjusting for confounders. The
WGCNA analysis revealed an enrichment for two clus-
ters (MEgreen and MEturquoise) that show a high
prevalence of amino acids. Interestingly, these clusters
have opposing correlation coefficients with similar effect
sizes (−0.23 versus 0.18); Fig. 3. These clusters also
correlate with the PMI and the bed sharing risk factor
for SIDS. In addition, the MEbrown cluster was
enriched for metabolites in the fatty acid metabolism/
Acyl Carnitine sub pathway. Fatty acid oxidation disor-
ders have long been suspected as primary causes of
SIDS.60,61

The CIMS cohort measured several important con-
founders and SIDS risk factors. One is maternal
11

http://www.thelancet.com


Articles

12
prenatal smoking exposure, which has great interest62 as
a SIDS risk factor. Our second strongest metabolite-
SIDS association was for N1-Methyl-2-pyridone-5-
carboxamide (2PY). 2PY is involved in niacin
metabolism and is a known uremic toxin.63,64 Smoking
exposure is a determinant of this metabolite.64 This is a
unique finding as no prior work on 2PY in SIDS exists.
We further investigated differences in metabolite levels,
in infants who died from SIDS in the CIMS cohort, for
known SIDS environmental risk factors: 1) bed sharing,
2) maternal smoking exposure, and 3) any maternal
drug or smoking exposure (Fig. 5). Notably, cortisol, a
human stress hormone, showed differences in CIMS
infants who died of SIDS who were bed sharing versus
those who were exposed to smoking or drugs. It has
been hypothesized that some SIDS deaths are due to
uncontrolled inflammatory reactions and cortisol levels
may be an indicator for stress and/or a lack of inflam-
matory control in SIDS.65,66

Our study has limitations. This metabolomics study
was conducted using post-mortem biospecimens.
Recent studies demonstrated that post-mortem material
is robust and beneficial in metabolomic studies, espe-
cially when material was collected within 48 h of the
time of death.67,68 We identified candidate metabolite
biomarkers; we do not have an immediate causal
interpretation. However, we applied a conservative
Bonferroni p-value correction to narrow the pool of po-
tential metabolite biomarkers for SIDS. Furthermore,
we applied a correlation-weighted clustering algorithm
to understand general metabolomic profiles associated
with SIDS and incorporated each metabolite’s biological
pathway and sub-pathway information to gain insight
into metabolic processes associated with a SIDS
diagnosis.

Another limitation is that this study combines two
cohorts with notable differences in race and ethnicity
composition, sample sizes, and detailed phenotype and
environmental exposure data. For example, the NBB
database did not contain detailed information
regarding SIDS risk factors such as maternal smoking
and bed sharing. This limited our ability to adjust for
these confounders in the combined CIMS and NBB
analyses. Additionally, our sensitivity analyses for
maternal smoking and drug exposure and bed sharing
only pertain to the CIMS cohort due to the lack of
clinical data available for the NBB biospecimens.
Furthermore, the CIMS cohort consisted of 74% Black
infants as compared to only 41% Black infants in NBB.
To account for potential bias due to differences in race/
ethnicity distribution in CIMS and NBB, we performed
Welch’s t-tests for combined (all CIMS and NBB),
CIMS only, NBB only, and combined race/ethnicity,
and stratified (Black only, White only, Hispanic only) as
shown in Supplemental Table S1. Although NBB only
and race/ethnicity stratified analyses were underpow-
ered (no significant associations for NBB and Hispanic
only analyses), CIMs only analysis identified 32 statis-
tically significant metabolites, while 31 and 2 metabo-
lites were significant in the Black only and White only
stratified analyses, respectively. Ribitol (p-value 4.99e-
05) and 2-hydroxybutyrate/2-hydroxyisobutyrate (p-
value 4.27e-05) were the two top associations in White
only analyses. Thus, our results may be more specific
to the CIMS cohort or driven by infants identified as
Black. Recent work by Galván-Tejada et al. demon-
strated univariate associations with SIDS, specifically
acetic, butyric, hexanoic, and valeric acids having the
best ability to predict SIDS diagnosis.59 In contrast,
none of our metabolites that are derivatives of these
acids were significant predictors of SIDS. However,
these derivatives are present in both the green and
turquoise clusters. This discrepancy may be due to the
difference between univariate associations with SIDS
and those after adjustment for important confounders
like post-mortem interval. The current interpretation of
our findings remains limited as most previous litera-
ture focusing on SIDS and metabolites are few and
older than a 1995 publication date. While there are
recent efforts9–11,69 of metabolomic investigations, they
suffer from very small sample sizes. We believe this
underscores the need for larger metabolomics studies
focused on SIDS to investigate the metabolomic con-
tributions to important SIDS subgroups and risk
factors.

In conclusion, we performed an unbiased discovery
of metabolites finding new candidate biomarkers for
SIDS. Moreover, several metabolomics profiles specific
to SIDS arose having consistency with the Triple Risk
model, e.g., pulmonary surfactant composition. Some
pointed to a potential biological mechanism of central
nervous circuitry via sphingomyelins, which are critical
for insulating neurons and transferring their impulses
from one to another. However, direct biological and
causal interpretation remains limited and beyond the
scope of this study. Thus, it is imperative for future
work to replicate these findings and add other “omics”
to tease out causality.
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