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ABSTRACT
Background: Non- small- cell lung cancer (NSCLC) remains a global health challenge, driving morbidity and mortality. The 
emerging field of radiogenomics utilizes statistical methods to correlate radiographic tumor features with genomic characteris-
tics from biopsy samples. Radiomic techniques automate the precise extraction of imaging features from tumor regions in radio-
graphic scans, which are subjected to machine learning (ML) to predict genomic attributes.
Methods: In a retrospective study of two NSCLC patient cohorts separated by 5 years, we performed a radiogenomic analysis of 
previously disseminated data from 2018 (n = 116) and newly acquired data from 2023 (n = 44) using RNA sequencing and lung 
CT images. Combining the data from two cohorts post binarization (of gene expression) or batch normalization (of radiomic fea-
tures) in each cohort proved to be a better approach as compared to training the model on one cohort and validating on the other.
Results: Our ML- based radiogenomic modeling identified specific imaging features—wavelet, three- dimensional local binary 
patterns, and logarithmic sigma of gray- level variance—as predictive indicators for high (1) vs. low (0) gene expression of pivotal 
NSCLC- related genes: SLC35C1, BCL2L1, and MAPK1. These genes have recognized implications in a variety of biological path-
ways and mechanisms of drug resistance pertinent to NSCLC.
Conclusion: The successful integration of heterogeneous radiogenomic datasets underscores the potential of imaging biomark-
ers in uncovering NSCLC biological processes through gene expression profiles.

1   |   Introduction

Non- small cell lung cancer (NSCLC) is the most common type 
of lung cancer and remains a leading cause of cancer- related 
deaths worldwide [1, 2]. The prognosis for NSCLC patients re-
mains poor, with a 5- year survival rate of approximately 20% [3]. 
While recent advances in targeted therapies and immunother-
apies have shown promise in improving outcomes for NSCLC 

patients, identifying the most effective treatment for each pa-
tient remains a challenge [4].

Radiogenomics is an emerging field that combines standard- of- 
care (SOC) radiological imaging with tumor genetics to identify 
genetic mutations and molecular pathways associated with im-
aging features [5]. The field of radiogenomics has the potential 
to improve patient care by providing non- invasive predictions 
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of gene expression profiles and identifying potential therapeutic 
targets for personalized treatment [6]. In recent years, radioge-
nomics has gained interest in NSCLC owing to its potential for 
identifying associations between imaging features and genetic 
mutations or molecular pathways that drive tumor growth and 
metastases [6–11]. Several studies have demonstrated the po-
tential of radiogenomics to predict gene expression profiles in 
NSCLC, suggesting that radiogenomics may provide valuable 
insights into the biological mechanisms of NSCLC to iden-
tify potential therapeutic targets for personalized treatment 
[6, 11]. However, the majority of these studies cluster genes 
co- expressed in biological pathways prior to performing their 
correlation and modeling with imaging features [6, 11], which 
could potentially suppress the associations that are likely to 
exist between imaging features and the expression of individual 
genes. The predicted genes could be analyzed for their connec-
tions with each other in the biological pathways that are crucial 
in NSCLC. Thus, although the association between computed 
tomography (CT)- based imaging features and expression pro-
files of individual genes in NSCLC could facilitate the monitor-
ing of both individual and grouped genomic markers linked to 
tumor cell progression and metastasis, this has been poorly in-
vestigated in NSCLC.

Several statistical and Machine learning (ML) techniques have 
been previously employed to associate and predict genetic mu-
tations and the expression of several genes using radiomic fea-
tures from PET and CT scans in NSCLC, respectively [8, 10]. 
However, best practices for integrating diverse ML and statis-
tical techniques to harmonize radiogenomic datasets with con-
siderable time gaps between distinct cohorts or between centers 
have not been established. Furthermore, the lack of adequate 
data for training, testing, and validation of radiogenomic models 
hampers the clinical utility of these technologies [7]. These lim-
itations are also an obstacle to building robust ML models based 
on diverse radiogenomic datasets, thereby preventing adequate 
validation or their translation into clinical practice. Moreover, 
available datasets are outdated and should be augmented with 
current data to account for advancements in imaging and ge-
nomic sequencing technologies [7], for which batch- effect 
normalization would be required to arrive at robust and repro-
ducible radiogenomic associations [12]. Lastly, establishing the 
predictive power of imaging features to serve as surrogate bio-
markers of individual gene expression in radiogenomics is also 
a known limitation [7].

To address the aforementioned limitations, we sought to investi-
gate the association between radiologic features extracted from 
tumor regions of interest (ROIs) on CT images and gene expres-
sion profiles obtained from the respective tumor tissue biopsies 
in NSCLC patients by combining the two distinct NSCLC co-
horts from the same institution separated temporally by 5 years: 
(1) a publicly available NSCLC radiogenomic dataset (hosted at 
The Cancer Imaging Archive [TCIA]) from 2018 [14, 15] and 
(2) a newly generated NSCLC dataset from 2023. To do this, 
we implemented and tested both regression-  and classification- 
based ML approaches, to evaluate whether radiomic features ex-
tracted from lung computed tomography (CT) scans accurately 
predicted gene expression using RNA- seq data from biopsied 
lung tumors. Our study proposes best practices for combining 
the two temporally distinct radiogenomic datasets, representing 

a considerable advancement in the integration of radiomic and 
genomic technologies to overcome known limitations of build-
ing and testing ML models using combined radiogenomic data-
sets  [7]. Furthermore, we demonstrate the ability of specific 
imaging features to predict the individual expression (high vs. 
low) of several genes known to elevated or co- expressed in cru-
cial biological pathways involved in NSCLC.

2   |   Materials and Methods

2.1   |   Generation of Radiomic Data

The CT scans from an NSCLC cohort (n = 116) and their corre-
sponding segmentation labels, illustrating tumor regions of in-
terest (ROIs), were obtained from The Cancer Imaging Archive 
(TCIA) portal [15]. The CT scans of a second cohort (n = 44) 
were processed using Dune- AI [16] to generate tumor segmenta-
tion labels, which were then carefully reviewed and refined for 
boundary accuracy using ITK- SNAP software [17] (Figure S1). 
Radiomic features were subsequently extracted from these 
segmentation labels using Pyradiomics software (v3.0.1) [18]. 
Radiomic features underwent analysis using the correlation 
module in ImaGene [19]. Pearson- based correlations were com-
puted across various classes of radiomic features, including 
shape, size, gradient, wavelength, and local binary pattern- 3D. 
Subsequently, a hierarchical clustering based on the Euclidean 
distance method was employed to organize and visualize the re-
lationships between these features.

2.2   |   Generation of Gene Expression Data

The RNA- seq data, measured as fragments per kilobase per 
million reads (FPKM), that were available for the respective 
tissue- biopsies for the old cohort, were downloaded [14]. Genes 
with FPKM value not reported in one or more than one sample 
were eliminated from the dataset. For the new cohort, the total 
Ribonucleic acid (RNA) was isolated from FFPE tissues using 
Promega Maxwell RSC RNA FFPE Kit (cat# AS1440). The qual-
ity of the total RNA was evaluated by generating the DV200 
score using Tapestation 4200 (Agilent Technologies), which as-
sessed the percentage of fragment lengths greater than 200 nt, 
and the quantification of total RNA was performed by Qubit 
(Invitrogen). Each sample's quality was evaluated and the sam-
ples were passed based on the validated manufacturer's qual-
ity requirements of DV200 > 20% and quantity requirements 
of > 250 pg. in 15 μL solution for compatibility of library prepa-
ration using the Takara SMARTer Stranded Total RNA- Seq Kit 
v2—Pico Input Mammalian kit which uses random priming 
and does not require polyA tails. During the library preparation 
stage, 10 ng total RNA input was used following manufacturer's 
instructions to synthesize cDNA fragments using random prim-
ers. SMART technology is used to preserve the strand orientation 
information. Adapters for Illumina sequencing (with specific 
barcodes) was added through PCR using only a limited number 
of cycles (5 cycles). The ribosomal cDNA fragments were then 
cleaved using ZapR v2 enzyme in the presence of rRNA specific 
probes. The library fragments from non- rRNA molecules were 
then enriched by a second round of amplification. The final li-
brary quality was estimated using Agilent Tapestation 4200 for 

https://www.promega.com/products/nucleic-acid-extraction/rna/maxwell-rsc-rna-ffpe-kit/?catNum=AS1440


3 of 11

single peak ranging from 300 to 350 bp and quantification was 
done using Qubit Flex (Invitrogen) for > 4 nM. Prior to sequenc-
ing, libraries were diluted to four nmoles and pooled. Pooled li-
braries were sequenced on NovaSeq 6000 (Illumina) following 
manufacturer's instructions using 300 cycle kit, paired end 100 
basepair reads. Raw reads were generated from run base- call 
(BCL) files using the bcl2fastq tool version v2.20.0.422. Quality 
of the reads was assessed using in- house fastqc scripts. Fastq file 
QC was evaluated against Illumina's manufacturer's guideline 
that states Q30 > 85% for passing metrics. Majority of samples 
had Q30 > 90%. The resulting Fastq files were processed for 
Illumina- adapter trimming using TrimGalore software (version 
0.6.6). The adapter- trimmed FASTQs were aligned to human 
reference genome (version hg19) using STAR Aligner (version 
2.6.0) to yield Binary Alignment Map (BAM) files. The percent 
reads aligned was found to be 97% on average across all samples. 
Gene- expression (FPKM) values were called from BAMs using 
Cufflinks (version 2.2.1).

2.3   |   Correlation Between Radiomic Features 
and Gene Expression Data

The radiomic features and gene- expression data were correlated 
using Pearson's correlation method and were then filtered using 
an absolute correlation coefficient threshold, |r| > = 0.5 [16] with 
a Bonferroni- Hochberg corrected p value of less than 0.05, fol-
lowed by hierarchical clustering based on Euclidian distance to 
obtain significantly correlated radiogenomic feature- clusters. 
Pearson- based correlation technique is one of the most common 
methods used in previous radiogenomic correlational studies 
[10, 16]. Hierarchical clustering technique is widely adopted in 
radiogenomic studies as well [12, 13]. We combined these two 
techniques to increase robustness of associations between radio-
mic and gene- expression features.

Also, as the features are derived from two different modalities 
(radiology and genomics), they could potentially have their sig-
nals biased due to the way they are measured or extracted, that 
is, FPKMs for gene- expression and handicraft radiomic fea-
tures (based on pre- defined statistical formulas) extracted from 
Pyradiomics. Therefore, it is important to focus on the higher 
rather than the lower end of the correlation co- efficient between 
these features which is tightly regulated by the FDR adjusted 
p values to limit the correlations based on their significance. 
This has been a common strategy used in several radiogenomic 
studies previously [2–4, 6]. Setting the absolute correlation co- 
efficient threshold to greater than or equal to ‘0.5’ and FDR ad-
justed p value to less than 0.05 ensured that we considered the 
most significant radiogenomic correlations for our study yield-
ing robust outcomes downstream.

2.4   |   Building a Multitask Elastic Net Model

We built the Multitask Elastic- Net (MTEN) model using 
ImaGene software [19], using the significantly correlated radio-
mic and gene expression features in the old cohort. The cohort 
was split into a 80:20 (training: testing) ratio. Both, radiomic 
and gene- expression features were normalized using Standard 
Scaler technique. Additionally, we conducted a three- fold 

cross validation of our training set to train through the default 
model hyperparameters as referenced in the scikit- learn library 
(https:// sciki t-  learn. org/ stable/ modul es/ gener ated/ sklea rn. lin-
ear_ model. Multi TaskE lasti cNet. html) and ImaGene [19]. The 
area under the receiver operating curve (AUROC or AUC) and 
the co- efficient of determination (R2) were measured using the 
testing set. The validation of the model was performed on the 
new cohort.

2.5   |   Targeting Genes Known to Be Expressed 
in NSCLC

Next, we targeted a set of 67 genes that were identified to be 
either high or low expressed in NSCLC based on the literature 
[17, 21]. Only 33 out of 67 genes were found to be present on our 
list of genes in the gene- expression dataset. The expression of 
each of the 33 genes in each individual cohort were binarized to 
yield either low (‘0’) or high (‘1’) expression values depending on 
whether they fell either below or above the median- expression 
of the respective gene in the respective cohort. The binarized 
gene- expression from both the cohorts were merged into a single 
robust cohort of 160 samples in total.

Further, we built a multiclass Random Forest (RF) classifier, 
using 85:15 as training: testing ratio. The training was conducted 
using the following hyperparameters for a grid- search: (a) max- 
depth = [4, 5, 6, 7,  8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 25, 28,  
35, 40, 51, 55] and (b) six- fold cross validation. The model was 
tested using the testing set. The SHapley Additive exPlanations 
(SHAP) scores depicting the contribution of radiomic features 
toward the classification of gene- expression into high and low 
expression was measured using a python- based SHAP tool 
[20, 22]. The top scoring radiomic features were reviewed.

Furthermore, a biological pathway analysis was conducted for 
the genes best predicted by RF classifier using STRING- DB 
software/web- portal [23], with the aim of identifying new 
neighboring genes for which the prediction could be established 
using radiomic features using the same RF classification tech-
nique. To be more specific, we used the STRING version 12.0 
web- portal: “https:// strin g-  db. org/ cgi/ input? sessi onId= bnk9M 
x2hKphn.”

3   |   Results

3.1   |   Generation of Radiomic Features

Feature- extraction performed using segmentation labels on 
CT- scans using Pyradiomics [18] yielded 2105 radiomic fea-
tures belonging to the following classes: shape, size, gradi-
ent, wavelet, and local- binary pattern- 3D. The feature classes 
that had Pearson's correlation co- efficient threshold |r| > 0.9 
(Bonferroni- Hochberg corrected p < 0.05) got clustered hierarchi-
cally using Euclidian distance method yielding 583 highly re-
dundant interclass radiomic feature- clusters that were filtered 
out. For example, Figure 1 depicts the high interclass correlation 
between features from local binary pattern- 3D (LBP- 3D) and 
wavelet higher frequency (HHH) classes that were filtered out. 
Consequently, a total of 1522 radiomic features were retained 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskElasticNet.html
https://string-db.org/cgi/input?sessionId=bnk9Mx2hKphn
https://string-db.org/cgi/input?sessionId=bnk9Mx2hKphn
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post filtration (Table S3). These contain feature from variety of 
classes such as wavelet, shape, size, and gradient class.

3.2   |   Analysis of Gene Expression Data

RNA- seq based gene expression (FPKM) data for the first co-
hort were downloaded from a previously published lung ra-
diogenomic study [14]. This data were reviewed, and the genes 
having FPKM values annotated “not- available” (Nas) were elim-
inated, thereby retaining a total of 5160 genes bearing quantifi-
able (non- NA) FPKM values. For the second cohort, the custom 
bioinformatics pipeline that matched closely with the previous 
study [14] generated FPKMs for all genes in human genome 
(hg19 version) using FASTQs from the RNA- seq performed on 
the respective FFPE tissue slides. Only the genes with the names 
matching those from the gene- list of the older cohort (i.e., 5160 
genes) were retained to achieve consistency in gene- set between 
the two cohorts.

3.3   |   Correlation Between Radiomic Features 
and Gene Expression Data

Next, a hierarchical clustering performed on significantly cor-
related radiomic features and gene- expression data (|r| > 0.5, 
FDR adjusted p value < 0.05) revealed clusters of radiomic 
features correlating with the gene expression. For example, 
Figure 2a,b depicts wavelet higher frequency (HHH) and local 
binary pattern (LBP) 3D feature- clusters correlating with ex-
pression of multiple genes, respectively. As a result, a total of 211 
radiomic features (Table S2) were found to be correlated with 
the expression of 137 genes (Table S1).

3.4   |   Building a Multitask Elastic Net Model

We built a Multitask Elastic- Net (MTEN) model using the signifi-
cantly correlated radiomic and gene expression features in the 
training set (n = 93) from the first cohort. While we found a high 
AUC (> 0.8) in predicting the individual expression of SLC35C1 
when testing the model with the testing set of the first cohort, 
validating with the second cohort resulted in low AUC values 
(AUC < 0.5). Thus, we investigated the data further and noted that 
the validation of the model may have failed owing to the skew-
ness in the distribution of the expression of SLC35C1 between the 
two cohorts (i.e., old, and new). This was rectified by binarizing 
the expression of SLC35C1 as ‘0’ (low) or ‘1’ (high) expression de-
pending on whether the expression fell below or above the me-
dian of SLC35C1 expression in the samples in individual cohorts. 
The binarized expression of SLC35C1 from both the cohorts were 
merged into a single cohort of 160 samples. Likewise, the radio-
mic features from each cohort were batch- normalized using a 
“Standard Scaler” normalization technique and merged into a 
single cohort of 160 samples. The binarized gene- expression war-
ranted the use of a classification- based model next, therefore, we 
chose to build a Random Forest Classifier on the merged cohort.

We built a Random Forest (RF) classifier by splitting the merged 
cohort into an 80:20 (training: testing) ratio. The classifier was 
trained using six- fold cross validation with hyperparameters. 
Testing the model using the testing set (n = 31) classified the ex-
pression of SLC35C1 into high and low levels of expression at AUC 
(and AUC_PR) > 0.8 and R2 > 0.25 (p < 0.002) (Figures 3 and 4a).

SHAP- based scores showed the top 20 radiomic features that 
contributed the most to the classification of SLC35C1 into 
high and low expression (Figure 5). These impactful radiomic 

FIGURE 1    |    High interclass correlations (|r| > 0.9) between radiomic features belonging to local binary pattern (LBP) 3D and wavelet high fre-
quency (HHH) classes at False discovery rate adjusted p value < 0.05.
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features mainly belonged to the following three radiomic classes: 
Wavelet frequency, LBP- 3D, and 3D log sigma of first- order and 
gray- level variance (Figure 5).

3.5   |   Targeting Genes Known to Be Expressed 
in NSCLC

Next, we gathered a targeted set of 67 genes that exhibited either 
elevated or decreased expression in NSCLC as presented in the 
literature [17, 21]. Only 33 out of 67 genes were found to be pres-
ent on our original list of 5160 genes. The expression of those 33 
genes had to be binarized in the old and new cohorts individu-
ally and subsequently combined into a merged cohort before we 
could build a multi- class (multi- gene) Random Forest classifier 
for their prediction.

The merged cohort was split 85:15 (training: testing) ratio and 
a multi- class RF classifier was built using a six- fold cross val-
idation with hyperparameters on the training set. Testing the 
model using the testing set predicted the gene BCL2L1 (a BCL- 2 
family member) at an AUC of 0.85, AUC_PR of 0.97 and R2 of 
0.4, at p < 0.002 (Figures 4b and 6a). Next, we built a single class 
(BCL2L1 gene- label only) classifier using the same training 
set and tested with the same testing set, which yielded a test- 
AUC of 0.95, test- AUC_PR of 1.0 and test- R2 to 0.62, at p < 0.002 
(Figures  4c and 6b), marking a significant increase in perfor-
mance compared to the multi- class RF classifier.

The radiomic features that exerted the most impact on the classi-
fication of high and low expression of BCL2L1 belonged mainly 
to the following feature classes: wavelet frequency and 3D log 
sigma first- order and gray- level emphasis (Figure 7).

FIGURE 2    |    Wavelet high frequency class (a) and local binary pattern (LBP) 3D class (b) feature- clusters correlating with the expression of multi-
ple genes at Pearson's correlation co- efficient threshold (|r| > 0.5) and FDR adjusted p value < 0.05. The correlation co- efficient (r) and gene- expression 
are plotted on y and x axes, respectively.
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Further, the exploration of biological pathways to identify gene 
neighbors for BCL2L1 was conducted using the web- version of 
STRING database (STRING- DB) [23], where a k- means clus-
tering followed by a co- expression analysis yielded nine clos-
est gene- neighbors: CDKN1A, FOXO3, MAPK1, BAX, TP53, 

CYCS, GADD45A, CDK4, and CASP, which are known to be co- 
expressed in several pathways in cancer (Figure S2).

A single- task RF classifier was built for the prediction of each 
of the gene- neighbors using a 95:5 (training: testing) split of the 

FIGURE 3    |    Receiver operating curve indicating high true positives and low false positives for the classification of SLC35C1 expression (i.e., pre-
dicted class).

FIGURE 4    |    Precision- Recall (PR) curve for the prediction of all three genes: SLC35C1, BCL2L1, and MAPK1 as displayed in (a–d), respectively, 
using their respective classifiers.
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FIGURE 5    |    Measuring impact of radiomic (or imaging) features in predicting high (1) versus low (0) expression for SLC35C1. The top performing 
radiomic features belonged to the following classes of radiomic features: Wavelet frequency, 3DLBP, and 3D log sigma of first- order and gray- level 
variance.

FIGURE 6    |    Receiver operator curves (ROC) for classification of BCL2L1 expression (into high and low expression) using both multi-  and single 
class Random Forest classifier: (a) ROC indicating high true positives and low false positives for the classification of BCL2L1 expression using a 
multitask classifier, and (b) ROC indicating high true positives and low false positives for the classification of BCL2L1 expression using a single- task 
classifier.
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merged cohort. Training of the model was conducted using 18- 
fold cross- validation of the training set to train through hyper-
parameters. Testing the model identified mitogen- activated 
protein kinase (MAPK1) as the best predicted gene using the 
radiomic features, yielding an AUC of 0.88, AUC_PR of 0.94 
and R2 of 0.5 at p < 0.002 (Figures 4d and 8). Wavelet frequency 
and 3D gray- level based radiomic feature- classes contributed 
the most to the classification of MAPK1 expression into high 
and low expression categories, as depicted in the SHAP- 
score distribution plot (Figure  9), indicating the potential of  
these imaging markers to act as surrogates for MAPK1 
expression.

Lastly, the exploration of the interaction between BCL2L1 and 
MAPK1 in several biological pathways using STRING- DB in-
dicated their co- expression in the following pathways: ‘EGFR 
tyrosine kinase inhibitor resistance’ (False discovery rate 
[FDR] = 0.004), ‘Platinum Drug Resistance’ (FDR = 0.04), 
‘Intrinsic Pathway for Apoptosis’ (FDR = 0.02), and PIK3- AKT 
signaling pathway (FDR = 0.02) (Figure S3).

4   |   Discussion

The present study makes two substantial advances in the field of 
radiogenomics. First, we combined two radiogenomic datasets, 

thereby addressing a known challenge in radiogenomics for 
ML models: the lack of large data sets, which represents a sub-
stantial challenge owing to continual advances in radiomic, 

FIGURE 7    |    Measuring the impact of imaging features in predicting high (1) versus low (0) class of expression for BCL2L1, using SHapley Additive 
exPlanations (SHAP) scores.

FIGURE 8    |    Receiver operating curve (ROC) indicating high true 
positives and low false positives for the single- task classification of 
MAPK1 expression using a grid- search approach.
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genomic, and imaging technologies [7]. Secondly, we show that 
radiomic features extracted from tumor ROIs on SOC images 
can be used as surrogate biomarkers for the individual expres-
sion of several genes known to play key roles in NSCLC and 
other human malignancies. We built both regression (MTEN) 
and classification- based (multi-  and single- task RF classifiers) 
ML models. We detected significantly elevated expression of the 
gene SLC35C1 on the old cohort. As separate validation between 
the two cohorts failed owing to skewness in the distribution of 
gene expression, we subsequently binarized gene expression 
(i.e., low vs. high) using its median expression in individual 
cohorts, and then batch- normalized cohort- specific radiomic 
features, an effective strategy to mitigate ‘center effect’, vari-
ability between temporally or spatially distinct datasets, and to 
increase generalizability for classification [43]. The binarized 
and batch- normalized cohorts were combined to form a homog-
enized combined cohort, which was split into new training and 
testing cohorts representative of a heterogeneous mix from our 
original (i.e., temporally separated) cohorts. The training cohort 
was used to build an RF classifier, which classified the SLC35C1 
gene into high and low expression categories using several radio-
mic feature classes. These features exhibited considerable SHAP 
values, indicating the importance of these features as surrogates 
for predicting SLC35C1 expression in our NSCLC cohort.

SLC35C1—an immunological and prognostic biomarker that has 
been shown to play a key role in multiple types of cancer—encodes 
GDP- amylose transporter protein 1 and is involved in the trans-
port of GDP- fucose from the cytosol to cellular structures involved 
in secretion, such as the Golgi apparatus, endoplasmic reticulum 
and, endosomes [24]. Furthermore, SLC35C1 expression has been 
previously found to be elevated in lung tumors compared to nor-
mal tissues in the TCGA cohort, and was also correlated with the 
tumor microenvironment and tumor molecular burden, microsat-
ellite instability, and antitumor drug sensitivity in cancer [24]. The 
inhibition of SLC35C1 in glioma cells increased tumor cell prolifer-
ation, migration, and invasion [24]. Additionally, elevated SLC35C1 
expression is known to be a key factor for increased fucosylation  
in hepatocellular carcinoma (HCC), and thus could be a potential 
target for the treatment and diagnosis of HCC [25]. In NSCLC, the 
modulation in expression of the genes in fuscosylation pathway 
have been associated with a poor prognosis and metastasis [26].

Our analysis of 33 target genes known to be important drivers 
of NSCLC classified BCL2L1 and MAPK1, indicating that several 
imaging features from lung CT scans in a combined NSCLC co-
hort predicted the individual binarized expression of BCL2L1 and 
MAPK1. BCL2L1 is an anti- apoptotic member of the well- known 
family of BCL2 apoptotic regulatory proteins and is a promising 

FIGURE 9    |    Measuring the impact of imaging features for prediction of high (1) versus low (0) expression of MAPK1 gene.
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prognostic biomarker and drug target in NSCLC [27–29]. MAPK1 
(ERK2) is in the extracellular signal- regulated kinase (ERK) sub-
family of MAPKs, where ERK signaling has been referred to as 
“a master regulator of cell behavior, life, and fate” [30]. MAPK1/
ERK2 has been implicated in myriad cancers through involve-
ment in key pathways and via miRNA regulation [31–33], and has 
been implicated as an oncogene during NSCLC progression and 
significantly promoted the proliferation, migration, and invasion 
of NSCLC cell lines in  vitro [34]. Furthermore, ERK signaling 
has been shown to upregulate anti- apoptotic proteins by regulat-
ing the expression of BCL2 and BCL2L1 [30, 35, 36]. Our findings 
that both BCL2L1 and MAPK1 are co- expressed in key biological 
pathways related to drug resistance, apoptosis and PIK3- AKT 
signaling are in agreement with other studies in both NSCLC 
and other cancer types [27, 37–40]. The literature suggests that 
the efficacy of the chemical agents G- 963 and GDC- 0941, which 
target MAPK and PI3K pathways, respectively, can be improved 
by the addition of a BCL- 2 family inhibitor (i.e., navitoclax [ABT- 
263]), further supporting the co- expression of these genes [41]. 
Additionally, the Hippo Pathway effector YAP1 (yes- associated 
protein) has been shown to mediate resistance to RAF–MEK 
inhibitor therapy in NSCLC by suppressing the gene product of 
BCL2L1, the anti- apoptotic protein BCL- xL, together with MAPK 
signaling [42], highlighting the potential for the radiomic fea-
tures identified in the present study to be used as non- invasive, 
surrogate markers of BCL2L1 and MAPK1 and to ultimately pre-
dict potential resistance to therapy in NSCLC patients.

From a statistical standpoint, the Pearson- based correlation and 
Hierarchical clustering methods used in our study define linear 
relationships between radiomic and gene- expression features, 
which coheres with the method used in several radiogenomic 
studies presented in literature [11–13, 16]. However, studying 
non- linear relationships between these features may allude to 
additional radiogenomic associations in NSCLC, indicating a 
limitation of our study.

In conclusion, we show that heterogeneous radiogenomic co-
horts can be effectively combined to predict the binarized ex-
pression of individual genes from several radiomic features using 
multiple ML models with a high degree of AUC. Furthermore, 
our findings, in conjunction with considerable biological and 
experimental evidence in the literature, strengthens the argu-
ment that certain radiomic features from routine radiologic im-
ages can be used as surrogate predictors of the expression of key 
genes in NSCLC (i.e., SLC35C1, BCL2L1 and MAPK1), which in 
turn could serve as biomarkers to predict clinical factors such as 
tumor molecular burden, response to therapies and metastatic 
potential. Our models also showcase the need to further research 
for the role of these genes in the progression of NSCLC. Larger 
datasets using images and gene expression data in collaboration 
with multiple hospitals and clinics will be required to further val-
idate these findings to facilitate the translation of our findings 
into clinical oncology workflows, increase access to personalized 
medicine, and ultimately improve outcomes for NSCLC patients.
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